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Abstract
We present an approach to efficiently detect the 2D pose of multiple people in an image. The ap-

proach uses a nonparametric representation, which we refer to as Part Affinity Fields (PAFs), to learn to
associate body parts with individuals in the image. The architecture encodes global context, allowing a
greedy bottom-up parsing step that maintains high accuracy while achieving realtime performance, irre-
spective of the number of people in the image. The architecture is designed to jointly learn part locations
and their association via two branches of the same sequential prediction process. Our method placed first
in the inaugural COCO 2016 keypoints challenge, and significantly exceeds the previous state-of-the-art
result on the MPII Multi-Person benchmark, both in performance and efficiency.



Figure 1. Top: Multi-person pose estimation. Body parts belonging to the same person are linked. Bottom left:
Part Affinity Fields (PAFs) corresponding to the limb connecting right elbow and right wrist. The color encodes
orientation. Bottom right: A zoomed in view of the predicted PAFs. At each pixel in the field, a 2D vector
encodes the position and orientation of the limbs.

1. Introduction
Human 2D pose estimation—the problem of localizing anatomical keypoints or “parts”—has largely

focused on finding body parts of individuals [8, 4, 3, 21, 33, 13, 25, 31, 6, 24]. Inferring the pose of
multiple people in images, especially socially engaged individuals, presents a unique set of challenges.
First, each image may contain an unknown number of people that can occur at any position or scale.
Second, interactions between people induce complex spatial interference, due to contact, occlusion, and
limb articulations, making association of parts difficult. Third, runtime complexity tends to grow with
the number of people in the image, making realtime performance a challenge.

A common approach [23, 9, 27, 12, 19] is to employ a person detector and perform single-person
pose estimation for each detection. These top-down approaches directly leverage existing techniques for
single-person pose estimation [17, 31, 18, 28, 29, 7, 30, 5, 6, 20], but suffer from early commitment:
if the person detector fails–as it is prone to do when people are in close proximity–there is no recourse
to recovery. Furthermore, the runtime of these top-down approaches is proportional to the number of
people: for each detection, a single-person pose estimator is run, and the more people there are, the
greater the computational cost. In contrast, bottom-up approaches are attractive as they offer robustness
to early commitment and have the potential to decouple runtime complexity from the number of people
in the image. Yet, bottom-up approaches do not directly use global contextual cues from other body parts
and other people. In practice, previous bottom-up methods [22, 11] do not retain the gains in efficiency as
the final parse requires costly global inference. For example, the seminal work of Pishchulin et al. [22]
proposed a bottom-up approach that jointly labeled part detection candidates and associated them to
individual people. However, solving the integer linear programming problem over a fully connected
graph is an NP-hard problem and the average processing time is on the order of hours. Insafutdinov et



(b) Part Confidence Maps

(c) Part Affinity Fields(a) Input Image (d) Bipartite Matching (e) Parsing Results

Figure 2. Overall pipeline. Our method takes the entire image as the input for a two-branch CNN to jointly predict
confidence maps for body part detection, shown in (b), and part affinity fields for parts association, shown in (c).
The parsing step performs a set of bipartite matchings to associate body parts candidates (d). We finally assemble
them into full body poses for all people in the image (e).

al. [11] built on [22] with stronger part detectors based on ResNet [10] and image-dependent pairwise
scores, and vastly improved the runtime, but the method still takes several minutes per image, with a
limit on the number of part proposals. The pairwise representations used in [11], are difficult to regress
precisely and thus a separate logistic regression is required.

In this paper, we present an efficient method for multi-person pose estimation with state-of-the-art
accuracy on multiple public benchmarks. We present the first bottom-up representation of association
scores via Part Affinity Fields (PAFs), a set of 2D vector fields that encode the location and orientation
of limbs over the image domain. We demonstrate that simultaneously inferring these bottom-up repre-
sentations of detection and association encode global context sufficiently well to allow a greedy parse
to achieve high-quality results, at a fraction of the computational cost. We have publically released the
code for full reproducibility, presenting the first realtime system for multi-person 2D pose detection.

2. Method
Fig. 2 illustrates the overall pipeline of our method. The system takes, as input, a color image of size

w × h (Fig. 2a) and produces, as output, the 2D locations of anatomical keypoints for each person in
the image (Fig. 2e). First, a feedforward network simultaneously predicts a set of 2D confidence maps
S of body part locations (Fig. 2b) and a set of 2D vector fields L of part affinities, which encode the
degree of association between parts (Fig. 2c). The set S = (S1,S2, ...,SJ) has J confidence maps, one
per part, where Sj ∈ Rw×h, j ∈ {1 . . . J}. The set L = (L1,L2, ...,LC) has C vector fields, one per
limb1, where Lc ∈ Rw×h×2, c ∈ {1 . . . C}, each image location in Lc encodes a 2D vector (as shown in
Fig. 1). Finally, the confidence maps and the affinity fields are parsed by greedy inference (Fig. 2d) to
output the 2D keypoints for all people in the image.

2.1. Simultaneous Detection and Association

Our architecture, shown in Fig. 3, simultaneously predicts detection confidence maps and affinity
fields that encode part-to-part association. The network is split into two branches: the top branch, shown
in beige, predicts the confidence maps, and the bottom branch, shown in blue, predicts the affinity fields.
Each branch is an iterative prediction architecture, following Wei et al. [31], which refines the predictions
over successive stages, t ∈ {1, . . . , T}, with intermediate supervision at each stage.

The image is first analyzed by a convolutional network (initialized by the first 10 layers of VGG-

1We refer to part pairs as limbs for clarity, despite the fact that some pairs are not human limbs (e.g., the face).

https://github.com/ZheC/Realtime_Multi-Person_Pose_Estimation
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Figure 3. Architecture of the two-branch multi-stage CNN. Each stage in the first branch predicts confidence maps
St, and each stage in the second branch predicts PAFs Lt. After each stage, the predictions from the two branches,
along with the image features, are concatenated for next stage. The network iteratively refine the predictions from
the previous stage.

19 [26] and fine-tuned), generating a set of feature maps F that is input to the first stage of each branch.
At the first stage, the network produces a set of detection confidence maps S1 = ρ1(F) and a set of part
affinity fields L1 = φ1(F), where ρ1 and φ1 are the CNNs for inference at Stage 1. In each subsequent
stage, the predictions from both branches in the previous stage, along with the original image features
F, are concatenated and used to produce refined predictions,

St = ρt(F,St−1,Lt−1), ∀t ≥ 2, (1)
Lt = φt(F,St−1,Lt−1), ∀t ≥ 2, (2)

where ρt and φt are the CNNs for inference at Stage t.
Fig. 4 shows the refinement of the confidence maps and affinity fields across stages. To guide the

network to iteratively predict confidence maps of body parts in the first branch and PAFs in the second
branch, we apply two loss functions at the end of each stage, one at each branch respectively. We use
an L2 loss between the estimated predictions and the groundtruth maps and fields. Here, we weight the
loss functions spatially to address a practical issue that some datasets do not completely label all people.
Specifically, the loss functions at both branches at stage t are:

f t
S =

J∑
j=1

∑
p

W(p) · ‖St
j(p)− S∗j(p)‖22, (3)

f t
L =

C∑
c=1

∑
p

W(p) · ‖Lt
c(p)− L∗c(p)‖22, (4)

where S∗j is the groundtruth part confidence map, L∗c is the groundtruth part affinity vector field, W is
a binary mask with W(p) = 0 when the annotation is missing at an image location p. The mask is
used to avoid penalizing the true positive predictions during training. The intermediate supervision at
each stage addresses the vanishing gradient problem by replenishing the gradient periodically [31]. The



Stage 1 Stage 3 Stage 6

Figure 4. Confidence maps of the right wrist (first row) and PAFs (second row) of right forearm across stages. Al-
though there is confusion between left and right body parts and limbs in early stages, the estimates are increasingly
refined through global inference in later stages, as shown in the highlighted areas.

overall objective is

f =
T∑
t=1

(f t
S + f t

L). (5)

2.2. Confidence Maps for Part Detection

To evaluate fS in Eq. (5) during training, we generate the groundtruth confidence maps S∗ from the
annotated 2D keypoints. Each confidence map is a 2D representation of the belief that a particular body
part occurs at each pixel location. Ideally, if a single person occurs in the image, a single peak should
exist in each confidence map if the corresponding part is visible; if multiple people occur, there should
be a peak corresponding to each visible part j for each person k.

We first generate individual confidence maps S∗j,k for each person k. Let xj,k ∈ R2 be the groundtruth
position of body part j for person k in the image. The value at location p ∈ R2 in S∗j,k is defined as,

S∗j,k(p) = exp

(
−||p− xj,k||22

σ2

)
, (6)
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where σ controls the spread of the peak. The
groundtruth confidence map to be predicted by the net-
work is an aggregation of the individual confidence
maps via a max operator,

S∗j(p) = max
k

S∗j,k(p). (7)

We take the maximum of the confidence maps instead of the average so that the precision of close
by peaks remains distinct, as illustrated in the right figure. At test time, we predict confidence maps
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Figure 5. Part association strategies. (a) The body part detection candidates (red and blue dots) for two body
part types and all connection candidates (grey lines). (b) The connection results using the midpoint (yellow
dots) representation: correct connections (black lines) and incorrect connections (green lines) that also satisfy the
incidence constraint. (c) The results using PAFs (yellow arrows). By encoding position and orientation over the
support of the limb, PAFs eliminate false associations.

(as shown in the first row of Fig. 4), and obtain body part candidates by performing non-maximum
suppression.

2.3. Part Affinity Fields for Part Association

Given a set of detected body parts (shown as the red and blue points in Fig. 5a), how do we assemble
them to form the full-body poses of an unknown number of people? We need a confidence measure
of the association for each pair of body part detections, i.e., that they belong to the same person. One
possible way to measure the association is to detect an additional midpoint between each pair of parts
on a limb, and check for its incidence between candidate part detections, as shown in Fig. 5b. However,
when people crowd together—as they are prone to do—these midpoints are likely to support false as-
sociations (shown as green lines in Fig. 5b). Such false associations arise due to two limitations in the
representation: (1) it encodes only the position, and not the orientation, of each limb; (2) it reduces the
region of support of a limb to a single point.

To address these limitations, we present a novel feature representation called part affinity fields that
preserves both location and orientation information across the region of support of the limb (as shown
in Fig. 5c). The part affinity is a 2D vector field for each limb, also shown in Fig. 1d: for each pixel in
the area belonging to a particular limb, a 2D vector encodes the direction that points from one part of
the limb to the other. Each type of limb has a corresponding affinity field joining its two associated body
parts.
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Consider a single limb shown in the right figure. Let
xj1,k and xj2,k be the groundtruth positions of body parts
j1 and j2 from the limb c for person k in the image. If
a point p lies on the limb, the value at L∗c,k(p) is a unit
vector that points from j1 to j2; for all other points, the
vector is zero-valued.



To evaluate fL in Eq. 5 during training, we define the groundtruth part affinity vector field, L∗c,k, at an
image point p as

L∗c,k(p) =

{
v if p on limb c, k
0 otherwise.

(8)

Here, v = (xj2,k − xj1,k)/||xj2,k−xj1,k||2 is the unit vector in the direction of the limb. The set of points
on the limb is defined as those within a distance threshold of the line segment, i.e., those points p for
which

0≤v · (p− xj1,k)≤ lc,k and |v⊥ · (p− xj1,k)| ≤σl,
where the limb width σl is a distance in pixels, the limb length is lc,k = ||xj2,k − xj1,k||2, and v⊥ is a
vector perpendicular to v.

The groundtruth part affinity field averages the affinity fields of all people in the image,

L∗c(p) =
1

nc(p)

∑
k

L∗c,k(p), (9)

where nc(p) is the number of non-zero vectors at point p across all k people (i.e., the average at pixels
where limbs of different people overlap).

During testing, we measure association between candidate part detections by computing the line inte-
gral over the corresponding PAF, along the line segment connecting the candidate part locations. In other
words, we measure the alignment of the predicted PAF with the candidate limb that would be formed by
connecting the detected body parts. Specifically, for two candidate part locations dj1 and dj2 , we sample
the predicted part affinity field, Lc along the line segment to measure the confidence in their association:

E =

∫ u=1

u=0

Lc (p(u)) ·
dj2 − dj1

||dj2 − dj1||2
du, (10)

where p(u) interpolates the position of the two body parts dj1 and dj2 ,

p(u) = (1− u)dj1 + udj2 . (11)

In practice, we approximate the integral by sampling and summing uniformly-spaced values of u.

2.4. Multi-Person Parsing using PAFs

We perform non-maximum suppression on the detection confidence maps to obtain a discrete set of
part candidate locations. For each part, we may have several candidates, due to multiple people in the
image or false positives (shown in Fig. 6b). These part candidates define a large set of possible limbs. We
score each candidate limb using the line integral computation on the PAF, defined in Eq. 10. The problem
of finding the optimal parse corresponds to a K-dimensional matching problem that is known to be NP-
Hard [32] (shown in Fig. 6c). In this paper, we present a greedy relaxation that consistently produces
high-quality matches. We speculate the reason is that the pair-wise association scores implicitly encode
global context, due to the large receptive field of the PAF network.

Formally, we first obtain a set of body part detection candidates DJ for multiple people, where DJ =
{dm

j : for j ∈ {1 . . . J},m ∈ {1 . . . Nj}}, with Nj the number of candidates of part j, and dm
j ∈ R2 is

the location of the m-th detection candidate of body part j. These part detection candidates still need to
be associated with other parts from the same person—in other words, we need to find the pairs of part
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Figure 6. Graph matching. (a) Original image with part detections (b) K-partite graph (c) Tree structure (d) A set
of bipartite graphs

detections that are in fact connected limbs. We define a variable zmn
j1j2
∈ {0, 1} to indicate whether two

detection candidates dm
j1

and dn
j2

are connected, and the goal is to find the optimal assignment for the set
of all possible connections, Z = {zmn

j1j2
: for j1, j2 ∈ {1 . . . J},m ∈ {1 . . . Nj1}, n ∈ {1 . . . Nj2}}.

If we consider a single pair of parts j1 and j2 (e.g., neck and right hip) for the c-th limb, finding
the optimal association reduces to a maximum weight bipartite graph matching problem [32]. This
case is shown in Fig. 5b. In this graph matching problem, nodes of the graph are the body part detection
candidatesDj1 andDj2 , and the edges are all possible connections between pairs of detection candidates.
Additionally, each edge is weighted by Eq. 10—the part affinity aggregate. A matching in a bipartite
graph is a subset of the edges chosen in such a way that no two edges share a node. Our goal is to find a
matching with maximum weight for the chosen edges,

max
Zc

Ec = max
Zc

∑
m∈Dj1

∑
n∈Dj2

Emn · zmn
j1j2

, (12)

s.t. ∀m ∈ Dj1 ,
∑
n∈Dj2

zmn
j1j2
≤ 1, (13)

∀n ∈ Dj2 ,
∑

m∈Dj1

zmn
j1j2
≤ 1, (14)

where Ec is the overall weight of the matching from limb type c, Zc is the subset of Z for limb type
c, Emn is the part affinity between parts dm

j1
and dn

j2
defined in Eq. 10. Eqs. 13 and 14 enforce no two

edges share a node, i.e., no two limbs of the same type (e.g., left forearm) share a part. We can use the
Hungarian algorithm [14] to obtain the optimal matching.

When it comes to finding the full body pose of multiple people, determining Z is a K-dimensional
matching problem. This problem is NP Hard [32] and many relaxations exist. In this work, we add
two relaxations to the optimization, specialized to our domain. First, we choose a minimal number
of edges to obtain a spanning tree skeleton of human pose rather than using the complete graph, as
shown in Fig. 6c. Second, we further decompose the matching problem into a set of bipartite matching
subproblems and determine the matching in adjacent tree nodes independently, as shown in Fig. 6d.
We show detailed comparison results in Section 3.1, which demonstrate that minimal greedy inference
well-approximate the global solution at a fraction of the computational cost. The reason is that the
relationship between adjacent tree nodes is modeled explicitly by PAFs, but internally, the relationship



Method Hea Sho Elb Wri Hip Kne Ank mAP s/image
Subset of 288 images as in [22]

Deepcut [22] 73.4 71.8 57.9 39.9 56.7 44.0 32.0 54.1 57995
Iqbal et al. [12] 70.0 65.2 56.4 46.1 52.7 47.9 44.5 54.7 10
DeeperCut [11] 87.9 84.0 71.9 63.9 68.8 63.8 58.1 71.2 230
Ours 93.7 91.4 81.4 72.5 77.7 73.0 68.1 79.7 0.005

Full testing set
DeeperCut [11] 78.4 72.5 60.2 51.0 57.2 52.0 45.4 59.5 485
Iqbal et al. [12] 58.4 53.9 44.5 35.0 42.2 36.7 31.1 43.1 10
Ours (one scale) 89.0 84.9 74.9 64.2 71.0 65.6 58.1 72.5 0.005
Ours 91.2 87.6 77.7 66.8 75.4 68.9 61.7 75.6 0.005

Table 1. Results on the MPII dataset. Top: Comparison result on the testing subset. Middle: Comparison results
on the whole testing set. Testing without scale search is denoted as “(one scale)”.

Method Hea Sho Elb Wri Hip Kne Ank mAP s/image
Fig. 6b 91.8 90.8 80.6 69.5 78.9 71.4 63.8 78.3 362
Fig. 6c 92.2 90.8 80.2 69.2 78.5 70.7 62.6 77.6 43
Fig. 6d 92.0 90.7 80.0 69.4 78.4 70.1 62.3 77.4 0.005
Fig. 6d (sep) 92.4 90.4 80.9 70.8 79.5 73.1 66.5 79.1 0.005

Table 2. Comparison of different structures on our validation set.

between nonadjacent tree nodes is implicitly modeled by the CNN. This property emerges because the
CNN is trained with a large receptive field, and PAFs from non-adjacent tree nodes also influence the
predicted PAF.

With these two relaxations, the optimization is decomposed simply as:

max
Z

E =
C∑
c=1

max
Zc

Ec. (15)

We therefore obtain the limb connection candidates for each limb type independently using Eqns. 12- 14.
With all limb connection candidates, we can assemble the connections that share the same part detection
candidates into full-body poses of multiple people. Our optimization scheme over the tree structure is
orders of magnitude faster than the optimization over the fully connected graph [22, 11].

3. Results
We evaluate our method on two benchmarks for multi-person pose estimation: (1) the MPII human

multi-person dataset [2] and (2) the COCO 2016 keypoints challenge dataset [15]. These two datasets
collect images in diverse scenarios that contain many real-world challenges such as crowding, scale
variation, occlusion, and contact. Our approach set the state-of-the-art on the inaugural COCO 2016
keypoints challenge [1], and significantly exceeds the previous state-of-the-art result on the MPII multi-
person benchmark. We also provide runtime analysis to quantify the efficiency of the system. Fig. 10
shows some qualitative results from our algorithm.
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Figure 7. mAP curves over different PCKh threshold on MPII validation set. (a) mAP curves of self-comparison
experiments. (b) mAP curves of PAFs across stages.

3.1. Results on the MPII Multi-Person Dataset

For comparison on the MPII dataset, we use the toolkit [22] to measure mean Average Precision
(mAP) of all body parts based on the PCKh threshold. Table 1 compares mAP performance between
our method and other approaches on the same subset of 288 testing images as in [22], and the entire
MPI testing set, and self-comparison on our own validation set. Besides these measures, we compare
the average inference/optimization time per image in seconds. For the 288 images subset, our method
outperforms previous state-of-the-art bottom-up methods [11] by 8.5% mAP. Remarkably, our inference
time is 6 orders of magnitude less. We report a more detailed runtime analysis in Section 3.3. For the
entire MPII testing set, our method without scale search already outperforms previous state-of-the-art
methods by a large margin, i.e., 13% absolute increase on mAP. Using a 3 scale search (×0.7, ×1 and
×1.3) further increases the performance to 75.6% mAP. The mAP comparison with previous bottom-
up approaches indicate the effectiveness of our novel feature representation, PAFs, to associate body
parts. Based on the tree structure, our greedy parsing method achieves better accuracy than a graphcut
optimization formula based on a fully connected graph structure [22, 11].

In Table 2, we show comparison results on different skeleton structures as shown in Fig. 6 on our
validation set, i.e., 343 images excluded from the MPII training set. We train our model based on
a fully connected graph, and compare results by selecting all edges (Fig. 6b, approximately solved
by Integer Linear Programming), and minimal tree edges (Fig. 6c, approximately solved by Integer
Linear Programming, and Fig. 6d, solved by the greedy algorithm presented in this paper). Their similar
performance shows that it suffices to use minimal edges. We trained another model that only learns the
minimal edges to fully utilize the network capacity—the method presented in this paper—that is denoted
as Fig. 6d (sep). This approach outperforms Fig. 6c and even Fig. 6b, while maintaining efficiency. The
reason is that the much smaller number of part association channels (13 edges of a tree vs 91 edges of a
graph) makes it easier for training convergence.

Fig. 7a shows an ablation analysis on our validation set. For the threshold of PCKh-0.5, the result
using PAFs outperforms the results using the midpoint representation, specifically, it is 2.9% higher than
one-midpoint and 2.3% higher than two intermediate points. The PAFs, which encodes both position and



Test-challenge Test-dev
Team AP AP50 AP75 APM APL AP AP50 AP75 APM APL

Ours 60.5 83.4 66.4 55.1 68.1 61.8 84.9 67.5 57.1 68.2
G-RMI [19] 59.8 81.0 65.1 56.7 66.7 60.5 82.2 66.2 57.6 66.6
DL-61 53.3 75.1 48.5 55.5 54.8 54.4 75.3 50.9 58.3 54.3
R4D 49.7 74.3 54.5 45.6 55.6 51.4 75.0 55.9 47.4 56.7

Table 3. Results on the COCO 2016 keypoint challenge. Left: results on test-challenge. Right: results on test-dev
(top methods only). AP50 is for OKS = 0.5, APL is for large scale persons.

orientation information of human limbs, is better able to distinguish the common cross-over cases, e.g.,
overlapping arms. Training with masks of unlabeled persons further improves the performance by 2.3%
because it avoids penalizing the true positive prediction in the loss during training. If we use the ground-
truth keypoint location with our parsing algorithm, we can obtain a mAP of 88.3%. In Fig. 7a, the mAP
of our parsing with GT detection is constant across different PCKh thresholds due to no localization
error. Using GT connection with our keypoint detection achieves a mAP of 81.6%. It is notable that our
parsing algorithm based on PAFs achieves a similar mAP as using GT connections (79.4% vs 81.6%).
This indicates parsing based on PAFs is quite robust in associating correct part detections. Fig. 7b
shows a comparison of performance across stages. The mAP increases monotonically with the iterative
refinement framework. Fig. 4 shows the qualitative improvement of the predictions over stages.

3.2. Results on the COCO Keypoints Challenge

The COCO training set consists of over 100K person instances labeled with over 1 million total key-
points (i.e. body parts). The testing set contains “test-challenge”, “test-dev” and “test-standard” subsets,
which have roughly 20K images each. The COCO evaluation defines the object keypoint similarity
(OKS) and uses the mean average precision (AP) over 10 OKS thresholds as main competition met-
ric [1]. The OKS plays the same role as the IoU in object detection. It is calculated from scale of the
person and the distance between predicted points and GT points. Table 3 shows results from top teams
in the challenge. It is noteworthy that our method has lower accuracy than the top-down methods on
people of smaller scales (APM ). The reason is that our method has to deal with a much larger scale
range spanned by all people in the image in one shot. In contrast, top-down methods can rescale the
patch of each detected area to a larger size and thus suffer less degradation at smaller scales.

Method AP AP50 AP75 APM APL

GT Bbox + CPM [11] 62.7 86.0 69.3 58.5 70.6
SSD [16] + CPM [11] 52.7 71.1 57.2 47.0 64.2
Ours - 6 stages 58.4 81.5 62.6 54.4 65.1

+ CPM refinement 61.0 84.9 67.5 56.3 69.3

Table 4. Self-comparison experiments on the COCO validation set.

In Table 4, we report self-comparisons on a subset of the COCO validation set, i.e., 1160 images
that are randomly selected. If we use the GT bounding box and a single person CPM [31], we can
achieve a upper-bound for the top-down approach using CPM, which is 62.7% AP. If we use the state-
of-the-art object detector, Single Shot MultiBox Detector (SSD)[16], the performance drops 10%. This
comparison indicates the performance of top-down approaches rely heavily on the person detector. In



contrast, our bottom-up method achieves 58.4% AP. If we refine the results of our method by applying
a single person CPM on each rescaled region of the estimated persons parsed by our method, we gain
an 2.6% overall AP increase. Note that we only update estimations on predictions that both methods
agree well enough, resulting in improved precision and recall. We expect a larger scale search can
further improve the performance of our bottom-up method. Fig. 8 shows a breakdown of errors of our
method on the COCO validation set. Most of the false positives come from imprecise localization,
other than background confusion. This indicates there is more improvement space in capturing spatial
dependencies than in recognizing body parts appearances.
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Figure 8. AP performance on COCO validation set in (a), (b), and (c) for Section 3.2, and runtime analysis in (d)
for Section 3.3.

(a) (c) (d) (e) (f)(b)

Figure 9. Common failure cases: (a) rare pose or appearance, (b) missing or false parts detection, (c) overlapping
parts, i.e., part detections shared by two persons, (d) wrong connection associating parts from two persons, (e-f):
false positives on statues or animals.

3.3. Runtime Analysis

To analyze the runtime performance of our method, we collect videos with a varying number of
people. The original frame size is 1080 × 1920, which we resize to 368 × 654 during testing to fit in
GPU memory. The runtime analysis is performed on a laptop with one NVIDIA GeForce GTX-1080
GPU. In Fig. 8d, we use person detection and single-person CPM as a top-down comparison, where
the runtime is roughly proportional to the number of people in the image. In contrast, the runtime of
our bottom-up approach increases relatively slowly with the increasing number of people. The runtime
consists of two major parts: (1) CNN processing time whose runtime complexity is O(1), constant with
varying number of people; (2) Multi-person parsing time whose runtime complexity is O(n2), where n
represents the number of people. However, the parsing time does not significantly influence the overall
runtime because it is two orders of magnitude less than the CNN processing time, e.g., for 9 people, the
parsing takes 0.58 ms while CNN takes 99.6 ms. Our method has achieved the speed of 8.8 fps for a
video with 19 people.



4. Discussion
Moments of social significance, more than anything else, compel people to produce photographs and

videos. Our photo collections tend to capture moments of personal significance: birthdays, weddings,
vacations, pilgrimages, sports events, graduations, family portraits, and so on. To enable machines to
interpret the significance of such photographs, they need to have an understanding of people in images.
Machines, endowed with such perception in realtime, would be able to react to and even participate in
the individual and social behavior of people.

In this paper, we consider a critical component of such perception: realtime algorithms to detect
the 2D pose of multiple people in images. We present an explicit nonparametric representation of the
keypoints association that encodes both position and orientation of human limbs. Second, we design
an architecture for jointly learning parts detection and parts association. Third, we demonstrate that
a greedy parsing algorithm is sufficient to produce high-quality parses of body poses, that maintains
efficiency even as the number of people in the image increases. We show representative failure cases in
Fig. 9. We have publicly released our code (including the trained models) to ensure full reproducibility
and to encourage future research in the area.
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Figure 10. Results containing viewpoint and appearance variation, occlusion, crowding, contact, and other com-
mon imaging artifacts.


