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Abstract— In a hierarchical motion planning system for
urban autonomous driving, it is a common practice to separate
tactical reasoning from the lower-level trajectory planning. This
separation makes it difficult to achieve robust maneuver-based
tactical reasoning, which is intrinsically linked to trajectory
planning. We therefore propose a planning method that au-
tomatically discovers tactical maneuver patterns, and fuses
pattern reasoning and sampling-based trajectory planning. The
results demonstrate enhanced planning feasibility, coherency
and scalability.

I. INTRODUCTION

In order to realize fully autonomous driving in urban
environments1, an autonomous vehicle is typically equipped
with a hierarchical planning system to handle different
aspects. As reviewed in Buehler [1], many entries in the
2007 DARPA Urban Challenge (UC) used a hierarchical
planning system, in which tactical planning (a.k.a. behavior
planning) and trajectory planning are separately implemented
(the separation). The former is responsible for generating
tactical decisions, while the latter generates the executable
trajectory. The tactical planning can be further classified as:
• Rule-based tactics: speed limits, work zone, stopping

at stop sign and intersection precedence handling.
• Route-based tactics: choose which lane to switch to in

order to meet global routing requirements.
• Maneuver-based tactic: decide when and how to yield,

follow or overtake other agents.
Rule-based and route-based tactical planning can be handled
decoupled from trajectory planning with State Machines [2],
[3], [4], or other Action Selection Mechanisms [5], [6].
However, the separation poses hard-to-reconcile challenges
to implementing maneuver-based tactics with a trajectory
planner:

Challenge 1: Maneuver feasibility conflict. Maneuver-
based tactical planning does not explicitly guarantee plan
feasibility, which may result in infeasible maneuver decisions
from the perspective of the trajectory planner2.

Challenge 2: Ignorance of the environment’s topology.
The neglect of the environment’s topological structure by
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both tactical and trajectory planning can lead to inconsistent
outcomes from cycle to cycle.

Challenge 3: Unscalable manual scenario discovery. It is
not practical to pre-design maneuver-based tactical rules for
all unforeseen situations, which can quickly become very
complex with multiple objects.

This paper addresses these three challenges. To guarantee
trajectory feasibility (Challenge 1), we divide the maneuver-
based aspect from the tactical planning, and fuse it with
motion planning in order to simultaneously perform tactical
reasoning and trajectory planning. To incorporate topology
awareness (Challenge 2) and remove manual tactical rule
design (Challenge 3), we develop maneuver pattern identi-
fication that explicitly discovers and reasons about patterns.

II. RELATED WORK

State machines or decision trees with hand-crafted rules
are often used to perform maneuver-based tactical reasoning.
Fig.1 illustrates two common maneuver triggering rules
designed for lane-change and stop-and-go at intersections.
While these rules are able to handle basic traffic situations,
they are often challenged in the real world when the on-
road or intersection traffic is dense. Intended maneuvers
may fail due to the rules being conservatively designed in
order to compensate for the fact that they do not guarantee
trajectory feasibility/admissibility. Another limitation is that
such predefined rules are not general and robust enough to
handle varied situations, e.g., when the real-world objects do
not match any pre-defined configuration template.
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Fig. 1: Maneuver-based tactical rules for lane-change and lane-
merge behaviors. In (a), lane change is triggered according to a
triggering condition, e.g., Dgap above a certain threshold. In (b),
stopping at the intersection is part of rule-based tactical planning,
but going is often triggered with an empirical safety rule, like the
estimated time of zone arrival T of all relevant moving targets being
above a threshold.

The lower-level trajectory planners designed for UC and
nearly all subsequent efforts [7], [8], [9], [10], [11], [12]
aimed at optimizing (minimizing) an objective (cost) func-



tion3. However, neither the tactical planners discussed above
nor the trajectory planners are able to distinguish topolog-
ically distinct maneuver patterns. This can lead to “com-
peting” locally optimal trajectories that belong to different
patterns, which can further cause unstable behavior, e.g,
cycle-to-cycle planning outcome oscillation (Fig. 2).

Fig. 2: The ignorance of topology in planning. The plot shows
a pure path planning problem with a single static obstacle. Two
homological/homotopic classes of paths exist: left (red region) and
right (green region). There is a local optimal path within each class
(the red/green dashed curves). Under symmetric cost definition, the
two locally optimal paths can be very close (even tied) in cost,
which causes indecisive alternation between the two locally optimal
paths, which can further cause undesirable driving behaviors.

Topological trajectory planning algorithms have been stud-
ied in robotics. Triangulation [13], cell-decomposition [14],
visibility-graph [14] and reference frame methods [15] have
been developed to capture the topological structures of the
robot’s configuration space. Kuderer [16] and Park [17]
proposed to perform topological analysis for mobile robots
with Voronoi diagrams and cell decomposition respectively.
However, these methods are limited to co-terminal4 2-D
paths. Moreover, the need to generate the complete topology
graph causes exponential growth in its size along with the
number of obstacles. Finally, these methods are only easily
applied in near-/relative-static environment. For example,
Park [17] performed an experiment for freeway autonomous
driving. However, a static snapshot of the moving obstacles
is used to perform cell decomposition rather than taking into
account the predicted motion of surrounding vehicles.

Inspired by electromagnetic theory, Bhattacharya [18]
proposed to calculate an invariant “signature” to identify
different homological 3-D paths. He further augmented the
topological information to graph search to explore different
homological paths. However, this method is also limited to
co-terminal paths, which is not directly applicable to fixed-
time-horizon spatiotemporal trajectory planning5.

In this paper, we introduce the idea of fusing the traditional
sampling-based trajectory planner with topological analysis
to automatically discover and reason about tactical maneuver
patterns, and guarantee the feasibility of the trajectory plan.
We propose pseudo-homology to classify topologically dif-
ferent trajectories that are not necessarily co-terminal. This
planner is evaluated in several on-road driving scenarios with
time-varying surrounding objects for obstacle avoidance,
lane-change and intersection handling.

3Often calculated as a scalar value defined as the weighted sum of
multiple cost (feature) terms

4Co-terminal paths have the same starting point and destination point.
5The terminal states up to the sampled time horizon do not converge into

a single space-time state, i.e., the trajectories are not co-terminal.

III. THEORETICAL BACKGROUND

In topological trajectory planning, the distinction between
path homology6 and homotopy7 must be clarified. In Fig. 3,
T ′ and T ′′ are homological: the loop formed by T ′ and T ′′
does not contain any obstacle ring8. However, T ′ and T ′′
are not homotopic, since they cannot be deformed from one
to the other when two obstacle rings exist at the same time.
In general, lemma 3.1 holds:

Lemma 3.1: Homotopy is a sufficient but unnecessary
condition of homology.
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Fig. 3: Two homological 3-D paths T ′ and T ′′ navigate through
two obstacle rings. However, they are not homotopic since it is
impossible to deform one to the other without intersecting obstacles.

The electromagnetism laws are useful for calculating in-
variant quantity for homological 3-D paths:
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Fig. 4: Energized wire and its generated magnetic field in the 3-
D Euclidean space. The current in the wire is I , and its enclosed
surface is denoted by S. Three co-terminal 3-D paths T1, T2 and
T3 are further depicted starting at X0 and ending at Xf . T1 and T3

are homological/homotopic since they both go around the (looped)
wire W , while T2 is not homological/homotopic to them .

Biot-Savart Law: a steady current flowing through a wire
W generates the magnetic field B, the vector value of which
defined at X ∈ R3 is:

B(X ) = µ0 · I
4π

∫
W

l−X
‖l−X‖3

· dl (1)

where I is the current in W , l is a point on W , and µ0 is
the magnetic constant, whose value is not significant for the
purpose of homotopy analysis.
Ampere’s Law: given a magnetic field B and a closed path
T◦, the line integral along T◦ is proportional to the total
current I passing through a surface S enclosed by T◦∮

T◦
B · dl = µ0 · I (2)

The laws of Biot-Savart and Ampere are dual theorems
relating the energized looped wire W and the magnetic field

6Homological paths are co-terminal, and the boundary formed by con-
necting tail-to-head does not contain/collide with any obstacle.

7Homotopic paths are co-terminal, and deformable from one to the other
without intersecting any obstacle.

8This can be tested by removing any single obstacle ring.



generated. In Fig. 4, regardless of the shape of the closed
path T◦, the integration of magnetic field B gives an Ampere
invariant which is only relevant to the amount of current
going through the closed surface S formed by W .

In Bhattacharya [18], this property is exploited to define
the H function for co-terminal paths like T1, T2, T3. Imagine
planning with one (or more) ring-like obstacle, which is
energized with current I and generates a magnetic field B
like the wire W in Fig. 4. The H function is defined as the
integration of the magnetic field B along T :

H(T ) =
∫
T
B · dl

It can also be shown that the H function gives a numerical
equivalent to homology:

Theorem 3.2: paths T ′ and T ′′ are homological if and
only if their H functions are equal.

Note that whether the looped wire has volume is irrelevant
to the result of topological analysis. The deformable retract9

of an object O is its homology/homotopy equivalent, or its
skeleton S(O). In Fig. 4, a 1-D curved skeleton S(W) is
obtained by “shrinking” the wire W . Replacing W with
S(W) does not change the homology/homotopy relationship
among T1, T2 or T3.

IV. SPATIOTEMPORAL TOPOLOGICAL ANALYSIS

The planning workspace of the autonomous vehicle con-
sidered in this paper is a 3-D spatiotemporal space W =
[R2×T] obtained by augmenting a 2-D planar space R2 with
a time dimension T. A bounded workspace W is considered
in practice due to fixed horizon (T ) at every planning cycle.

Taking the surrounding objects10 into account is the pri-
mary goal of motion planning for urban autonomous driving.
Taking a snapshot at any given time, an object is represented
as a 2-D polygon. Adding the temporal prediction (up to
T ) to a 2-D object creates a 3-D temporal object. Fig. 5a
shows an on-road driving scenario with a single bicyclist as
the object to avoid. The bicyclist object O is augmented as
a pillar-shaped temporal object in OW within W, with its
predicted trajectory (Fig. 5b) as its skeleton S(OW).

However, OW is not able to incur different homologi-
cal/homotopic trajectories because it is genus11-0. In order
to introduce this ability, augmented temporal objects OW

of genus-1 are created by augmenting OW with a loop-like
structure in the space W/W ({x|x ∈ W, x /∈ W}). This
can be achieved by appending either a finite loop giving OW

◦
(Fig. 5c) or through an infinity loop giving OW

∞ (Fig. 5d).
The latter, in a fashion that extends both ends of the skeleton
to infinity in parallel to the time dimension, is preferred
for its mathematical simplicity. The virtual magnetic field

9Deformable retract is a continuous mapping from the entire space (ob-
ject) into a subspace (skeleton) completely contained within. The subspace
does not alter the topology exhibited by the surface of the original space.

10E.g., static objects, surrounding traffic, bicyclist, pedestrian, etc.
11Genus is an important concept in algebraic topology [19]. An intuitive

interpretation of genus is the maximum number of “cuts” that can be
performed on an object such that the cut object is still a connected object
with full volume, e.g., in 3-D, a ball is genus-0, a loop hole is genus-1, etc.
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Fig. 5: The creation of a genus-0 temporal object, its genus-
1 augmentation and the virtual magnetic field incurred in the
configuration space. (a) shows the 2-D spatial space R2 with
the host vehicle and a moving bicyclist O. (b) shows the 3-D
spatiotemporal workspace W and its bounded subspace W. It also
shows the temporal object OW created from the moving bicyclist
O, and its skeleton S(OW). (c) shows the skeleton of an augmented
temporal object S(OW

◦ ) from outside of the bounded workspace.
(d) shows the skeleton of an augmented temporal object S(OW

∞)
through infinity.

is further obtained via integration along S(OW
∞) to calculate

the H function discussed in section III. A trajectory in W is
equivalent to a path in R3. The property of the H function
holds for W.

Furthermore, instead of only analyzing co-terminal paths,
it is of practical interest to group trajectories that terminate in
the same 2-D spatial region R2 for on-road driving. Pseudo-
homology is therefore formally defined:
Pseudo-homology: two paths T ′ and T ′′ are pseudo-
homological if they both start from the same state and end
in the same path-connected region R ∈ R2.

Similar to the 1-D skeleton being the deformable retract
of a 3-D object, a 0-D point is the retract of a 2-D spatial
region R. This point is also referred to as the representative
point X ∗R of R. Note that R does not have to be a convex
shape, and the exact location of X ∗R is insignificant as long
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Fig. 6: Pseudo-homological trajectories. Trajectories T ′ and T ′′ are
pseudo-homological since they both start from state X0, and end in
the same path-connected region R ∈ R2 at states X T

′
R and X T

′′
R .

A representative state X ∗R is specified for R, and helper trajectories
T ′h, T ′′h in R connect the original trajectories to X ∗R.

as it is contained by R. Then the following corollary is used
to efficiently test for pseudo-homology:
Corollary: two trajectories T ′ and T ′′ are pseudo-
homological if they can be extended from where they ter-
minate on R to X ∗R with helper trajectories T ′h and T ′′h , and

H(T ′ + T ′h) = H(T ′′ + T ′′h )

The helper trajectories can be of arbitrary shape, as long as
they stay within R (Fig. 6). The procedure to determine the
pseudo-homology is summarized by algorithm 1:

Algorithm 1 Determine pseudo-homology

Require: Two trajectories T ′ and T ′′
Ensure: Correct judgment of trajectories’ pseudo-homology

IDENTIFY a spatial region R ∈ R2 within W at time T .
CHECK if the end states X T ′ and X T ′′ are in R.

IF no, RETURN false
RETRACT region R to a representative point X ∗R
CONSTRUCT helper trajectories T ′h and T ′′h that connect
X T ′R and X T ′′R to X ∗R
CALCULATE the H function of T ′ + T ′h and T ′′ + T ′′h

IF H(T ′ + T ′h) 6= H(T ′′ + T ′′h ) RETURN false
ELSE RETURN true

Algorithm 1 plays a key role in behavioral discovery in
section V for its efficient topological distinguishing capabil-
ity as well as its region-awareness.

V. FUSED TACTICAL MANEUVER DISCOVERY,
REASONING & MOTION PLANNING

The fusion of tactical maneuver discovery/reasoning and
trajectory planning is achieved in three steps. A pool of
feasible and admissible trajectory candidates is first sampled.
From this pool, distinct tactical maneuver patterns are auto-
matically extracted along with their semantic interpretation.
Then the final trajectory is obtained by first deciding on a
tactical pattern, followed by choosing the optimal trajectory
belonging to the selected pattern.

A. Trajectory sampling

Trajectory samples must first be generated to form a pool
of possible maneuver candidates, the foundation of which is
the motion primitives that connect one state to another in
a smooth fashion. Decoupled/analytical primitives [20], [21]
are used. They allow the trajectory evaluation routine to be
broken into steps, checking for path collision against static

objects first before checking for the trajectory, which can
save computation time by eliminating infeasible spatiotempo-
ral trajectory search nodes at an early stage. Their analytical
solution allows for trivial computation overhead rather than
an iterative optimization effort.

Host Vehicle

Layer 1 Layer 2 Layer 3

Fig. 7: Path sampling pattern for on-road driving. The black curves
represent the path candidates sampled in the current lane of the host
vehicle, while the blue curves represent those in the neighboring
lane. Each group of paths is sampled by placing three layers of
terminal states along the road with decreasing lateral alternatives.

Another important choice is the sampling pattern, which
determines the subspace of the spatiotemporal domain that
the planner should focus on exploring. There is a trade-off
between sampling exhaustiveness and the computation over-
head. We adopt the classical patterns for on-road driving [8],
[9], which involve sampling paths along the road (Fig. 7) and
expanding the spatiotemporal search space by branching over
the sampled polynomial speed profiles. All the trajectories
are sampled up to a fixed lookahead time horizon T (the
next few seconds) to represent a short-term maneuver.

B. Maneuver-based tactics discovery

Given the trajectory pool, the next goal is to discover
the maneuver-based tactical patterns and their semantic de-
scriptions. Different patterns can be extracted depending on
the spatial area where the trajectory terminates (region-
based distinction), how it gets there around the obstacles
(homology-based distinction), and what overtaking (if any)
order it follows (sequence-based distinction).

Ra1Ra2

(a) Region-based distinction for in-lane object.

Rb1Rb2

Rb3Rb4

(b) Region-based distinction for inter-lane object.

Fig. 8: Region-based and homology-based distinctions for on-road
driving. (a) shows two corridor regions can be distinguished, Ra1

and Ra2, for an object in a one-lane road. (b) shows four regions are
distinguished, Rb1, Rb2, Rb3 and Rb4, for an object on a two-lane
road. For each region R, there are one or two curves in darker color
representing the possible homological trajectories whose terminal
states are in R.

Region-based Distinction: an object on a single-lane road
naturally splits the lane into front/back corridor-like regions
(Fig. 8a). Region-based pattern distinction is defined by
which region a trajectory terminates in: object overtaking
(Ra1) or following (Ra2). For an object on a two-lane



road (Fig. 8b), four regions can be distinguished: right-
lane overtaking (Rb1), right-lane following (Rb2), left-lane
overtaking (Rb3) and left-lane following (Rb4).
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Fig. 9: Retracted point for an on-road region and the construction of
helper trajectories for maneuver pattern extraction. The red region is
a goal region R ∈ R2|T implied by an object. The black rectangle
is the retracted representative point X ∗R of R. The two black curves
are the sampled trajectories T ′, T ′′ that start from the same position
and both end in R. The green curves are the two helper trajectories
T ′h, T ′′h that connect the original trajectories to X ∗R.

Homology-based Distinction: trajectories may reach the
same tactical region by taking topologically different paths,
which is another important aspect of maneuver-based tactics.
For each region in Fig. 8, all the topologically distinctive
trajectories are depicted in the same color. Algorithm 1,
which determines trajectory pseudo-homology, has been used
for the homology-based distinction.

Efficient ways to determine the representative point and
construct helper trajectories for each identified region are
required by the algorithm. Taking advantage of the fact that
the region R (Fig. 9) is constructed from corridor-like on-
road lanes, we place X ∗R on the centerline, close to the region
boundary near the object itself. The helper trajectories are
then constructed by connecting from the location where the
trajectory terminates in the region, to the projected point
perpendicular to the centerline, and further moving along
the centerline to reach X ∗R.
Sequence-based Distinction: in fact, only “overtaking”
regions may introduce different homological plans. When
“overtaking” behaviors for multiple objects are considered,
it is important to know not just topological information, but
also the temporal sequence of overtaking behavior, which is
used as an additional cue to distinguish different maneuver
patterns.
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Fig. 10: Distinction tree generated for N-object.

Suppose N objects are actively considered for patterns.
Each object can incur multiple region-based distinctions,
which further incur additional homology-based distinctions.
A distinction tree (Fig. 10) lists distinguishable maneuver
patterns for each object considered. A maneuver-based tacti-

cal pattern can be defined as a unique sequence of N routes
in the distinction tree from the root to the leaf nodes:

L =

 L1

...
LN

 =


T → O1 → RO1

i → HR
O1
i

j
...

T → ON → RON
i → HR

ON
i

j


where N is the number of objects in consideration, i =
1, . . . , A, A is the number of region-based distinctions for
each object O, j = 1, . . . , B, and B is the number of
homology-based distinctions for each ROi . Each entry is
represented by a green route in Fig. 10.

With patterns identified, trajectories can be grouped to-
gether accordingly, which concludes the tactical maneuver
pattern discovery process. Note that while the number of
possible patterns grows exponentially as the number of
objects increases12, the runtime of our planner is bounded by
the number of trajectories. Also, the computation needed for
evaluating the H function on each trajectory grows linearly,
rather than exponentially.

C. Fused decision making & trajectory planning

Two subsequent steps naturally arise: choosing the pattern
and the final trajectory. The choices of both depend on
quantitative evaluation with cost functions. The cost function
is defined as a weighted accumulation of multiple trajectory-
based feature terms. Commonly used features are the closest
distance to an object, the average/maximum speed, the
average/maximum longitudinal/lateral acceleration, and the
average/maximum deviation from the lane centerline [2], [8],
[9], [22].

New features are proposed to quantify penalties for tactical
patterns. First, some generative features can be extracted by
averaging the trajectory-based features within a particular
tactical maneuver pattern. Moreover, an efficiency feature
cost that favors the pattern with greater longitudinal traversal
along the lane is designed, since it resembles greater on-road
driving progress made within a fixed horizon. In addition, a
consistency feature is calculated to measure the degree of
pattern change from the last planning cycle:

M∑
i=1

δ(Li 6= L′i)

where M is the number of common objects that exist both in
the current and last planning cycle, Li and L′i are the routes
of the ith common object in the current and last distinction
trees respectively, and

δ(A) =

{
1, if statement A is TRUE
0, if statement A is FALSE

which makes it less likely to switch among different patterns
between planning cycles, unless absolutely necessary.

12One in-lane object introduces 3 maneuver patterns, two introduce 9,
three introduce 27, etc...



VI. RESULTS

The proposed maneuver discovery methods are applied in
three urban driving scenarios:
• S1: one bicyclist and one static object in a single-lane

situation (Fig. 11).
• S2: the host vehicle needs to perform a lane-change

when there is also a slow-moving bicyclist in the middle
of the current lane (Fig. 12).

• S3: one pedestrian crossing in front of the host vehicle
at a T-intersection and two moving cars in the target
lane (Fig. 13).

For each scenario, feasible maneuver patterns are first
obtained with the optimal trajectories of each pattern:

X
Y

T

(a) Spatiotemporal trajectory samples.

1)

2)

3)

0s 10s

(b) Discovered tactical patterns and optimal trajectories.

Fig. 11: Scenario 1: avoid a bicyclist and a static object in a single
lane. (a) shows the spatiotemporal trajectory samples. Three tactical
maneuver patterns are identified, and trajectories of the same pattern
are grouped together in the same color. (b) shows the optimal
trajectory of each maneuver pattern, along with the predicted motion
of surrounding objects.

For scenario S1, three patterns are identified (Fig. 11a),
and the optimal trajectories of each pattern are further
obtained (Fig. 11b).

1) the host vehicle slows down to follow the bicyclist.
Both objects will be avoided in a conservative fashion,
i.e., no overtaking.

2) the host vehicle mildly slows down to overtake the
bicyclist, and performs a double swerve to avoid both
objects.

3) the host vehicle overtakes the bicyclist, and stops in
front of the static obstacle.

For scenario S2, three patterns are identified, represented
by the optimal trajectory of each pattern:

1) the host vehicle slows down to stay behind the bicy-
clist. Lane-change is halted indefinitely.

2) the host vehicle slows down to merge into the target
lane after both cars in the target lane pass by.

3) the host vehicle slightly accelerates to merge into the
gap between the two cars in the target lane.

1)

2)

3)

0s 10s

Fig. 12: Scenario 2: lane change in traffic with an obstacle in the
middle of the current lane.

1)

2)

3)

0s 10s

Fig. 13: Scenario 3: enter traffic from stationary start at T-
intersection with pedestrian and traffic. The figure shows the
discovered patterns, the optimal trajectory for each pattern, and the
predicted motion of surrounding objects.

For scenario S3, three patterns are identified, represented
by the optimal trajectory of each pattern:

1) the host vehicle moves after the pedestrian crosses the
road, and merges to follow the second car.

2) the host vehicle accelerates before the pedestrian
crosses the road to merge into the gap between the
first and the second car.

3) the host vehicle stays behind the pedestrian, halting
merging indefinitely.

The maneuver pattern is further selected based on pattern-
level reasoning, which is dependent on the weightings on
the progress/aggressiveness/consistency features. The opti-
mal trajectory within the selected pattern is then found for
the final planning output.

To highlight the benefit of distinguishing tactical ma-
neuver patterns in the traditional optimal planning method,
we implement a pure cost function-based motion planner
whose sampling pattern and trajectory-level cost function are
identical to the proposed planner. They are tested side-by-
side in scenario S4 (Fig. 14), which consists of a single static
object in the center of the lane with some sensing noise
added.

In Fig. 14a, the sensor uncertainty tends to cause inde-
cisive (alternating) planning outcomes from the pure cost
function-based planner. The proposed planner, on the other
hand, sticks to swerving around the static object from one
side (Fig. 14b), which demonstrates superior plan consis-
tency. The difference results from the explicit exposure of
maneuver patterns, and the consideration of the “consis-
tency” feature in the pattern-level reasoning.

VII. CONCLUSION

In this paper, we propose an automated maneuver-based
tactical pattern discovery/reasoning methodology fused with
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(a) Performance by the pure cost function-based planner.
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Fig. 14: Scenario 4: improved planning coherency. (a) demonstrates
the performance of the baseline pure cost function-based planner,
which yields an indecisive cycle-by-cycle planning outcome. (b)
shows the performance of the proposed fused planner, which
demonstrates a consistent planning outcome.

sampling-based trajectory planning for on-road autonomous
driving. The concept of pseudo-homology is introduced by
relaxing the co-terminal requirements on trajectories. The
pattern discovery routine is achieved by clustering groups of
trajectories with unique region-/homology-/sequence-based
distinctions. Finally, cost function-based pattern-level and
trajectory-level reasoning are used to determine the final
pattern/trajectory in execution.

In summary, the three challenges raised in Section I are
adequately addressed. A specific maneuver-based tactical
pattern is decided upon only after all the feasible and
admissible trajectories are constructed and evaluated, which
addresses challenge 1. Second, the method enables the
planner to be explicitly aware of the environment’s topology
structure and behave similarly to how an experienced human
driver sticks to a route, which addresses challenge 2. Finally,
regardless of how the environment changes, the proposed
method demonstrates the ability to automatically identify
different tactical maneuver patterns to reason about, which
addresses challenge 3.

This work motivates the idea of using pseudo-homology
along with characterizing workspace regions as a formal
theoretical tool in extracting/semanticizing high-level tac-
tical maneuver patterns, which can be extended to many
other motion planning applications, such as manipulators
and unmanned aerial vehicles. In future work, the proposed
algorithm will be extended to distinguish subtle maneuver
patterns with more complex reasoning capability.
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