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Abstract— Regrasping is the process of adjusting the position
and orientation of an object in one’s hand. The study of robotic
regrasping has generally been limited to use of theoretical
analytical models and cases with little uncertainty. Analytical
models and simulations have so far proven unable to capture
the complexity of the real world. Empirical statistical models
are more promising, but collecting good data is difficult. In this
paper, we collect data from 3300 robot regrasps, and use this
data to learn two probability functions: 1) The probability that
the object is still in the robot’s hand after a regrasp action;
and 2) The probability distribution of the object pose after
the regrasp given that the object is still grasped. Both of these
functions are learned using kernel density estimation with a
similarity metric over object pose. We show that our data-
driven models achieve comparable accuracy to a geometric
model and an off-the-shelf simulator in classification and
prediction tasks, while also enabling us to predict probability
distributions.

I. INTRODUCTION

Humans are experts at reorienting objects in their hands.
They use this skill to adjust their grip of a pencil to write
with it, or to change their grasp of a key from its teeth to
its head to unlock a door. By contrast, once a robot has
picked up an object, it generally maintains the same grasp
as long as the object is in contact with the hand. If a robot
does adjust an object grip, it is generally a predetermined
operation with deterministic results, and only applicable for
a constrained set of initial and desired final grasp poses. In
contrast, humans can adapt to different objects with arbitrary
initial and desired final poses. One possible explanation of
this discrepancy is that humans have better models of how
the object pose changes as a function of their actions. In
this paper, we show how robots can build better models of
regrasp actions.

By a regrasp action, we mean any sequence of movements
that results in a change of the object pose with respect to the
hand. Often, the final pose of an object is critical to a task.

This work was conducted in part through collaborative participation in
the Robotics Consortium sponsored by the U.S Army Research Laboratory
under the Collaborative Technology Alliance Program, Cooperative Agree-
ment W911NF-10-2-0016 and National Science Foundation IIS-1409003
and DGE-1252522. The views and conclusions contained in this document
are those of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the Army Research
Laboratory of the U.S. Government. The U.S. Government is authorized to
reproduce and distribute reprints for Government purposes notwithstanding
any copyright notation herein. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s) and
do not necessarily reflect the views of the National Science Foundation.
Some equipment was provided by ABB.

Fig. 1. Place and pick regrasp action studied in this paper. Initially, the
robot is holding a block between its fingers. Then, it moves downwards to a
specific pose above the platform, where the block may move to conform to
the new contact. It then opens its fingers and repositions itself at a certain
position and orientation with respect to the edge of the platform. It then
closes its fingers and moves upwards, completing the regrasp. There are
several scenarios where the robot will not be holding the block in step 6.
In step 1, the object could slip out of the hand. In step 2, the object-hand
system could collide with the table. In step 5, the robot could miss the block
and fail to pick it up.

Fig. 2. Place and pick regrasp data collection setup. We use an industrial
arm with a parallel jaw gripper and place an pick objects. A three
dimensional vision system based on point clouds is used to record the object
position before and after a regrasp. In the event of a failure, the robot either
picks up the dropped block from on top of the platform or retrieves a new
block from a stack of fresh blocks. With this setup, the robot performed
over 3000 regrasp experiments. We use this data to fit models for predicting
the probability of not dropping the object, and estimating the final pose of
the block after a regrasp.

If the initial pose of an object is arbitrary, then the robot
must use models to determine what regrasp actions to take to
move the object to the desired pose. Physics-based models
can only take us so far. Modeling multiple contacts along
with impact, friction, and uncertainty in object size, mass,



finger shape, dirt, etc can make it difficult to compute models
a priori. In this paper, we encapsulate this real-world noise
and uncertainty in the model as a probability distribution.
A simple Gaussian is not a good model of the probability
distribution for manipulation. Flipping a coin, or the differ-
ence in object pose based on whether or not contact occurs
cannot be represented as a unimodal Gaussian distribution.
In this paper, we use kernel density estimation to estimate
a multi-modal probability distribution from collected data to
model regrasps.

We study a place and pick regrasp of a cube (Figure 1) as a
first step to understand the challenges involved in statistical
modeling of regrasp actions. We collected data from 3300
robot regrasps, and used this data to learn two models: 1)
Given an initial object pose and regrasp action, how likely
is it that the object remains grasped? and 2) Given an initial
pose and action, where do we expect the object to end up?
We show that our learned model, despite not having any
prior knowledge of the task, achieves comparable accuracy
to a physics simulator and a geometric model.

The rest of the paper is outlined as follows. In Section II
we look at prior work in this area. In Section III we outline
our method for modeling regrasps. In Section IV we explain
the data collection process and experiments performed. In
Section V we compare our model with an off-the-shelf sim-
ulator and geometric model, and in Section VI we summarize
our work and discuss future directions.

II. PRIOR WORK

Regrasping has been studied for a long time, starting
with Paul [1], Tournassoud et al. [2], Fearing [3], and
Brock [4]. Early regrasping work assumed a known world
model with deterministic actions. Most regrasping work falls
under three categories: pick and place [2], [5], [6], closed-
loop dynamic regrasping [7][8][9], or what is generally
referred to as dexterous manipulation or finger gaiting [3],
[10][11][12][13][14][15]. Chavan Dafle et al. [16] present
work on “extrinsic dexterity”, which uses gravity, inertia,
and external contacts to vary the pose of the object within
the hand.

Uncertainty during manipulation has been represented
using two approaches: “possibilistic” and probabilistic. The
“possibilistic” approach [17][18] maintains a set of possible
object poses, and the robot makes motions that reduce the
size of the set. Brost [19] uses pushing, squeezing and offset
grasping with a parallel jaw gripper to reliably grasp objects
with high position uncertainty. Dogar and Srinivasa [20]
explicitly propagate object uncertainty regions to plan ro-
bust grasp plans. Probabilistic approaches [21][22][23][24]
maintain a probability distribution of object poses in order
to plan the best action. Bayesian estimation [25][26] and
particle filters [27][28] are the most common ways to deal
with the non-Gaussian, multi-modal probability distributions
inherent in manipulation tasks.

To model manipulation actions, researchers often use
simulation[29][30], imitation learning[31], or models learned
with collected robot data [32][33]. In this paper, we expand

on prior work by using real data to model uncertain manip-
ulation actions.

The most similar work to ours comes from Kopicki et.
al. [34]. They use regression to learn the resulting motions
of real robotic push actions. They also fit multi-modal
probability distributions to their data and show improvement
over regression. Our work focuses on learning both the
probability of maintaining a grasp after a regrasp and the
resulting probability distributions of robotic regrasp actions,
along with paying closer attention on how to collect a large
amount of robot manipulation data.

III. METHOD

A. Task Description

The place-and-pick regrasp action we will learn is shown
in Figure 1. The robot moves down vertically to a fixed
height above a platform, releases the object, and then
attempts to grasp it again at a specified position in the
workspace. Note that in step 2, the object pivots and slides in
the fingertips when it comes into contact with the platform,
which we expect to be difficult for physics-based models
to capture. Our regrasp action a is parameterized by three
continuous variables, d, z, and α, which represent the pose
of the hand frame with respect to the edge of the platform.
The parameters of action a are not relative to the object pose
on the platform, because this data may be unavailable to the
robot while it is performing a regrasp.

Fig. 3. State space used in this paper. While the world is six-dimensional,
because we are grasping a cube with a parallel jaw gripper, we can reduce
the state space to three dimensions. Note that as the cube is symmetric, we
restrict θ to be between −π/4 and π/4.

Our state s is represented by three continuous variables, x,
y, and θ, corresponding to the relative pose of the cube with
respect to the hand, as shown in Figure 3. Note that this is a
planar state space; we will not consider out of plane rotations
or grasps. Any grasps of this kind will be considered “not
grasped” for the purposes of this paper.

In order for the robot to successfully model this regrasp
action, we must learn two probability functions:

1) The probability that the object is in the robot’s hand
after a regrasp action, P (grasped|s,a)

2) The probability distribution of the final state given that
the object is still grasped, P (s′|s,a, grasped)

Note that if the object is not grasped after a regrasp action,
its final state s′ does not exist, since s′ is the in-hand pose
of the object. Learning these two probability distributions
enables us to solve planning problems such as: 1) what action
maximizes the chance of maintaining a grasp? or 2) what



action maximizes the chance of the center of the object being
at most 1 cm away from the center of the fingers? In this
paper, we focus solely on learning the above distributions
from data, and leave planning with these models as future
work.

B. Predicting the Probability of Maintaining a Grasp

To estimate the probability that the object is in the robot’s
hand after a regrasp action, we use kernel density estimation
with Bayes discriminant rule [35], [36]. We estimate the
probability of retaining and not retaining the object using
kernel density estimation, and then, for a query point, deter-
mine which of the two probabilities are greater. That is, we
would like to calculate:

P (πi|s,a) =
piP (s,a|πi)∑g
j pjP (s,a, πj)

where pi = P (πi) is the prior probability of a randomly
selected observation being in class πi, g is the total number of
classes, and P (s,a|πi) is the conditional probability density
of an observation given that it is in class πi. In our case, we
have two classes, grasped and not grasped, so we will learn
two probability densities using kernel density estimation:

P (s,a|πi) =
1

Ni

Ni∑
j

Ks
h1
(s, sj)K

a
h2
(a,aj)

where Ni is the number of training observations belonging
to class πi. Note that we set pi = Ni/

∑g
j Nj as our prior

probabilities.
We define our kernel functions Ks

h1
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h2
by first

expressing distances in state and action space, and then use
a Gaussian kernel over these distance functions:
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)
where ρ is the radius of gyration for the object, which
allows us to properly trade off distance and angle, while ηs
and ηa normalize the kernels so they represent probability
distributions. Note that for the state distance function, we
use a cosine function to handle angle wrap-around for object
pose (i.e. −π = π). Both of the distance functions Da and
Ds represent squared distance in action and state space. The
units for d, z, x, and y are mm, while α and θ are in radians.
Thus, our distance functions have units of mm2, and our
bandwidths h1 and h2 have units of mm.

We choose the values of bandwidths h1 and h2 that
minimize the cross-validated negative log likelihood of the

observed data:

NLL(h1, h2) = −
1

Ni

Ni∑
j

P̂−j(sj ,aj |πi)

P̂−j(s,a|πi) =
Ni∑
k 6=j

Ks
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(s, sk)K

a
h2
(a,ak)

where P̂−j(s,a|πi) is the estimator of the conditional prob-
ability density with observation j removed.

C. Predicting the Final Object Pose

To predict the resulting probability distribution of the cube
after a regrasp action, we will use kernel conditional density
estimation. We formulate our conditional density estimate
using our kernels from above and roughly following Hall,
Racine and Li[37]:

P (s′|s,a, gra) = P (s′, s,a|grasped)
P (s,a|grasped)

P (s′, s,a|gra) = 1

m

m∑
i

Ks
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(s′, s′i)K

s
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(s, si)K
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Ks
h4
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where m is the number of experiments where the object was
in the robot’s hand after a regrasp.

We will choose values for h3, h4 and h5 that minimize
the integrated squared error, again using cross validation (see
[37] for more details):

ISE(h3, h4, h5) =

∫ (
P̂ssa − Pssa

)2
Psads dads

′

where

Pssa = P (s′|s,a, grasped)
Psa = P (s,a|grasped)

Note that for both P (grasped|s,a) and
P (s′|s,a, grasped), we could have chosen more complex
kernels or used different learning algorithms. However,
in this paper we select simple models to understand
the viability of a data-driven framework for modeling
regrasps. In our future work, we plan to evaluate different
non-parametric methods for estimating these probability
functions.

IV. DATA COLLECTION

Our data collection setup is shown in Figure 2. For our
experiments, we use an ABB IRB 140 industrial robot arm
and a Robotiq C-85 2-fingered gripper that place and pick an
object from a metal platform. We use a 50mm wooden cube
as our object. Initially, the block is resting on the platform
and the robot locates it and picks it up. The vision system
records the initial state s. Then, the robot places the cube
and picks it up again using an action a. The a parameters
[d, z, α] are sampled uniformly at random and cover the
entire range of actions we wish to model for this regrasp.



The vision system first checks whether or not the cube is in
the robot’s hand and then records the final state s′. If the
object is grasped, it repeats the process with a new action a.
If the object is not grasped, it enters a recovery procedure
and then runs a new regrasp experiment. In this way, we
collect a series of D = (s,a, grasped, s′) data points. In this
paper, we collected 3304 data points. The robot successfully
maintained its grasp of the object after a regrasp 2642 times
and failed 662 times.

The vision system consists of four Microsoft Kinect v2
sensors arranged to supply multiple views of the object,
both on the platform and in the robot’s hand. Depth point
clouds are fused together and, after an initialization, Iterative
Closest Point is used to find the closest match between our
object model and the point cloud. The average positioning
error of this system is 5mm. In the future, we are interested
in improving the accuracy of this three-dimensional vision
system by using different depth cameras and measuring its
effect on our data-driven models.

The recovery procedure reduces the need for human in-
tervention during data collection, and is split into 2 parts. If
the object is not in the robot’s hand, it is either resting on
the platform, or has fallen off the platform. If it is resting on
the platform, we command the robot to pick up the object
and continue with the next experiment. If the object has
fallen off of the platform, we consider the object lost, and
grasp a new block from a queue of identical blocks resting
on the table. The queue is 11 blocks long, and the robot
takes approximately 150 trials to exhaust the entire queue
and require human intervention.

V. VALIDATION

We now compare our learned model with an off-the-shelf
simulator and a rudimentary geometric model using our data
set D. We randomly select a hold-out test set of 1000 data
points which we use to compare all three methods. We
describe the geometric and simulation models below.

A. Geometric Model

The challenging part of this regrasp to model is what
happens during the initial block placement (Step 2 of Fig-
ure 1), as there are many possible contact modes including
no contact followed by an impact and settling, sliding or
pivoting in finger tips, and sliding or rotating against the
platform. For simplicity, we assume that during this step,
once an object corner contacts the platform, the object rotates
about the contact point until it lies flat on the platform. Given
an initial object pose s = [x, y, θ], if c is the distance from
the center of the hand to the edge of the platform when
placing and w is the width of the block, we can calculate
the distance from the edge of the platform to the center of
the block q as

q =

{
θ ≥ 0, c+ y + w

2 (sin(θ)− cos(θ) + 1)

θ < 0, c+ y + w
2 (sin(θ) + cos(θ)− 1)

.

Now, given an action a = [d, z, α], if g is the maximum
horizontal distance away from the center of the block that
the robot can still grasp the object without missing it, then
we will successfully grasp the block if |d− q| ≤ g, and that
final pose will be

s′ =

x′y′
θ′

 =

(q − d) cos(α) + (z − w/2) sin(α)
(q − d) sin(α)− (z − w/2) cos(α)

γ


with γ =

{
0 ≤ α ≤ π/4, α

π/4 ≤ α ≤ π/2, (α− π/2)
.

Creating probability distributions from this kinematic
model is difficult, as we do not know the distribution of
errors on our parameters. Note that even if we did, even for
this rudimentary model, the probability distributions would
be multimodal and non-Gaussian.

Fig. 4. Simulation environment used in the paper. Using VREP, we have
modeled the same industrial robot arm and gripper used in our physical
experiments, and placed the platform in the same relative location. We place
the block in the simulated robot’s hand in the same initial pose as our real
trials, and record whether or not the object is still grasped after the regrasp
in simulation. If so, we record the final pose of the block.

B. VREP with ODE as a Simulation Model

Using the simulation environment VREP [38], we have
modeled an ABB IRB 140 robot with a Robotiq C-85
two-fingered gripper just as in our physical experimental
setup. The simulation environment is shown in Figure 4. The
platform is placed in the same location, and we use a 50mm
cube with the same density and frictional properties as our
real wooden cube. We can now place the object into the
simulated robot’s hand at a given initial state s, ask the robot
to perform the regrasp action a, and then observe whether
the object was grasped. If so, we record the final state s′.

Note that setting up the simulator was a challenge in and of
itself. Even the well-tuned ODE in VREP still cannot handle
parallel grasping well, and once the block is also made to
slide against the table and in the hand, it is difficult to get
stable results. The two most difficult phenomena to model in
simulation with physics are 1) how the contact patch between
the parallel jaws and the cube changes as the hand slightly



loosens its grip on the object, and 2) what happens to the
cube at the onset of contact with the platform.

Like the geometric model, creating probability distribu-
tions using a simulator is difficult as the simulation is
deterministic. We could vary initial parameters slightly and
fit the resulting data using the probabilistic model described
in this paper. However, it is unclear which parameters to vary
and how much to perturb them by in order to get plausible
results. Moreover, if the underlying physics model is wrong,
even this may not give a realistic distribution.

TABLE I
CLASSIFICATION ACCURACY OF PREDICTING WHETHER THE OBJECT

REMAINS GRASPED

Setting Geometric Simulation Data-Driven

In Hand 74.8 % 72.8 % 76.2 %
Platform 89.3 % - 90.7 %
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Fig. 5. Comparison between the experimental and predicted probability
of maintaining the object after a regrasp. Each data point is the average
experimental grasp probability for 5%-wide bins of predicted probability.

C. Validation Results: Predicting if the Object Remains
Grasped

Table I shows our results for predicting if the object is still
grasped after a regrasp action. We compared the classification
accuracy of the three models for two separate conditions.
First, we consider the condition where we are given the
pose of the object in the robot’s hand and the parameterized
regrasp action to perform. Second, we consider the condition
where we know the pose of the object on the platform and
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Fig. 6. Precision-recall curve for predicting whether the robot is still
holding the object after a regrasp

predict the probability that the robot will be able to success-
fully pick it up. All three models perform comparably, even
though our data-driven model is given no prior information
about the task.

In Figure 5, we binned our predicted probability in 5%
increments, looked at the percentage of those points where
the object was still grasped, and plotted the results. If our
predictions are good, the mean of the true grasp probability
should follow the straight line. Our predicted probabilities
for the platform condition match better than the in-hand
condition, which is expected.

If we can predict the probability of maintaining the object
after a regrasp, this means we can adjust the decision
boundary to achieve different precision and recall values.
This is plotted in Figure 6. Note that the platform case
gives us a much better precision-recall curve, and that these
precision-recall curves are not easily achievable without a
data-driven model.

TABLE II
MEAN POSE ESTIMATION ACCURACY (MM)

Setting Geometric Simulation Data-Driven

In Hand 11.7 10.8 13.0
Platform 5.7 - 6.3

D. Validation Results: Final Pose Estimation

To evaluate the predictive power of our pose estimation
models, we looked at the mean pose estimation accuracy. We
used the square root of our distance function Ds(s1, s2) as
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Fig. 8. Cumulative histogram of prediction errors. Over 80% of the data has
an error of less than 10mm for the platform case. The data-driven method
achieves comparable accuracy to the other approaches.

a measure of accuracy. Note that if the distribution is multi-
modal, this measure does not reward capturing that multi-
modality. However, since we do not have the true underlying
distribution, we use the mean pose estimation accuracy as a
baseline. Our results are shown in Table II, Figure 7 and
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Fig. 9. Predicted probability distribution of a final pose after a regrasp.
The most likely predicted pose is the diamond and the true pose is the star.
Note the multi-modal nature of the distribution.

Figure 8. Again, our data-driven model achieves comparable
accuracy with no prior information.

With our data-driven model, we can also calculate the
entire resulting probability distribution in pose space, which
is shown in Figure 9. Note the multi-modal nature of the
distribution.

VI. CONCLUSIONS

In this paper, we introduced a way to model robotic
regrasping using a large amount of real data. First, we briefly
discussed how we collected the real robot manipulation data
needed for our models. We then showed how to predict
the probability of maintaining the grasp of an object given
an initial position and robot regrasp action using this data.
In addition, we showed how to estimate the probability
distribution of where the object will end up in the robot’s
hand given an initial pose and a robotic regrasp action. We
compared our models with a simulator and a rudimentary
physics model and showed that our data-driven models have
comparable performance even with no prior knowledge of
the task.

In the future, we are interested in extending these models
to other objects, regrasp actions, and hands. We are especially
interested in extending our models to SE(3) space to handle
three dimensional rigid body transformations. We are also
interested in improving the accuracy of our vision system
to improve model accuracy. Finally, we are interested in
exploring other non-parametric models to achieve higher
fidelity.
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