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Abstract— Feature descriptors are powerful tools for pho-
tometrically and geometrically invariant image matching. To
date, however, their use has been tied to sparse interest point
detection, which is susceptible to noise under adverse imaging
conditions. In this work, we propose to use binary feature
descriptors in a direct tracking framework without relying
on sparse interest points. This novel combination of feature
descriptors and direct tracking is shown to achieve robust
and efficient visual odometry with applications to poorly lit
subterranean environments.

I. INTRODUCTION

Visual Odometry (VO) is the problem of estimating the
relative pose between two cameras sharing a common field-
of-view. Due to its importance, VO has received much
attention in the literature [1] as evident by the number of
high quality systems available to the community [2], [3], [4].
Current systems using conventional cameras, however, are
not equipped to tackle challenging illumination conditions,
such as poorly-lit environments. In this work, we devise a
novel combination of direct tracking using binary feature
descriptors to allow robust and efficient vision-only pose
estimation in challenging environments.

Current state-of-the-art algorithms rely on a feature-based
pipeline [5], where keypoint correspondences are used to
obtain an estimate of the camera motion (e.g. [6], [3], [7],
[8], [9], [10], [11], [12]). Unfortunately, the performance of
feature extraction and matching using conventional hardware
struggles under challenging imaging conditions, such as
motion blur, low light, and repetitive texture [13], [14]
thereby reducing the robustness of the system. Examples of
such environments include operating at night [13], mapping
subterranean mines as shown in Fig. 1 and even sudden
illumination changes due to automatic camera controls as
shown in Fig. 2. If the feature-based pipeline fails, a vision-
only system has little hope of recovery.

An alternative to the feature-based pipeline is to use pixel
intensities directly, or what is commonly referred to as direct
methods [15], [16], which has recently been popularized for
RGB-D VO [17], [18], [19], [20], [21] and monocular SLAM
from high frame-rate cameras [2], [4]. When the apparent
image motion is small, direct methods deliver robust and
precise estimates as many measurements could be used to
estimate a few degrees-of-freedom [22], [23], [4], [24].

Nonetheless, as pointed out by other researchers [3], the
main limitation of direct methods is their reliance on a
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consistent appearance between the matched pixels, otherwise
known as the brightness constancy assumption [25], [26]
requiring constant irradiance despite varying illumination,
which is seldom satisfied in robotic applications.

Due to the complexity of real world illumination conditions,
an efficient solution to the problem of appearance change
for direct VO is challenging. The most common scheme to
mitigating the effects of illumination change is to assume
a parametric illumination model to be estimated alongside
the camera pose, such as the gain+bias model [17], [27].
This approach is limited by definition and does not address
the range of non-global and nonlinear intensity deformations
commonly encountered in robotic applications. More sophis-
ticated techniques have been proposed [24], [28], [29], but
either impose stringent scene constraints (such as planarity),
or heavily rely on dense depth estimates, which are not always
available.

In this work, we relax the brightness consistency assump-
tion required by most direct VO algorithms thus allowing them
to operate in environments where the appearance between
images vary considerably. We achieve this by combining the
illumination invariance afforded by binary feature descriptors
within a direct alignment framework. This is a challenging
problem for two reasons: Firstly, binary illumination-invariant
feature descriptors have not been shown to be well-suited
for the iterative gradient-based optimization at the heart of
direct methods. Secondly, binary descriptors must be matched
under a binary-norm such as the Hamming distance, which
is unsuitable for gradient-based optimization due to its non-
differentiability.

To address these challenges, we propose a novel adaptation
of binary descriptors that is experimentally shown to be
amenable to gradient-based optimization. More importantly,
the proposed adaption preserves the Hamming distance under
conventional least-squares as we will show in Section III.

This novel combination of binary feature descriptors
in a direct alignment framework is shown to work well
in underground mines characterized by non-uniform and
poor lighting. The approach is also efficient achieving real-
time performance. An open-source implementation of the
algorithm is freely available online https://github.
com/halismai/bpvo.

II. BACKGROUND

Direct Visual Odometry: Let the intensity, and depth of
a pixel coordinate p = (x, y)  at the reference frame be
respectively given by I(p) € R and D(p) € RT. Upon a
rigid-body motion of the camera a new image is obtained



Fig. 1: Top row shows an example of commonly encountered low signal-to-noise ratio imagery from an underground mine captured with a
conventional camera. The bottom row shows a histogram-equalized version emphasizing the poor quality and the significant motion blur.

Fig. 2: An example of the nonlinear intensity deformation caused
by the automatic camera settings. A common problem with outdoor
applications of robot vision.

(a) (b) (©)

Fig. 3: Local intensity comparisons in a 3 x 3 neighborhood. In
Fig. 3a the center pixel is highlighted and compared to its neighbors
as shown in Fig. 3b. The descriptor is obtained by combining the
result of each comparison in Fig. 3c into a single scalar [30], [31].

T'(p’). The goal of conventional direct VO is to estimate an
increment of the camera motion parameters A@ € RS such
that the photometric error is minimized

AG* = argminy_ [T (w(p; 0 +A0)) —1(p)|?, (1)
Al PEN

where () is a subset of pixel coordinates of interest in the
reference frame, w (-) is a warping function that depends
on the parameter vector we seek to estimate, and 0 is an
initial estimate. After every iteration, the current estimate
of parameters is updated additively. This is the well-known
Lucas and Kanade algorithm [15].

By conceptually interchanging the roles of the template
and input images, Baker & Matthews’ devise a more efficient
alignment techniques known as the Inverse Compositional
(IC) algorithm [32]. Under the IC formulation we seek an
update A6 that satisfies

AG* = argmin ¥ [T (w(p; A8)) — T’ (w(p; 0))[*. (2)
A6 peQ

The optimization problem in Eq. (2) is nonlinear irrespective
of the form of the warping function, as in general there is
no linear relationship between pixel coordinates and their

intensities. By equating to zero the derivative of the first-order
Taylor expansion of Eq. (2), we arrive at the solution given
by the following closed-form (normal equations)

= (JTJ) e, 3)

where J = (g(pl)T, ., 8(Pm)" ) € R™*P is the matrix
of first-order partial derivatives of the objective function, or
the Jacobian, m is the number of pixels, and p = |6] is the
number of parameters. Each g is € R'*P and is given by the
chain rule as

ow
T=VI(p)— 4
g(p)" = VI(p) 5 €
where VI = (I, I,) € R? is the image gradient along
the z- and y-directions respectively. Finally,

e(p) =T'(w(p;0)) — I(p) 5)

is the vector of residuals, or the error image. Parameters of
the motion model are updated via the IC rule given by

w(p,0) <~ w(p,0) ow(p,AB)fl. (6)

We refer the reader to the comprehensive work by Baker and
Matthews [32] for a detailed treatment.

Image Warping: Given a rigid body motion T(0) € SE(3)
and a depth value D(p) in the coordinate frame of the
template image, warping to the coordinates of the input image
is performed according to:

p' =7 (T(0)= '(p;D(p)), 7

where 7 (+) : R® — R? denotes the projection onto a camera
with a known intrinsic calibration, and 771 (-,+) : R2 x R —
R3 denotes the inverse of this projection given the intrinsic
camera parameters and the pixel’s depth. Finally, the intensity
values corresponding to the warped input image I(p’) is
obtained using bilinear interpolation.

III. BINARY DESCRIPTOR CONSTANCY

A limitation of direct method is the reliance on the
brightness constancy assumption (Eq. (1)), which we address
by using a descriptor constancy assumption instead. Namely,
the parameter update is estimated to satisfy:

AG" = angr;linW(I' (w(p; 6 + A6))) — oI (P))|I*, B



where ¢(-) is a robust feature descriptor. The idea of using
descriptors in lieu of intensity has been recently explored in
optical flow estimation [33], image-based tracking of a known
3D model [34], Active Appearance Models [35], and inter-
object category alignment [36], in which results consistently
outperform the minimization of the photometric error. To
date, however, the idea has not been explored in the context
of VO with relatively sparse depth and using binary features.

Prior work [35], [36] relied on sophisticated descriptor
such as HOG [37] and SIFT [38]. However, using these
descriptor densely in an iterative alignment framework is
computationally infeasible for real-time VO with a limited
computational budget. Simpler descriptors, such as photo-
metrically normalized image patches [22] or the gradient-
constraint [39] are efficient to compute, but do not possess
sufficient invariance to radiometric changes in the wild.
Furthermore, since reliable depth estimates from stereo are
sparse, warping feature descriptors is challenging as it is
harder to reason about visibility and occlusions from sparse
3D points.

In this work, we propose a novel adaption of binary
descriptors that satisfies the requirements for efficient VO
under challenging illumination. Namely, our descriptor has
the following properties: (i) Invariance to monotonic changes
in intensity, which is important as many robotic applications
rely on automatic camera gain and exposure control. (ii)
Computational efficiency, even on embedded devices, which
is required for real-time VO, and (iii) Suitability for least-
squares minimization (e.g. Eq. (8)). The last point is important
for two reasons. One, solutions to least-squares problems are
among the most computationally efficient with a plethora of
ready to use software packages. The other, due to the small
residual nature of least-squares, only first-order derivatives
are required to obtain a good approximation of the Hessian.
Hence, a least-squares formulation increases efficiency and
avoids numerical errors associated with estimating second-
order derivatives that arise when using alignment algorithms
based on intrinsically robust objectives [40], [41], [42], [43],
[44]. The proposed descriptor is called Bit-Planes and is
detailed next.

The Bit-Planes Descriptor: The rationale behind binary
descriptors is that using relative changes of intensities is
more robust than working with the raw values. As with all
binary descriptors, we perform local comparisons between
the pixel and its immediate neighbors as shown in Fig. 3. We
found that a 3 x 3 neighborhood is sufficient when working
with video data and is the most efficient to compute. This
step is identical to the Census Transform [31], also known
as LBP [30]. Choice of the comparison operator is arbitrary
and we will denote it with e {>,> <, <}. Since the
binary representation of the descriptor requires only eight
comparisons, it is commonly compactly stored as a byte
according to

8
Goyrs(x) = Z 211 I(x) > I(x + Ax;)],

where {Axi}le is the set of the eight displacements that
are possible within a 3 x 3 neighborhood around the center
pixel location x.

In order for the descriptor to maintain its morphological
invariance to intensity changes it must be matched under a
binary norm, such as the Hamming distance, which counts
the number of mismatched bits. The reason for this is
easy to illustrate with an example. Consider two bit-strings
differing at a single bit — which so happens to be at the
most significant position — a = {1,0,1,0,1,1,1,0}, and
b = {0,0,1,0,1,1,1,0}. The two bit-strings are clearly
similar and their distance under the Hamming norm is
one. However, if the decimal representation is used and
matched under the squared Euclidean norm, their distance
becomes 1282 = 16384, which does not capture their
closeness in the descriptor space. However, it is not possible
to use the Hamming distance in least-squares because of
its non-differentiability. Approximations are possible using
centralized sum of absolute difference [45], but at the cost
of reduced photometric invariance.

In our proposed descriptor, we avoid the approximation of
the Hamming distance and instead store each bit/coordinate
of the descriptor as its own image, namely the proposed
descriptor takes the form

I(x) < I(x + Axq)
Per(x) = : eR®. 9)

I(x) > I(X + Axg)

Since each coordinate of the 8-vector descriptor is binary,
we call the descriptor “Bit-Planes.” Using this representation
it is now possible to minimize an equivalent form of the
Hamming distance using ordinary least-squares.

Bit-Planes implementation details: In order to reduce the
sensitivity of the descriptor to noise, the image is smoothed
with a Gaussian filter in a 3 x 3 neighborhood (o = 0.5). The
effect of this smoothing will be investigated in Section V.
Since the operations involved in extracting the descriptor are
simple and data parallel, they can be done efficiently with
SIMD (Single Instruction Multiple Data) instructions.

Pre-computing descriptors for efficiency: Descriptor con-
stancy as stated in Eq. (8) requires re-computing the descrip-
tors after every iteration of image warping. In addition to
the extra computational cost of repeated applications of the
descriptor, it is difficult to warp individual pixel locations with
sparse depth. An approximation to the descriptor constancy
objective in Eq. (8) is to pre-compute the descriptors and
minimize the following expression instead:

8
min 3 3 @ (w(p; 6+ A6) — ®i(p) 2, (10)

pe i=1

where ®; indicates the i-th coordinate of the pre-computed
descriptor. We found the loss of accuracy when using Eq. (10)
instead of Eq. (8) to be insignificant in comparison to the
computational savings.



IV. DIRECT VO USING BINARY DESCRIPTORS

We will use Eq. (10) as our objective function, which
we minimize using the IC formulation [32], allowing us to
pre-compute the Jacobian of the cost function. The Jacobian
is given by

8
Z Z gi(p; 0) "gi(p;0), where

peQ i=1

(1)

ow
p=q 00 lp=q,0=0 .

0P,
i(q;0) = ——
gi(q;0) p

(12)

Similar to other direct VO algorithms [46], [17] pose
parameters are represented using the exponential map, i.e.
0 = [w, v]" € RS, such that

v

o) =l b GhesEm, 0y
where [w], indicates a 3 x 3 skew-symmetric matrix. To
improve the computational running time of the algorithm, we
subsample pixel locations for use in direct VO. A pixel
is selected for the optimization if its absolute gradient
magnitude is non-zero and is a strict local maxima in a
3 x 3 neighborhood. The intuition for this procedure is that
pixels with a small gradient magnitude contribute little, if
any, to the objective function as the term in Eq. (12) vanishes.
We compute the pixel saliency map for all eight Bit-Planes
coordinates as

8
G=)Y > (V.®i(p) + |V, 2i(p)).  (14)

i=1 p
Pixel selection is performed if the image resolution is at least
320 x 240. For lower resolution images (coarser pyramid
levels) we use all pixels with non-zero saliency. The effect of
pixel selection on the accuracy of pose estimation depends
on the dataset as shown in [47, ch.4] and [48].

Minimizing the objective function is performed using an
iteratively re-weighted Gauss-Newton algorithms with the
Tukey bi-weight function [49]. The approach is implemented
in a coarse-to-fine manner. The number of pyramid octaves
is selected such that the smallest image dimension at the
coarsest level is at least 40 pixels. Termination conditions
are fixed to either a maximum number of iterations (100),
or if the relative change in the estimated parameters, or the
relative reduction of the objective, fall below 1 x 106,

Finally, we implement a simple keyframing strategy to
reduce drift accumulation over time. A keyframe is created if
the magnitude of motion exceeds a threshold (data dependent),
or if the percentage of “good points” falls below 60%. A
point is deemed good if its weight from the M-Estimator is
at the top 80-percentile. Points that project outside the image
(i.e. no longer visible) are assigned zero weight.

V. EXPERIMENTS & RESULTS

Effect of smoothing: Fig. 4 shows the effect of smoothing
the image prior to computing the descriptors. The experiment
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Fig. 4: Error as function of pre-smoothing the image with a Gaussian
kernel of standard deviation of oo as well smoothing the Bit-Planes
with o1. The lowest error is associated with smaller kernels.
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Fig. 5: Effect of window (neighborhood) size used to compute the
binary descriptors on the final trajectory estimation accuracy and
the mean number of iterations required for convergence.

is performed on synthetic data with translational shifts. Larger
kernels wash out image details required to estimate small
motions, while no smoothing at all is noise-sensitive. Hence,
we use a 3 x 3 kernel with o = 0.5.

Effect of binary descriptor window size: Our proposed
binary descriptor is implemented using a window size of 3 x 3,
which yields eight channels per pixel. It is possible, however,
to use larger window sizes at the expense of increased runtime.
In Fig. 5, we evaluate the effects of the window size on the
accuracy of the estimated trajectory as well as the number
of iterations required for convergence using the Tsukuba
dataset. Results indicate that larger window sizes reduce the
estimation accuracy as well as increase the mean number of
iterations required for convergence.

Comparison with central image gradients: Our proposed
binary descriptor can be thought of as thresholded directional
image gradients as discussed by Hafner et al. [50], who study
the robustness of the Census Transform using a continuous
representation. In this section, we compare the performance
of bit-planes to raw directional gradients. Each channel of the
directional/central gradient per pixel in a 3 x 3 neighborhood
is given by:

I(x) — I(x + Axq)

Peg(x) = €R8. (15)

I(x) — I(x + Axg)
In contrast to Bit-Planes (Eq. (9)), no thresholding step is
performed and the output is a real-valued 8-vector.

We use the four different illuminations provided by the
Tsukuba dataset to evaluate the effect of thresholding the
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Fig. 6: Comparison between Bit-Planes (BP) and Central Gradients
(CG).

TABLE I: Execution time for each major step in the algorithm
reported in milliseconds (ms) using image size 640 x 480. Con-
struction of the pyramid is a common to both raw intensity and
Bit-Planes. Descriptor computation for raw intensity amounts to
converting the image to floating point. Jacobian pre-computation is
required only when creating a new keyframe. The most commonly
performed operation is warping, which is not significantly more
expensive than warping a single channel of raw intensity. Runtime
on the KITTI benchmark with image size 1024 x 376 is shown in
brackets.

Raw Intensity Bit-Planes
Pyramid construction 0.31 [0.44]
Descriptor computation 0.18 [0.28] 4.33 [5.55]
Jacobian pre-computation 3.34 [5.00] 10.47 [13.93]
Descriptor warping  0.35 [0.30] 1.65 [1.74]

central gradients. Referring to Fig. 6, the Bit-Planes binary
version is more accurate than raw un-thresholded central
gradients except for the “flashlight” dataset. In addition to
improved accuracy, the main advantage is a faster run-time
and convergence.

Runtime: There are two steps to the algorithm. The first step
is pre-computing the Jacobian of the cost function as well
as the Bit-Planes descriptor for the reference image. This is
required only when a new keyframe is created. We call this
step Jacobians. The second step is repeated at every iteration
and consists of: (i) image warping using the current estimate
of pose, (ii) computing the Bit-Planes error, (iii) computing
the residuals and estimating their standard deviations, and (iv)
building the weighted linear system and solving it. We call
this image Linearization. The running time for each step
is summarized in Table I as a function of image resolution
and in comparison to direct VO using raw intensities. A
typical number of iterations for a run using stereo computed
with block matching is shown in Fig. 7. The bottleneck
in the linearization step is computing the median absolute
deviation of the residuals, which could be mitigated using
histograms [17]. Results are shown in comparison to our
implementation of direct VO using raw intensities for a better
assessment of the additional computational cost required for
direct VO with a descriptor constancy. Finally, we note that
due to the compactness of the proposed descriptor, it is
possible to obtained additional speed ups using fixed-point
arithmetic.

Experiments with synthetic data: We use the “New
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Fig. 7: Number of iterations and runtime on the first 500 frames of
the New Tsukuba datasety. On average, the algorithm runs at more
than 100 Hz using intensity and 15 Hz using Bit-Planes.
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Fig. 8: Evaluation on the Tsukuba sequence [51] using the
illumination provided by “lamps” in comparison to other VO
algorithms shown in a bird’s eye view. The highlighted area is
shown with more details on the right. Example images are in shown
Fig. 9.

Tsukuba” dataset [51] to compare the performance of our
algorithm against two representative frame—frame VO algo-
rithms from the state-of-the-art. The first is FOVIS [11],
which we use as a representative of feature-based methods.
FOVIS makes use of FAST corners [52] matched with a Zero-
mean Normalized Cross Correlation (ZNCC). The second is
DVO [46] as a representative of direct methods using the
brightness constancy assumption and dense tracking. We use
the most challenging illumination for our evaluation (shown
in Fig. 9).

Our goal in this experiment is to assess the utility of
our proposed descriptor in handling arbitrary changes in
illumination. Hence, we initialize all algorithms with the
ground truth disparity map. In this manner, any pose esti-
mation errors are caused by failure to extract and/or match
features, or failure in minimizing the photometric error under
brightness constancy. As shown in Fig. 8 the robustness of our
approach exceeds the conventional state-of-the-art methods.
Also, as expected, feature-based methods (FOVIS) slightly
outperforms direct methods (DVO) due to the challenging
illumination conditions.

Evaluation on the KITTI benchmark: The KITTI bench-
mark [53] presents a challenging dataset for our algorithm,
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Fig. 10: Performance on the training data of the KITTI benchmark in
comparison to VISO2 [12]. The large baseline between consecutive
frames presents a challenge to direct methods as can be seen by
observing the error as a function of speed.

and all direct methods in general, as the motion between
consecutive frames is large. Our algorithm is initialized with
disparity estimates obtained using block matching stereo as
implemented in the OpenCV library. However, only the left
image is used for tracking. Performance of the algorithm is
compared against direct tracking using raw intensities and
the feature-based algorithm VISO2 [12], which uses both
stereo images for VO. Referring to Fig. 10, the algorithm’s
performance is slightly less accurate than raw intensities. The
main limitation, however, is the narrower basin of convergence
due to the relatively large camera motion.

We note that the reduced performance with larger camera
motions is a limitation of direct methods as they rely on
linearization, which assumes small inter-frame displacements.
An evaluation of the effect of camera motion on the estimation
accuracy is provided in the next section.

Basin of convergence: Direct methods are known to re-
quire small inter-frame displacements for the linearization
assumption to be valid. In this section, we evaluate the
basin of convergence as a function of camera displacements
using the variable frame-rate dataset Handa et al. [54]. The
dataset features the same scene imaged under different camera
framerates with an accurate noise model.

Referring to Fig. 11, rotational and translational errors are
generally lower at higher framerates. The sudden increase
rotational errors at framerates in excess of 120Hz is due to
the well known ambiguity of separating the effect of rotation
from translation on the apparent flow [10], [55], which can
be addressed by using a wider field-of-view lens [56].

Real data from underground mines: We demonstrate
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Fig. 11: Relative Pose Error (RPE) (defined in [57]) as a function
of the camera frame-rate.

the robustness of our algorithm using data collected in
underground mines. Our robot is equipped with a 7cm baseline
stereo camera that outputs 1024 x 544 grayscale images
and computes an estimate of disparity using a hardware
implementation of SGM [58]. Due to lack of lighting in
underground mines, the robot carries its own source of
LED lights. However, the LEDs are insufficient to uniformly
illuminate the scene due to power constraints. Similar to the
previous experiments, disparities are used to initialize the
scale and tracking is performed using only a single grayscale
image. Examples of the 3D maps generated by our algorithm
are shown in Figs. 12 to 14.

In Fig. 13, we show another result from a different
underground environment where the stereo 3D points are
colorized by height. The large empty areas in the generated
map is due to lack of disparity estimates in large portions of
the input images. Due to lack of ground-truth we are unable to
assess the accuracy of the system quantitatively. But, visual
inspection of the created 3D maps indicate minimal drift,
which is expected when operating in an open loop fashion.
More importantly, the algorithm maintains robustness with
limited instances of failure cases as we show next. The
performance of the algorithm is also illustrated using the
supplementary materials video in comparison to other VO
methods.

Failure cases: Most failure cases are due to a complete
image wash out. An example is shown in Fig. 15. Theses
cases occur when the robot is navigating tight turns where
most of the LED power is concentrated very closely to the
camera. Addressing such cases using vision-only is a good
avenue of future work.

Reconstruction density: Density of the reconstructed point
cloud on the tunnel data is shown in Figs. 13 and 14 and on
a section of the KITTI data in Fig. 16. The reconstruction
is obtained by transforming the selected 3D points into a
consistent coordinate system using VO estimates. Denser
output is possible by eliminating the pixel selection step and
using all pixels with valid disparity estimates. However, denser
reconstruction comes at the expense of increased runtime.
Additional evaluation of performance aspects pertaining
to 2D parametric image registration problems is available in
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Fig. 12: Dense reconstruction of a long section of ~ 400 meters from robust VO in a poorly lit underground environments.

Fig. 13: VO map colorized by height showing the robot transitioning
between different levels in the second mine dataset.

Fig. 14: VO map constructed while the robot is navigating a sharp
corner. Points are colorized with the intensity values.

our prior work [59].

VI. CONCLUSIONS & FUTURE WORK

In this work, we presented a VO system capable of
operating in challenging environments characterized by poor
and non-uniform illumination. The approach is based on direct
alignment of binary feature descriptors, where we presented
a novel adaptation of the Census Transform, called Bit-
Planes, suitable for least-squares optimization. The enhanced
robustness as a result of using the binary descriptor constancy
proposed in this work, while significant in comparison to
the traditional brightness constancy, it requires smaller inter-
frame displacements then other direct methods. We plan on
addressing this limitation in a future extension.

All in all, by using a binary descriptor constancy, we
allow vision-only pose estimation to operate robustly in

LIEE . I

Fig. 15: Illustration of failure cases caused by over saturation.

Fig. 16: Reconstruction density on a section of the KITTI dataset.

environments that lack distinctive keypoints and lack the
photometric consistency required by direct methods. The
approach is simple to implement, and can be readily integrated
into existing direct VSLAM algorithms with a small additional
computational overhead.
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