Deliberative Object Pose Estimation in Clutter

Venkatraman Narayanan

Abstract— A fundamental robot perception task is that of
identifying and estimating the poses of objects with known 3D
models in RGB-D data. While feature-based and discriminative
approaches have been traditionally used for this task, recent
work on deliberative approaches such as PERCH and D2P
have shown improved robustness in handling scenes with severe
inter-object occlusions. These deliberative approaches work by
treating multi-object pose estimation as a combinatorial search
over the space of possible rendered scenes of the objects, thereby
inherently being able to predict and account for occlusions.
However, these methods have so far been restricted to scenes
comprising only of known objects, and have been unable to
handle extraneous clutter—a common occurrence in many real-
world settings. This work significantly increases the practical
relevance of deliberative perception methods by developing
a formulation that: i) accounts for extraneous unmodeled
clutter in scenes, and ii) provides object pose uncertainty
estimates. Our algorithm is complete and provides bounded
suboptimality guarantees for the cost function chosen to be
optimized. Empirically, we demonstrate successful object recog-
nition and uncertainty-aware localization in challenging scenes
with unmodeled clutter, where previous deliberative methods
perform unsatisfactorily. In addition, this work was used as
part of the perception system by Carnegie Mellon University’s
Team HARP in the 2016 Amazon Picking Challenge.

I. INTRODUCTION

Robots that interact with or monitor physical objects in the
world typically require the identity and pose of such objects.
The availability of economic RGB-D sensors such as the
Microsoft Kinect coupled with the imminent need to robustly
solve real-world problems such as warehouse perception has
ushered in a new wave of research in the field of 3D object
pose estimation. Particularly important in settings such as
warehouse perception or low-cost manufacturing is that of
object instance detection, where a priori 3D models of the
objects are available (Fig. 1). The persisting challenges of
multi-object instance detection are perhaps best captured
in a survey of the recently concluded Amazon Picking
Challenge [1, 2], where participants ranked perception as the
most difficult aspect of the overall system, despite having a
priori knowledge of exact object instances.

While much of the work in object instance detection
has focused on feature-based discriminative methods, recent
work has shown that generative methods [3, 4] can provide
robust performance, especially in scenes where inter-object
occlusions are prevalent. These methods treat model-based
multi-object pose estimation as a combinatorial search over
possible renderings of the scene, thereby inherently ac-
counting for inter-object occlusions. Further, these methods

The Robotics Institute, Carnegie Mellon University, PA, USA

{venkatraman, maxim} at cs.cmu.edu.

Maxim Likhachev

.

-\ 6
Fig. 1: Left: An example scene (RGB image and point cloud) from
a warehouse picking task where we need to identify and localize a
particular object with known 3D model (say the Oreo box), amidst
the clutter of other objects for which we do not have 3D models.
Right: Another example (from the dataset in [5]) in which 3D
models of the coffee cups are available, but not that of the box in
which they are placed. In such scenarios, pose estimation algorithms
must be robust not only to occlusions between known objects, but
also to occlusions by extraneous clutter.

provide strong guarantees on solution quality and complete-
ness [4], and allow for better introspection compared to
complex discriminative function approximators. These gen-
erative methods, despite the promise shown, suffer from two
significant limitations. First, they assume that the input (point
cloud/depth image) provided to the algorithm contains only
the objects of interest and is void of extraneous unmodeled
clutter, and second, they do not provide any uncertainty
estimates for the object poses.

This works addresses the aforementioned limitations,
thereby significantly increasing their practical applicability.
Specifically, we extend Perception via Search (PERCH) [3]
through a novel formulation that

« Facilitates handling of extraneous clutter in the scene
for which a priori models are unavailable. This obviates
any need for scene pre-processing, clustering or seg-
mentation, thereby allowing applicability in many more
realistic situations.

o Produces uncertainty estimates for object poses in a
Bayesian sense by reasoning over possible clutter condi-
tions. Such uncertainty estimates are useful in situations
where the perception system needs to be failure-aware,
or in robotic systems that can actively control their
sensing.

Our experimental evaluations on a real-world dataset

demonstrate an improved accuracy compared to existing
deliberative methods.

II. RELATED WORK

A. Descriptor-based Methods

The most popular approaches for object instance detection
in point clouds employ local or global 3D feature descriptors.

Approaches that use local descriptors follow a two step
procedure: i) compute and find correspondences between a
set of local shape-preserving 3D feature descriptors on the
model and the observed scene and ii) estimate the rigid
transform between a set of geometrically consistent corre-
spondences. Examples of local 3D feature descriptors include
Spin Images [6], Fast Point Feature Histograms (FPFH) [7],
Signature of Histograms of Orientations (SHOT) [8] etc.
Approaches that use global descriptors (e.g., VFH [9],
CVFH [10], OUR-CVFH [11], GRSD [12] etc.) follow
a three step procedure: i) build a database of 3D global
descriptors on renderings corresponding to different view-
points of each object during the training phase, ii) extract
clusters belonging to individual objects in the test scene,
and iii) match each cluster’s 3D global descriptor to one
in the database to obtain both identity and pose together.
In both approaches, a final local optimization step such as
Iterative Closest Point (ICP) [13] is often used to fine-tune
the pose estimates. A comprehensive survey of descriptor-
based methods is presented in [14].

Other discriminative approaches for object instance de-
tection are based on template matching [15, 16], Hough
forests [17] and deep neural networks trained on colorized
versions of synthetically-generated or real depth images of
object instances [18, 19].

B. Generative Approaches

Despite their speed and prevalence, a primary limitation
of descriptor-based and discriminatively-trained methods is
their brittleness to occlusions and other variations not cap-
tured during the training phase. Further, they are ill-suited
for multi-object instance detection and pose estimation since
the training data needs to capture the combinatorics of the
problem (i.e, the features learnt must be capable of predicting
inter-object occlusions for arbitrary combinations of objects).
Global hypothesis verification methods [5, 20] perform a
joint optimization over the individual predicted object poses,
but still cannot guarantee completeness [4]—that a feasible
solution (e.g., a non-collision constraint on the objects) will
be returned if one exists.

Generative approaches address these issues by treating
multi-object pose estimation as an optimization or filtering
problem over possible renderings of the scene [3, 4, 21, 22].
This allows them to inherently account for inter-object oc-
clusions, while maintaining completeness. Further, they do
not require any semantic grouping/segmentation of points
into “objects” as required by global descriptor approaches.
Unfortunately, their practical applicability is limited due to
restrictive assumptions. Specifically, our prior works Percep-
tion via Search (PERCH) [3] and D2P [4] assume that the
input to the algorithm is “clean” and does not contain points
belonging to clutter for which we do not have 3D models. In
addition, these methods do not produce any pose uncertainty
estimates as well.

In this work, we address the restrictive assumptions made
in PERCH, thereby significantly increasing the practical rel-
evance and applicability of generative methods. In addition,

we present a technique to produce uncertainty estimates of
object poses, which can be helpful for robotic systems that
have active sensing, or in systems where critical decisions
need to be made based on the confidence associated with
perception outputs.

III. BACKGROUND

A. Problem Setup

We first review the problem addressed in PERCH. The task
is to simultaneously identify and localize multiple objects
with known 3D models in a static depth image or point
cloud. Formally, we are given the 3D models of N unique
objects, an input point cloud I (which can also be generated
from a depth image) containing K > N objects, some of
which may be duplicates of an unique instance, and the 6
DoF pose of the camera sensor along with its intrinsics.
Similar to PERCH, we assume that the number (KX) and
type of objects in the scene are provided a priori and no
“clustering” is required (i.e, the algorithm looks at the scene
as a whole, rather than identifying and estimating the pose of
each cluster in the scene). Unlike in PERCH however, we do
not assume any pre-processing or that the points in the scene
belong only to the objects of interest—i.e, there can be points
corresponding to extraneous clutter for which we do not have
3D models. Note that we still continue to assume objects
vary only in 3 DoF pose (z, y, yaw) with respect to their 3D
model coordinate axes . This is primarily due to a tractability
problem (larger search space with 6 DoF), as opposed to
a theoretical bottleneck. In practice, we construct multiple
3D models of an object corresponding to “canonical” poses
(stable configurations in the absence of other objects), and
treat each of those as distinct objects. While this does not
span the full 6 DoF space, it is a reasonable approximation
in many real-world settings such as warehouse perception.
Nevertheless, we will touch upon potential solutions to this
problem in the discussion section.

B. Notation

We re-use notation from PERCH [3] for the most part,
and introduce some additional ones. These are summarized
in Table I. We use upper-case bold-faced letters to denote
point clouds (set of points in R?), and lower-case bold-faced
letters to denote a point in R3.

C. Optimization Formulation

PERCH formulates the problem of identifying and obtain-
ing the poses of objects O1, O,, ..., Ok as that of finding the
minimizer of an “explanation” cost function which captures
how well the rendered scene matches the input scenes, paying
due attention both-ways—i.e, points in the input cloud should
have an associated point in the rendered cloud, and vice-
versa. Formally,

TABLE I: Symbols and Notation. Left: Notation from PERCH. Righs: Notation introduced in this work.

I The input point cloud

K The number of objects in the scene

N The number of unique objects in the scene (< K)

(0] An object state specifying a unique ID and 3 DoF pose
Point cloud corresponding to the rendering of a scene

R, with j objects Oy

AR, Point cloud containing points of R; that belong exclu-
7 sively to object O;: AR; = R; — Rj_1

V(Oy) | The set of points in the volume occupied by object O;.

V; The union of volumes occupied by objects O

J(O1.x) = Z OUTLIER(p| Rk) + Z OUTLIER(p|I)
pel PERK

Jrendered(O1:x) o Jr.

(D

Jobserved(O1:x) or Jo

in which OUTLIER(p|P) for a point cloud P and point p
is defined as follows:

1 if minprep ||pl *I)HQ >0 ?)

OUTLIER(p|P) =
(plP) {0 otherwise

where § represents the sensor noise resolution.

While this optimization problem looks completely in-
tractable at the outset due to the combinatorially large search
space (joint poses of all objects), it was shown in PERCH
that the cost function can be exactly decomposed over
individual objects rather, subject to the constraint that objects
are added in a non-occluding order. Intuitively, by enforcing
the non-occluding order, PERCH is able to penalize points
on an individual object for both J, and J,., since it is
guaranteed that these points continue to exist at a later stage
(i.e, they won’t be occluded in the future when we add a
new object). This allowed for the design of an efficient tree-
search algorithm which automatically figures out the correct
order in which to introduce objects in to the scene such that
the J(O1.x) is minimized.

IV. C-PERCH

A. Augmented Objective

The explanation cost used by PERCH is meaningful only
when we want both the rendered and input point clouds
to exactly match each other. In the presence of unmodeled
clutter however, this fails on two counts: first, the rendered
scene does not account for occlusion by the clutter (the
algorithm assumes that all occlusions occur between objects
with known 3D models), and second, the cost function
(specifically Jopserveq) Would unnecessarily penalize points
in the input cloud which are extraneous clutter that do not be-
long to the objects of interest. To overcome these limitations,
we first propose a formulation that allows the algorithm to
explicitly pick and treat some points as clutter, and secondly
demonstrate that this does not add any significant complexity
to the existing optimization solved by PERCH.

Point cloud containing points in I which are considered

¢ as “clutter” by the algorithm
R;|C Ditto as R, but considering points in C' as occluders
AR;|C | (R;|C) — (R;-1|C)
p<P Point p occludes some point in the point cloud P
C. Points in the clutter cloud C' which occlude Rj;:

J C;={peC:p=<R;}
AC: Points in the input cloud I which occlude AR;:

J ACj:{pEI:p<ARj}

In our proposed extension C-PERCH (Clutter-PERCH),
we jointly optimize over the object poses Oi.x and a
variably-sized clutter cloud C C I. The latter allows the
algorithm to mark certain points in the input scene as clutter,
so that it can use those as extraneous “occluders” when ren-
dering a scene with known 3D models. However, complete
freedom to mark points as clutter could be disastrous: the
optimal solution might just be to treat the input entire cloud
as clutter, claim that the desired object(s) to be localized
are completely occluded by the clutter, and thus incur no
cost at all (since the rendered point cloud would be an
empty cloud). To strike a balance between optimizing the
explanation cost and allowing the algorithm to treat certain
points as clutter, we introduce an additional term to the
cost function that penalizes the algorithm for marking too
many points as clutter—in other words, we would like to
minimize the explanation cost while not marking too many
points treated as clutter (conversely maximize the number of
points observed on the objects of interest). Of course, the
amount to penalize depends on the scenario at hand as well.
In extreme clutter, it would be okay if the algorithm marks
several points as clutter, but in scenes with no clutter, we
really don’t want to mark any point as clutter. We model
this using a multiplicative factor « on the clutter penalty, to
represent our uncertainty about the true nature of clutter in
the scene. The augmented cost function to minimize is:

Ja(OlzK7 C) = JO(011K7 C) + JT(011K7 C) + Oé|C|

A3)
Jo(O1:x,C) = > OUTLIER(p|(Rk|C))
pelNVi
Jr(Orx,C)= > OUTLIER(p|I)
PERch

There are three changes from Eq. 1. First, both J, and J,
use the cloud Rk |C rather than simply Rg to explicitly
acknowledge the occlusions caused by extraneous clutter.
Second, the optimization objective has a penalty term for
the number of points marked as clutter, weighed by «, a
term which models the amount of true clutter in the scene.
Third, J, only penalizes points in the input cloud that fall
within the volume of the modeled objects, rather than every
point in I. An illustration of the different point clouds used
is presented in Fig. 2.

Algorithm 1 C-PERCH: Generation of Successor States and
Edge Costs

1: procedure GETSUCCESSORS(O1:;)
2 S+ 0
3: AJ <+
4: /] Tterate over objects not yet added to scene
5: for all ID € {All Possible IDs} \ IDs(O1.;) do
6: // Tterate over all possible poses the new object can take
7: for all pose € {All Discrete Poses} do
8: Oj+1 = {ID, pose}
9: s = Ol;j U Oj+1
10: if s is not physically-plausible then
11: // Prune if objects in scene collide
12: continue
13: R; = render scene with Oq.;
14: Rj 1 = render scene with O1.j41
15: ARj+1 = Rj+1 — Rj
16: if ARj+1 < R; then
17: // Prune if new object occludes existing scene
18: continue
19: AC; = Points in I which occlude AR;
20: Compute AJIT (041, ARj4+1, ACj+1) > Eq.5
21: Compute AJI T (AR 11, AC 41) > Eq.6
22: Compute AJIE (AC;41) > Eq.7
23: AT = AT+ AT+ AT
24: S« SuU{s}
25: AT« AJU{ATITY

26: return (S, AJ)

(b)

(© (d)

Fig. 2: Illustration of various notations used. (a) The input point
cloud I (represented as a depth image and pseudo-colored). (b)
Rendering Ry corresponding to a state with one object O; (c)
Rendering R1|AC1, considering points in I that occlude Ry (d)
A profile view of the same scene, showing the volume V' (O1), and
the points in I contained in it.

B. Tractability

With this formulation, it appears that we have made the
problem intractable by introducing a variably-sized point
cloud into the already combinatorial search space. However,
it can be shown that C' is only a dependent variable of
O1.k, and does not affect the decomposition used by PERCH
under a reasonable constraint. Define Clntrysive = {P €
C : p < Rk}, the set of clutter points which occlude the
scene rendered by considering only the objects of interest,
and Csuperfluous C - Cintrusive~ Quite ClearIY7 we

can replace Rk |C with Rk |C',, ;. ,.cive i the optimization

objective (since the superfluous clutter points do not affect
the rendering of the objects). Since C = Cintrusive U
Csuper fluous and all terms except the penalty depend only
on Ciptryusives the optimal solution would involve setting
Csuper fluous = (). Hereon, we simply set C = Cipirusive
to factor this observation in to account.

If we now require the algorithm to definitely mark every
occluding input point as clutter (for a given rendered scene),
we can simply drop C' from the argument list of J,, J, and
Jr because C is now purely a function of Rg.

It was shown in PERCH that R can be constructed in a
monotone fashion by introducing objects in a non-occluding
order. Formally, Rx = UiKzlARi, st, R,_1 C R;. If we
now define AC; = {p € I : p < AR;} and follow
a decomposition procedure similar to the one adopted in
PERCH, we obtain:

K
Ja(OlzK) - Z A‘]clx S.t. Ri—l Q Rz
=1
“)
= Z AJZ + AJ: + AJZ,& st. Ri—1 C R;

i=1
where

ATb= Y

pe{INV(0:)}

OUTLIER(p|(AR;|AC;)) (5)

AJi= > OUTLIER(p|I) (6)
PEAR;
AJ!, = a|AC| (7)

The end result is that we can still maintain the decom-
position of the objective function over individual objects
despite introducing the clutter cloud in to the optimization
process. Similar to PERCH, we solve the final optimization
as a discrete tree-search under the constraint that objects
are added in a non-occluding order to the Monotone Scene
Generation Tree [3]. The complete procedure followed to
generate successor states for a parent state, and the corre-
sponding edge costs is presented in Alg. 1.

C. Pose Uncertainty Estimates

We earlier mentioned how the factor o models the amount
of clutter expected in the scene. Low values correspond to
scenes with high anticipated clutter (where the penalty for
marking points as clutter is low), and vice versa. Solving
the optimization problem for different values of a yield
potentially distinct solutions:

O x = argmin J,(01.x) (8)

O1.kx
Immediately, there is an opportunity to produce uncer-
tainty estimates for the object poses based on the uncertainty
in how much clutter there exists in the scene. If p(«) denotes
the prior for a (which may be obtained by a priori analysis
of the scene or assumed to be uniform), then the density

(© (d)

Fig. 3: (a) and (b) A subset of objects in the RGB-D occlusion
dataset. (c) and (d) Representative test scenes from the dataset.

estimate for the object poses (represented by the random
variable 2) is given by

p(Q = Ol:K) = /p(Q = O1.x, a)da

«

= /p(Q = O |a)p(a)do

[e3

— [101x =0 pla)da ©)
[e3

Eq. 9 is hard to solve in closed form, but sampling from
the distribution is trivial: we sample an « from p(«a), and
solve the optimization problem in Eq. 8 to get a solution,
which is a sample from p(2). Intuitively, if we find out
that several values of « lead to the same solution for O1.x,
it implies that the scene clutter model has minimal effect
on the object poses and we can therefore be confident
about our pose estimate. On the other hand, if solutions
are distinct for closely related values of o, we would have
greater uncertainty in our object poses due to a spread-out
distribution.

V. EXPERIMENTS
A. Robustness to Clutter

Experiment Setup. We evaluate C-PERCH on the occlu-
sion dataset of Aldoma et al. [14] (Fig. 3, reproduced from
[4]) which contains real-world RGB-D images of scenes
with multiple objects on a tabletop. The dataset contains 3D
models of 36 household objects and 22 RGB-D scenes with
80 object instances in total. In our experiments, we use only
the depth image (ignoring RGB) for all methods. To test the
ability of C-PERCH to handle extraneous clutter in the scene,
we setup evaluation such that C-PERCH and the baselines
are required to identify and localize exactly one object in the
scene, treating the others as clutter. The process is repeated
for every object in each scene.

For both PERCH and C-PERCH, we use a discretization
of 0.05 m for translation and 22.5 degrees for yaw. Note
that in this dataset, objects vary only in yaw with respect

At =0.01 m At =0.05 m
§ 100 § 100
~ 90 ~ 90
L 9
S 80 3
A ol
= 70 -
3 e ————— -~ 3
g 60 |i &
<2 <2
© 50 © 50
0 30 60 90 120150180 0 30 60 90 120150180
Af (degrees) Af (degrees)
At =0.1 m At =0.2m
§ 100 g\g 100
o} Q
é 80 l-—'-';'-';". Dé:
4; 70 r“ﬂ- g
260 g
3 5
o O

50
0 30 60 90 120150180
A6 (degrees)

Fig. 4: Comparison of PERCH (H) with C-PERCH for different
values of «: 1 (H) 0.5 (M) 0.25 (M) and O (M), and for different

correctness measures. We omit o« = (.75 since it yielded identical
results to o = 1.

50
0 30 60 90 120150180
A (degrees)

to the 3D models. We also use a locally-constrained ICP
refinement (with a maximum of 20 iterations) for every
rendered state in both PERCH and C-PERCH to compensate
for discretization artifacts. Similar to [4], we measure
accuracy of an algorithm by counting the number of objects
that fall within a given error bound: an estimated object pose
(z,y,0) is marked ‘correct’ if ||(z,y) — (Tuue, Yuue) ||2 < At
and SHORTESTANGULARDIFFERENCE(, Oyye) < Af. The
latter check is ignored for rotationally symmetric objects.

Accuracy Comparisons. Figure 4 compares the perfor-
mance of PERCH (baseline) with C-PERCH configured
with different values of «, the clutter model parameter. All
experiments were run on an m4.10x Amazon AWS instance.
The first takeaway is that C-PERCH consistently outperforms
PERCH, for « € {1,0.5,0.25}. This supports our hypothesis
that modeling clutter explicitly in the optimization formula-
tion will lead to better performance. A second observation is
that C-PERCH with o = 0.5 performs marginally better than
a = 1, and significantly better than o = 0. This indicates that
there is no one “correct” way to pick a unless we have some
prior information about the clutter conditions. In some sense,
being cautious (o = 0.5) yields the best performance across
a variety of scenes. Since PERCH was shown to outperform
OUR-CVFH [11], a global descriptor, as well a Brute-Force
ICP baseline, we omit similar comparisons here.

Timing. The average time taken by PERCH for a scene
was 19.17 s and for C-PERCH (across all values of «) was
17.98 s. While both methods generated the same number
of scenes on average (792.31), PERCH takes slightly longer
than C-PERCH since it computes the observed cost (J,) over
all points in the input point cloud, as opposed to C-PERCH
which only looks at input points within the volumes of the
assigned objects.

B. Illustration of Uncertainty Estimation

Next, we provide an example that demonstrates how C-
PERCH can be used to generate uncertainty estimates for
an object pose. In Fig. 5, the object desired to be localized

Fig. 5: Example that demonstrates how C-PERCH can be used to
obtain pose uncertainty estimates, including multimodal distribu-
tions. The object to be localized in this scene (left) is the milk
carton (for which we have a 3D model) and the other objects are
considered as extraneous clutter (no models available). C-PERCH
yields two distinct solutions across multiple values of «, which are
overlaid on top of the input RGB image (right).

is the milk carton, which is partially occluded by the milk
jug. Large flat portions on the milk carton as well as on the
Odwalla jug (far back on the right) cause some ambiguity
to the algorithm since it deals only with the depth image
(RGB is not used). If we proceed to estimate the object pose
uncertainty (Eq. 9), by running the optimization for values
of a € [0, 1] in steps of 0.01 (i.e., assuming an uniform prior
for o), we observe that only two distinct solutions turn up,
corresponding to the ranges [0,0.21] and (0.21, 1]. The pose
uncertainty distribution can thus be represented as a particle
distribution with two particles of weight ~ 0.2 and ~ 0.8
respectively, with the former corresponding to the partially
occluded configuration.

VI. CONCLUSIONS

In summary, we presented C-PERCH, an extension to
Perception via Search (PERCH), that allows deliberative
perception algorithms to operate in scenes with unmodeled
extraneous clutter. This significantly extends their practical
relevance to real-world scenarios where 3D models cannot
be obtained for every object in the scene. In addition, we
also showed how C-PERCH can produce pose uncertainty
estimates by reasoning about the amount of clutter in the
scene. This is useful to systems with active sensing, and
when introspection capabilities are required.

The main drawback of deliberative approaches at present
is their inability to tractably handle the joint 6 DoF poses (as
opposed to 3 DoF) of multiple objects. Our future work in
this area is to investigate the use of physics simulators to ad-
missibly prune large infeasible portions of the search space,
thereby maintaining tractability. A principled approach to
integrate color information with depth also remains to be
studied in the context of deliberative perception.

ACKNOWLEDGMENT

This research was sponsored by ARL, under the Robotics
CTA program grant W911NF-10-2-0016.

REFERENCES

[1] N. Correll, K. E. Bekris, D. Berenson, O. Brock, A. Causo,
K. Hauser, K. Okada, A. Rodriguez, J. M. Romano, and P. R.
Wurman, “Lessons from the Amazon Picking Challenge,”
arXiv preprint arXiv:1601.05484, 2016.

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(1]

[12]

(13]

(14]

[15]

(16]

[17]

(18]

[19]

(20]

[21]

(22]

R. Jonschkowski, C. Eppner, S. Hofer, R. Martin-Martin,
and O. Brock, “Probabilistic multi-class segmentation for the
amazon picking challenge,” in IROS, 2016.

V. Narayanan and M. Likhachev, “PERCH: Perception via
Search for Multi-Object Recognition and Localization,” in
ICRA. 1IEEE, 2016.

V. Narayanan and M. Likhachev, “Discriminatively-guided
Deliberative Perception for Pose Estimation of Multiple 3D
Object Instances,” in Robotics: Science and Systems, 2016.
A. Doumanoglou, R. Kouskouridas, S. Malassiotis, and T.-K.
Kim, “Recovering 6D Object Pose and Predicting Next-Best-
View in the Crowd.”

A. E. Johnson and M. Hebert, “Using Spin Images for
Efficient Object Recognition in Cluttered 3D Scenes,” PAMI,
vol. 21, no. 5, pp. 433—449, 1999.

R. B. Rusu, N. Blodow, and M. Beetz, “Fast Point Feature
Histograms (FPFH) for 3D Registration,” in ICRA. IEEE,
20009.

F. Tombari, S. Salti, and L. Di Stefano, “Unique signatures
of histograms for local surface description,” in European
conference on computer vision. Springer, 2010.

R. B. Rusu, G. Bradski, R. Thibaux, and J. Hsu, “Fast
3D Recognition and Pose Using the Viewpoint Feature His-
togram,” in /ROS. IEEE, 2010.

A. Aldoma, M. Vincze, N. Blodow, D. Gossow, S. Gedikli,
R. B. Rusu, and G. Bradski, “CAD-model Recognition and
6DOF Pose Estimation using 3D Cues,” in ICCV Workshops.
IEEE, 2011.

A. Aldoma, F. Tombari, R. B. Rusu, and M. Vincze, “OUR-
CVFH-Oriented, Unique and Repeatable Clustered Viewpoint
Feature Histogram for Object Recognition and 6DOF Pose
Estimation,” in DAGM, 2012.

Z.-C. Marton, D. Pangercic, N. Blodow, and M. Beetz,
“Combined 2D-3D Categorization and Classification for Mul-
timodal Perception Systems,” IJRR, 2011.

Y. Chen and G. Medioni, “Object Modeling by Registration
of Multiple Range Images,” in /CRA, 1991.

A. Aldoma, Z.-C. Marton, F. Tombari, W. Wohlkinger, C. Pot-
thast, B. Zeisl, R. B. Rusu, S. Gedikli, and M. Vincze, “Point
Cloud Library,” IEEE Robotics & Automation Magazine, vol.
1070, no. 9932/12, 2012.

S. Hinterstoisser, V. Lepetit, S. Ilic, S. Holzer, G. Bradski,
K. Konolige, and N. Navab, “Model Based Training, Detection
and Pose Estimation of Texture-less 3D Objects in Heavily
Cluttered Scenes,” in ACCV, 2013, pp. 548-562.

P. Wohlhart and V. Lepetit, “Learning Descriptors for Object
Recognition and 3D Pose Estimation,” in CVPR, 2015.

A. Tejani, D. Tang, R. Kouskouridas, and T.-K. Kim, “Latent-
class Hough Forests for 3D Object Detection and Pose Esti-
mation,” in ECCV, 2014, pp. 462-477.

M. Schwarz, H. Schulz, and S. Behnke, “RGB-D Object
Recognition and Pose Estimation Based on Pre-trained Con-
volutional Neural Network Features,” in ICRA. 1EEE, 2015.
A. Eitel, J. T. Springenberg, L. Spinello, M. Riedmiller, and
W. Burgard, “Multimodal Deep Learning for Robust RGB-D
Object Recognition,” in /ROS, 2015.

A. Aldoma, F. Tombari, L. Di Stefano, and M. Vincze,
“A Global Hypotheses Verification Method for 3D Object
Recognition,” in ECCV, 2012, pp. 511-524.

M. R. Stevens and J. R. Beveridge, “Localized Scene Interpre-
tation from 3D Models, Range, and Optical Data,” Computer
Vision and Image Understanding, 2000.

Z. Sui, O. C. Jenkins, and K. Desingh, “Axiomatic particle
filtering for goal-directed robotic manipulation,” in /ROS.

