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Abstract— In this paper, we develop a motion planner for on-
road autonomous swerve maneuvers that is capable of learning
passengers’ individual driving styles. It uses a hybrid planning
approach that combines sampling-based graph search and
vehicle model-based evaluation to obtain a smooth trajectory
plan. To automate the parameter tuning process, as well as
to reflect individual driving styles, we further adapt inverse
reinforcement learning techniques to distill human driving pat-
terns from maneuver demonstrations collected from different
individuals. We found that the proposed swerve planner and its
learning routine can approximate a good variety of maneuver
demonstrations. However, due to the underlying stochastic
nature of human driving, more data are needed in order to
obtain a more generative swerve model.

I. INTRODUCTION

In the last two decades, developments in vehicle autonomy
technologies have brought societal attention to research in
autonomous passenger vehicles (APV). Motion planning
(MP) is a key component. It generates prescribed motion
trajectories to navigate an APV, preferably in a smooth and
human-like fashion.

The core of existing MP techniques usually involves a sin-
gle optimization routine based on manually tuned reward/cost
functionals. While some planning tasks have non-ambiguous
optimality criteria, such as (minimum) time in planners for
race cars, there is no single universally acknowledged crite-
rion that defines what is “good” for general on-road driving.
One reason is that the driving quality should be at least in
part based on human preferences, which obviously can vary
from person to person. Two challenges arise: first, individual
driving style should be taken into account explicitly in the
tuning procedure; second, manual tuning for this purpose can
be very difficult and time-consuming.

In this paper, we address these challenges by developing a
parameterized motion planner for swerve maneuvers and uti-
lizing inverse reinforcement learning to recover the optimal
parameterization to best mimic human demonstrations.

II. RELATED WORK

Trajectory planners for on-road autonomous driving can
be viewed as short-ranged or long-ranged. Short-range (lo-
cal) trajectory planning algorithms have been developed for
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autonomous driving. Lee [1] proposed a real-time local lane-
following and lane-change trajectory generation routine. The
winning entries in the DARPA Grand and Urban Challenges,
“Stanley” [2] and “Boss” [3], used a planning scheme based
on local trajectory sampling to follow the lane centerline.
Long-range planners use graph-based or optimization-based
procedures to take a longer preview horizon into account,
and behave more robustly in complicated driving scenarios.
Ziegler [4] and McNaughton [5] used the spatiotemporal
state-lattice planning scheme for on-road driving. Ziegler
[6] proposed constraint-based trajectory generation by con-
tinuous optimization routines that optimize certain optimal
criterion. Li [7] developed an on-road planner by applying
support vector machine (SVM) in the corridor environment.

The optimality criteria of these prior planners and many
other motion planners developed for other mobile robots
or ground vehicles [8], [9], [10], [11] is typically defined
by cumulative weighted feature (cost) terms to account for
different aspects of driving. The weights are often obtained
through a manual tuning process, which is often very difficult
and time-consuming. Meanwhile, the individual driving style
was not taken into account when performing the weight
tuning.

Learning-from-demonstration techniques provide methods
for automatic tuning in a variety of planning/control ap-
plications. Hamner [12] developed a potential field-based
controller for obstacle avoidance, then applied and com-
pared several parameter fitting routines in order to mimic
a few demonstrated avoidance paths. Abbeel [13] applied
apprenticeship to a fused search/optimization-based path
planner to learn human parking styles. Silver [14] formulated
the learning as an unconstrained optimization problem and
applied it to a robot exploring in complex and unstructured
terrain. These methods all developed certain path planner,
and depend on iterative optimization techniques to automat-
ically find the weights for their cost (feature) terms. For
on-road driving, on the other hand, the learning should be
applied to the trajectory planner, which generates not only a
path plan, but also speed information.

In Gu [15], we proposed a trajectory planner and a learning
routine in order to mimic a human-like driving style affected
by road geometry, yet not capable of reacting to the surround-
ing objects. The contribution of this paper is the development
of a trajectory planner and an automated parameter tuning
(learning) scheme for object swerve avoidance maneuver
to discover individual driving styles. To the best of our
knowledge, there has been no prior work on learning driving
styles for on-road swerve maneuver of an APV.

The remainder of the paper is organized as follows.



Section III describes the proposed parameterized planning
scheme for swerve maneuvers. Section IV explains the learn-
ing techniques for parameter auto-tuning in order to distill
individual driving preference from demonstrations. Sections
V and VI conclude with experimental results and discussion.

III. PLANNING FOR SWERVE MANEUVER

The proposed swerve planner consists of two planning
components: a sampling-based path planner to generate a
coarse spatial curve, and a vehicle model-based trajectory
generator to obtain a smooth and kinematically feasible
trajectory that is collision-free to surrounding objects.

A. Heuristic Sampling-based Path Planning
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Fig. 1: Sampling-based heuristics for path planning. A swerve
segment consisting of two consecutive swerve maneuvers is illus-
trated. The buffer zones around the objects are represented by blue
regions. Layers of waypoints are placed longitudinally and laterally.
Longitudinal sampled layers (L¢™*"Y, L****) are the entry and exit
of a swerve segment, each of which consists of a single (green) node
marking the start or end. Lateral sampled layers (L', L2 L3 L*)
are aligned to the front and back edges of the objects’ buffer zones.
Piecewise-linear paths are created by generating all possible edges
between the nodes in neighboring layers.

A directed graph is constructed for planning using the
following state sampling heuristics: a swerve segment (Fig.
1) is defined as layers of sampled waypoints (nodes). Two
special single-node layers are placed at the entry L¢™"¥ and
exit L* of the swerve segment. The edges (piecewise-
linear paths) are obtained by connecting layers of nodes. An
edge e connects nodes n? from layer i and n‘*! from layer
i + 1. Each node n has coordinates [s(n),l(n)] in the road
frame, where functions s and [ return the longitudinal and
lateral positions of the node n. Each edge is evaluated with
a cost, which is the linear combination of weighted feature

terms:
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where M is the dimension of the feature space, €) is the
weight vector, and ® is the normalized feature vector of the
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To capture the core factors of a swerve maneuver, three
categories of five feature terms and the corresponding weight
parameters are defined: ¢,rfse¢ penalizes offset from the
original centerline by the area of deviation; ¢gyerve punishes

excessive swerves with high latitude/station displacement
ratio (note that three different feature terms are derived based
on the nature of an edge, i.e., whether it is deviating from
the centerline, getting back to, or otherwise), and @opstacie
penalizes paths close to obstacles with an exponential decay
as the path gets farther away.
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where Z¢q¢q1 and Zyy fer are the fatal (collision) and buffer
zones regarding an object, and the function d°% returns the
distance of an input edge to its nearest obstacle.

On the directed acyclic graph (DAG) we built, the planner
solves a deterministic Markov Decision Process (dMDP)
problem to find the optimal state transition sequence e*:

= arg min Z QT<I> )
ece

where e* is the optimal sequence of state transitions from the
start node n¢™"Y to end node nc**. Therefore, e* represents
a piecewise-linear path Pj;neqr to be further smoothed.

B. Model-based Trajectory Generation

Goal point of

Linear reference o 0. pure pursuit tracking
path .- e
GHC L5 -

(x9) M
\ = \

~-<

\ S~
\/ ~~_

Fig. 2: The path smoothing component of the model-based trajec-
tory generation is based on a pure-pursuit tracking controller and a
kinematic bicycle vehicle model.

For trajectory generation, a smooth path is obtained by
evaluating P00, With a vehicle model (Fig. 2). The
model consists of a kinematic half-car model (3) and a pure
pursuit controller (4). The evaluation process guarantees the
kinematic feasibility of the smoothed path.
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The look-ahead parameter [; of the pure-pursuit controller
determines the smoothness of the evaluated path. The larger
l4 18, the smoother Pg,,,00th 18, but it will deviate more from
Piinecar (the effect of corner cutting) with a non-straight path
sequence. Note that [; is a pre-determined value, which is
not included in the following parameters for the path planner:
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For APV, lateral and longitudinal accelerations a;q; and
ajon, are crucially important for user comfort. Under the
kinematic model assumption (i.e., moving along the path
without skidding) along path Pg,00th, Which contains a
sequence of path points {p,}, the following relations hold:

2
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where x and v;,,, are the curvature value and the longitudinal

speed of a point p on the smooth path P, 0th-

In order to further augment a geometric path with temporal
information, a speed profile V,, can be generated such
that each point p on the reference path P00, has a
corresponding speed value vj,,(p) subject to the following
dynamics constraints:
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where a;,; is the lateral acceleration maximum, and al'tm

! a,, are the positive/negative longitudinal acceleration
maximum. A constraining routine [15] is used to generate
a first-order continuous speed profile. The speed generator
can therefore be completely parameterized by:

A = [, afl,, apn]” ®)

The other external' comes from collision status w.r.t.
the surrounding objects. Given smooth path P gp,00t5 ()
and speed profile V,,(A’), a spatiotemporal trajectory
T(Y,A’) can be used to calculate for collision checking
against both static and moving objects. When a collision
is detected, the pair of parameters ' and A’ that generate
trajectory 7~ will be marked as invalid parameterization.

IV. LEARNING DRIVING STYLE

Parameter tuning can be viewed as a learning process in
order to mimic the human driving pattern, which includes
the following aspects of the swerve maneuver:

1) When and how to start and exit a swerve?

2) How far to keep from a particular type of obstacle?
3) How fast to drive during a swerve?

Typically, learning by empirical manual tuning has no

systematic approach. An algorithm designer would have to
perform on-line tuning according to some rules of thumb and

IAs it is the constraints imposed by surrounding objects, rather than the
dynamics of the trajectory itself.

with subjective feedback (most often from the designer him-
self). Such a trial-and-error approach is difficult and labor-
intensive. It is therefore ideal to automate the parameter-

tuning process to offload this burden.

Notice that the proposed planner has two sequential
components, which have been parameterized by € and A.
We formulate an inverse reinforcement learning procedure,
whose goal is to recover optimal parameters (2* and A* that
best replicate demonstration trajectories, such that:
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where > ) represents the element-wise sum of vector €2,
€path and €gpecq are the cumulative errors (the root of
the average least-square path/speed deviations) between the
model-evaluated trajectory and demonstration trajectory:
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where Vp' € P nootn, VD' € PVl € Vion, Vo' €V, P
and V are the path and speed profiles of the demonstration
trajectory.

The reason for choosing * that minimizes |||z is that
there is typically more than one configuration of {2 that
achieves the same dMDP traversal sequence in path planning,
therefore the same Pgpmootn(§2) and the same epqen. We
use the same conditioning technique used in Abbeel [13]
to find the most uniformly parameterized ) that achieves
this resolution-complete optimality. The overall algorithm is
outlined in Fig. 3.

Step-1: Obtain solution of MDP planning problem given
the parameter vector (2

e’ = arg min Z Q"d(e)

ece

Step-2: Construct a coarse path P ,q.se by connecting
the piecewise-linear edges in e*.

Step-3:  Apply the trajectory generation model
to Peoarse given parameter vector A to obtain

{Psmoothavlon} L . . .
Step-4: Evaluate path optimization criterion by

calculating cumulative point-wise weighted errors of
lateral offsets to the original reference P:
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Y i) - 1))
P'EP mootn PEP P

Epath -

Step-5: (After determination of 2*) evaluate speed
profile error against speed demonstration V':

Espeed - Z

EVion,0EV
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Fig. 3: Planner forward evaluation routine for inverse reinforce-
ment learning. The parameters for path planning and model-based
trajectory generation are learned sequentially for efficiency.



The learning process requires careful choice of optimiza-
tion routines, particularly for the path parameter {2 learning
subroutine due to its high likelihood of local optimality
in the dMDP formulation. Probabilistic global optimization
methods, i.e., simulated annealing, are suitable. Learning the
parameter A of the speed model can be efficiently done with
the Nelder-Mead algorithm.

V. RESULTS
A. Data Collection

To collect real human driving data for experiments, we
mount a centimeter-level real-time kinematic (RTK) GPS
receiver on the roof of the vehicle, located at the center
of the rear axle, for data collection (Fig. 4). The driving
environment was a single-lane corridor in a closed course,
and the locations of the objects were surveyed a priori with
the same level of accuracy.

(a) (b)

Fig. 4: Data collection (a) vehicle setup with GPS antenna mounted
on the roof of the car. (b) test scenario setup where orange cones
were placed partially blocking the road.

We generated three sets of driving scenarios (Fig. 5),
invited four human drivers to drive the vehicle manually
in those situations, and recorded their demonstrations. The
drivers were asked to drive in a way that “would make
them feel comfortable as if the car is in autonomous driving
mode.” The operation was performed under fixed conditions
to enforce the same external stimuli to different human
drivers, namely the course, object placement, and data-
collection vehicle. The idea is to make sure, to the maximum
extent possible, that the variance in driving demonstrations
was solely caused by the difference in individual driving
preferences under the same condition.

Each demonstration is a recorded trajectory with position,
heading and speed information. In order to condition the
demonstration for model training, we recorded four demon-
strations for each scenario/person, and applied dynamic time
warping (DTW) [16] to obtain a single smoothed demon-
strated trajectory. The data collected in scenarios (S1) and
(S2) will be used to show the validity of the proposed plan-
ning/learning approach in mimicking human demonstrations.
Scenario (S3) is used to evaluate the generative capability of
the learned planner.

B. Learning for Individual Preference

The convergence of the proposed learning algorithm in
one demonstration is illustrated in Fig. 6 and 7. Applying
this algorithm to the collected demonstrations yields Fig. 8.

Fig. 5: Three scenarios for human demonstration. The solid gray
lines on both sides indicate the lane boundary, and the dashed gray
line indicates the centerline of the lane. The leftmost figure shows
a single-object scenario (S1). The middle figure shows a two-sided
double-object scenario (S2). The rightmost figure shows a single-
sided double-object scenario (S3).

A qualitative analysis shows that there are clear differences
in driving styles between different people facing the same
scenario. Fig. 8a, 8c, 8e illustrate how different people can
vary significantly in avoidance maneuvers for each tested
scenario, for example: user 1 is the most conservative and
tries to slow down for all scenarios even if the path geometry
allows driving at a higher speed.

Quantitatively speaking, entries 1-8 in Table I (Fig. 8b
and 8d) summarize the detailed parameter learning results,
as well as learning accuracies, of a total of 8 DTW-processed
driving demonstrations in scenarios (S1) and (S2). The
results show an average of 0.12m path error, 0.23m/s speed
error for scenario (S1) and 0.22m path error, 0.51m/s speed
error for scenario (S2).

These are reasonable learning results due to the limited
sampling resolution of the path planner (longitudinal/lateral
resolutions are 2.0/0.2m respectively), and the curvature-
sensitive nature of the speed profile generation routine.
Meanwhile, the optimality criterion design of the planning
models only captures the most dominant trade-off aspects,
which inevitably imposes limitations on the learning accu-
racy, which can be observed in Abbeel [13].

Demonstrated Path

Iteration 1

Iteration 11

Iteration 23

Iteration 60

Fig. 6: Learning of one path demonstration of a two-object swerve.
The gray lines mark the road, while the red rectangle represents
the obstacle. The black dashed curve is the path demonstration, the
multiple blue starred curves represent the gradually learned path,
and the blue starred curves illustrate the convergence of learning of
the demonstrated speed profile.



TABLE I: Summary of Learning Results & Accuracies

Entry # 1 T 21T 3] 4 5 6 | 7 1 8 9 T 10 1112
Scenario # S1 S2 S3
User # 1 2 3 4 1 2 3 4 1 2 3 4
Wof fset 0.10 | 0.10 | 0.03 | 0.51 | 048 | 0.19 | 0.03 | 0.34 | 0.10 | 0.10 | 0.03 | 0.51
woutside 0.56 | 0.58 | 0.19 | 0.19 | 0.20 | 0.37 | 0.38 | 0.21 | 0.56 | 0.58 | 0.19 | 0.19
winside 0.13 | 0.10 | 042 | 0.13 | 0.14 | 035 | 0.51 | 0.34 | 0.13 | 0.10 | 042 | 0.13
wother 0.01 | 0.03 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.03 | 0.01 | 0.01
Wobstacle 0.20 | 0.19 | 0.35 | 0.16 | 0.17 | 0.08 | 0.07 | 0.10 | 0.20 | 0.19 | 0.35 | 0.16
la(m) 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0
ajqt(m/s?) 1060 | 1.40 | 007 | 39 [ 079 | 078 | 0.66 | 0.89 | 0.60 | 1.40 | 1.07 | 3.9
altn(m/SZ) 0.80 | 0.12 | 0.08 | 0.13 | 1.49 | 1.18 | 0.60 | 0.71 | 0.80 | 0.12 | 0.08 | 0.13
al_on(m/sz) 0.84 | 0.01 | 0.07 | 041 | 142 | 1.87 | 1.16 | 1.57 | 0.84 | 0.01 | 0.07 | 041
€path(m) 0.12 | 0.09 | 0.08 | 022 | 0.25 | 0.16 | 0.25 | 0.23 | 049 | 0.51 | 0.34 | 0.64
€speed(m/s) | 0.57 | 0.08 | 0.04 | 0.17 | 0.57 | 0.70 | 0.27 | 0.52 | 2.54 [ 513 | 491 | 1.02
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Fig. 8: Illustrations of user demonstrations, planning results with learned parameters & predictive planning results with learned parameters.
(a) (c) (e) shows the user demonstrations in scenario (S1) (S2) (S3) respectively. (b) (d) shows the planning outcomes of parameter-learned
planners in the same scenarios, whose demonstration data are used for learning. (f) shows the planning outcomes in scenario (S3) with
parameters learned from (S1) demonstrations.



