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Abstract

The success of deep learning based methods for computer vision comes at a cost. Most

deep neural network models require a large corpus of annotated data for supervision. The

process of obtaining such data is often time consuming and expensive. For example, the

process of collecting bounding box annotations takes 26-42 seconds per box. This

requirement poses a hindrance for extending these methods to novel domains. In this

thesis, we explore techniques for leveraging inexpensive forms of supervision for visual

learning. More specifically, we first propose an approach to learn a pose-encoding visual

representation from videos of human actions without any human supervision. We show

that the learned representation improves performance for pose estimation and action

recognition tasks compared to randomly initialized models. Next, we propose an

approach to use freely available web data and inexpensive image-level labels to learn

object detectors. We show that web data, while highly noisy and biased, can be effectively

used to improve localization of objects in the weak-supervision setting.
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Genius always gives its best at first;
prudence, at last.

-Seneca the Younger

1
Overview

The success of deep learning based methods in Computer Vision has led to algorithms
that are now deployable in the wild. For example, deep convolutional neural networks
(CNNs) have been successfully deployed for applications like visual search[44], video
surveillance[83] and even self-driving cars[46]. These tasks usually require a high-level
semantic understanding of visual signals and were far from being an achievable goal a few
years ago. The success of these methods is usually attributed to the increase in
computational power and the rise of large scale annotated datasets which provide strong
supervisory signals. The first approach that demonstrated the successful application of
deep learning involved training an 8-layered convolutional neural network using the
ImageNet dataset[16].

The ImageNet dataset consists of 1.2million images each of which are annotated with 1
out of 1000 object classes. The labels of these images were hand-annotated by humans.
This process is not only time consuming, but also is very expensive. Due to this
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bottleneck, ImageNet has been one of the few efforts that has generated annotated data at
such a large scale. Apart from the image classification task, annotated data has been
collected for many other computer vision tasks. For object detection, the MSCOCO[48]
consists of about 328,000 images. For these images, bounding box and segmentation
mask annotations were collected for 91 kinds of objects. The process of annotating
bounding boxes and segmentation masks is clearly more time consuming compared to
collecting image-level labels. In [66], it is reported that the time required to annotated a
bounding box is 26-42 seconds on average depending on the level of quality required.

While craftily designed deep neural networks trained on these datasets with strong
supervision show impressive results, an important question still remains unanswered: is
strong supervision really necessary? Most animals do not require supervision at this level
to develop a strong visual perception system. This leads to the belief that computer vision
models too could infact be trained without supervision of humans. In order to address
this question in the deep learning paradigm, numerous works have attempted to learn
visual ‘representations’ without any human annotations[20, 36, 78]. A visual
representation is a feature encoding of the visual signal that is discriminative for the task
at hand. In order to avoid the expensive collection of annotations, numerous works also
address the problem of learning from cheaper and easier forms of supervision.

In this thesis, we address computer vision tasks by making use of no supervision or
inexpensive forms of supervision. Specifically, we propose an approach for unsupervised
representation learning from videos in Chapter 2. We show that the representation
learned can be used for pose estimation and action recognition. In Chapter 3, we
propose an approach for weakly supervised object detection that makes use of freely
available web-based image search results.
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We see in order to move; we move in order
to see.

-WilliamGibson

2
Pose fromAction: Unsupervised Learning of

Pose Features based onMotion

2.1 Introduction

In recent years, there has been a dramatic change in the field of computer vision. Owing
to visual feature learning via convolutional neural networks, we have witnessed major
performance gains in different areas including image classification [59, 69], object
detection [26–28], 3D scene understanding [80], pose estimation [72] etc. In most
cases, visual features are first learned by training for the classification task on the
ImageNet dataset followed by fine-tuning the pre-trained network for the task at hand.

While this classification based learning framework has yielded significant gains, it is
unclear if this is the right approach to visual feature learning. For example, in case of
humans, we do not need millions of category-labeled images/videos to learn visual
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features. Instead, we can learn a visual representation by observing and actively exploring
the dynamic world around us. Furthermore, the manual labeling of images remains a
significant bottleneck in exploiting a larger number of images to learn visual
representations. As a consequence, there has been rising interest in the area of
unsupervised feature learning.

Appearance/Pose

Motion

Appearance/Pose

Motion

Figure 2.1.1: Similar poses are related to similar motions. Hence motion can be used
as a supervisory signal to learn appearance representations. We use the following color

coding to visualise the optical flow:

There are two paradigms for unsupervised feature learning: generative and
discriminative. In the generative learning paradigm, we learn a low-dimensional
representation that can be used to generate realistic images. These networks use
denoising or reconstruction loss with regularization such as sparsity of the learned space.
However, the generative learning approaches have been been not been competitive on
tasks like object classification or detection.

In the discriminative learning paradigm, the network is trained using standard
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back-propagation on an auxiliary task for which ground truth can be easily mined in an
automated fashion. The hope is that the visual representation learned for this auxiliary
task is generalizable and would work for other tasks with simple fine-tuning. Owing to the
rise of interest in unsupervised learning, many such auxiliary tasks have been proposed in
the recent past. [20] proposed to take pair of patches sample from an image and predict
the relative location of the patches, which seems to generalize to suprisingly well to object
detection. [1, 36] proposed an approach to take pair of patches and predict the camera
motion that caused the change. The ground-truth for this task is obtained via other
sensors which measure ego-motion. Finally, [78] presents an approach to sample a pair
of patches via tracking and learn a representation which embeds these patches close in the
visual representation space (since they are the same object with some transformations).

While [1, 36, 78] use videos for unsupervised learning, they used other sensors or just
different viewpoints to train the appearance models. We argue that there is a
complementary and stronger signal in videos to supervise the training of these networks:
motion patterns. The key inspiration for our proposed method is that similar pairs of
poses are associated with similar motion patterns(See Figure 2.1.1). In this paper, we
demonstrate how motion patterns in the videos can act as strong supervision to train an
appearance representation. We hypothesize that an appearance representation where
poses associated to similar motion patterns cluster together could be useful for tasks like
Pose Estimation and Action Recognition. We believe that the proposed approach is
generic and can be used to learn different kinds of pose-encoding appearance
representations based on different kinds of videos. Specifically, in this paper, we choose
to work with human action videos since the learnt representations can be semantically
associated to human poses. We believe that this idea can provide the missing link in
unsupervised learning of visual representations for human actions and human poses.

However, there is still one missing link: how do you compare motion patterns. One
way is to use distance metric on hand designed motion features (e.g., 3DHOG,
HOF[76]) or the optical flows maps directly. Instead, inspired by the success of the
two-stream network[62], we try to jointly learn convolutional features for both the
appearance(RGB) and the motion(optical flow) at the same time. Our key idea is to have
triplet network where two streams with shared parameters correspond to the first and nth
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frame in the video; and the third stream looks at n− 1 optical flow maps. All the
convolutional streams run in a feedforward manner to produce 4096 dimensional vectors.
The three streams are then combined to classify if the RGB frames and optical flow
channels correspond to each other i.e. does the transformation causes the change in
appearance?. Intuitively, solving this task requires the Appearance ConvNet to identify
the visual structures in the frame and encode their poses. The Motion ConvNet is
expected to efficiently encode the change in pose that the optical flow block represents.
We evaluate our trained appearance network by finetuning on the task of pose estimation
on the FLIC dataset[70], static image action recognition on PASCAL VOC[23], and
action recognition on UCF101[65] and HMDB51[47]. We show that these models
perform significantly better than training from random initialisation.

2.2 RelatedWork

Unsupervised Learning

Training deep learning models in a supervised fashion generally requires a very large
labeled training set. This is infeasible and expensive in a lot of cases. This has led to an
increase of attention to unsupervised techniques to train these models. Research in
unsupervised representation learning can be broadly divided into two categories -
generative and discriminative. The approach proposed in this paper belongs to the latter.

Majority of the discriminative approaches involve intelligently formulating a surrogate
task which involves learning from an easily available signal. These tasks are designed such
that the deep model is forced to learn semantics relevant to us like object labels, human
poses, activity labels, etc. In [20], the formulated task involved predicting the relative
location of two patches. Automatically cropping pairs of patches from any image makes
the ‘relative location’ signal readily available. The key motivation here is that performing
well in this task requires understanding object properties. Hence the Convolutional
Neural Network trained to perform this task is shown to perform well on object
classification and detection tasks. Similarly, the surrogate task proposed in this paper
involves predicting whether a transformation (inferred from optical flow) represents the
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same transformation as that between a given pair of appearance features.
Unsupervised learning algorithms that learn from videos are extremely valuable since

the amount of video data available to us is massive and collecting annotations for them is
infeasible. In [78], patches are tracked across frames of videos to generate pairs which are
visually dissimilar but semantically same. An unsupervised representation is then learnt
by enforcing the similarity on the pair of features extracted for the patches. This structure
in the feature space is enforced using a triplet ranking loss which minimises the distance
between the pair of features and simultaneously maximises the distance to a feature
extracted for a randomly chosen patch. While this approach shows impressive results on
a wide range of tasks, it suffers from two drawbacks. First, the constraint explicitly
enforced leads to an appearance representation which is invariant to pose, size and shape
changes in an object. Second, the spatially and temporally sparse samples of patches do
not make use of all the information available in the videos. In contrast, we attempt to
learn a representation that encodes the structural changes by making use of densely
sampled pairs of frames to capture a large number of variations in poses.

The unsupervised learning approaches which are closely related to our work are
video-based approaches which model similarities or differences across
frames[6, 33, 36, 51, 52]. A large number of approaches use the idea of temporal
coherance to train unsupervised representations. These methods exploit the fact that
appearances change slowly between adjacent frames[37].

A recently proposed approach [36] involves learning a representation in which
transformations are ‘predictable’. The feature representation is learnt by specifically
enforcing the constraint that similar ego-centric motions should produce similar
transformations in the feature space. This approach requires a dataset of video frames
annotated with the corresponding ego-poses and hence is not scalable. In our proposed
approach, we eliminate this requirement by jointly learning to infer a representation for
the transformation from optical flow maps which are easy to compute.
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Action Recognition and Pose Estimation

The task of recognizing human actions from images and videos has received a lot of
attention in computer vision [43, 47, 65, 79]. Activity recognition is a challenging
computer vision task since recognizing human actions requires perception of the
environment, identifying interaction with objects, understanding pose changes in
humans and a variety of other sub-problems. Most successful action recognition
methods involve using combinations of appearance, pose and motion information as
features [15, 49, 82]. A decade of research in action recognition has led to approaches
that show impressive performances on benchmark datasets[21, 45, 56, 75, 77]. The
majority of successful algorithms for action classification follow a common pipeline.
Appearance or motion features are first extracted either densely or at interest points. This
is followed by clustering and generating an encoding. These encoded feature vectors are
then classified using various kinds of classifiers. Recently, deep learning based methods
have been extended to action recognition[43]. It has been observed that training deep
neural networks directly on stacks of video frames is too computationally expensive and
does not lead to significant improvements over handcrafted feature based methods[38].
More recent methods operate on individual frames independently since it is observed
that this gives similar performance as using a stack of frames [43]. The Two-Stream
network[62] is a fully-supervised deep-learning based action recognition method which
achieves performances comparable to state-of-the-art. It involves training independent
spatial and temporal networks whose classification scores are fused to give the final
prediction. Deep learning methods have also been extended to estimating poses in
images and videos. The task of pose estimation involves estimating the locations of body
parts. [72] uses a deep neural network based regressor to estimate the coordinates of the
parts. The model is recursively applied on patches cropped around the previous
prediction to obtain better localisation. In [57], a deep convolutional neural network is
used to predict heat maps for the location of each body part. The model also uses a spatial
fusion technique to capture multi-scale information.

Actions and Poses are very closely related concepts. An action comprises of a sequence
of poses in conjunction with interactions with the environment. Videos are a widely
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available and rich source of actions. As a consequence, they are also the best source for
diverse human poses. In [9], a large collection of unlabelled video is searched to augment
training data by finding similar poses using the poselet activation vector[49]. To the best
of our knowledge, the approach proposed in this paper is the first in attempting to learn
pose features from videos using deep networks in an unsupervised fashion.

2.3 Approach

The goal of this paper is to learn an appearance representation that captures pose
properties without the use of any human supervision. We achieve this by formulating a
surrogate task for which the ground truth labels are readily available or can be mined
automatically. In simple terms, given a change in appearance, the task we formulate
involves predicting what transformation causes it. For example, in Figure 2.3.1, given the
appearance of Frame 1 and Frame13, we can predict that the transformation of ‘swinging
the bat’ caused the change in appearance. In this section, we first develop an intuitive
motivation for the surrogate task and then concretely explain how it can be implemented.

Suppose we want to train a model to predict if a TransformationT causes the change in
Appearance A → A′. We would need to have a robust way to encode A,A′ andT such
that they capture all the information required to solve this task. More specifically, given
an image, the appearance representation A needs to localise the object(s) that could
undergo a transformation and encode its properties such as shape, size and more
importantly, pose. On the other hand, given a motion signal (like optical flow, dense
trajectories [75, 77], etc), the transformation representationT needs to express a robust
encoding that is discriminative in the space of transformations.

We propose to learn the appearance representation A using a convolutional neural
network (Appearance ConvNet in Figure 2.3.1). We choose to use optical flow maps as
the motion signal in our proposed approach. There are a large variety of existing methods
like 3dHOG and HOF [8, 75] which can be used to extract an encoding for the optical
flow maps. These methods first extract local descriptors in the volume of optical flow
maps, and this is generally followed by a bag-of-words model to generate a feature vector.
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Appearance ConvNet

Motion ConvNet

A

A’

T

13 Frames
Frame 1

224x224x3

Optical Flow Maps
224x224x24

Frame 13
224x224x3

VGG-M-2048

Figure 2.3.1: An overview of our approach. Predicting whether a transformation en-
coding T causes the change in appearance A→A’ requires capturing pose properties.

Instead of using these hand-crafted approaches, we propose to jointly learn the motion
representation as a TransformationT using a separate convolutional neural network
(Motion ConvNet in Figure 2.3.1). The idea of using two independent networks to
represent appearance and motion is very similar to the Two-Stream Network [62] which
recently achieved accuracies very close to state-of-the-art in action recognition. The
Appearance ConvNet takes as input an RGB image and outputs a feature vector.
Similarly, the Motion ConvNet takes as input a stack optical flow maps as input and
outputs a feature vector.

We propose an unsupervised approach to jointly train the Appearance and Motion
ConvNets. The key idea of our approach is that given two appearance featuresA andA′, it
should be possible to predict whether a TransformationT causes the change A → A′.
This idea is synchronous with [36], where the notion of ego-motions producing
predictable transformations is used to learn an unsupervised model.
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Following this intuition, for a video snippet i, we extract appearance features for Frame
n (Ai(n)) and Frame n+ Δn (Ai(n+ Δn)) using the Appearance ConvNet. We then
extract motion features for Δn optical flow maps for Frames k to k+ Δn from a random
video snippet j (Tj(k, k+ Δn)) using the Motion ConvNet. We then use two fully
connected layers on top of the three concatenated features to predict whether the
transformationTj(k, k+ Δn) could cause the change Ai(n) → Ai(n+ Δn) i.e.

Tj(k, k+ Δn) = Ti(n, n+ Δn)

We randomly (and automatically) sample i,n,j, k and keep Δn fixed. This makes the
positive and negative labels readily available i.e. the positive examples are the triplet
samples where i = j and n = k. All the others samples could be treated as negatives, but
to account for videos with repetitive actions (like walking), we mine negatives from other
videos i.e. we do not use samples where i = j and n ̸= k. Fixing Δn to a constant value is
necessary since we need to fix the filter size in the first layer of the Motion ConvNet.

In summary, the joint unsupervised learning pipeline consists of one Motion
ConvNet, two instances of the Appearance ConvNet and a two-layer fully connected
neural network on top. The parameters of the two Appearance ConvNets are shared since
we expect both networks to encode similar properties. Overall the joint system of three
neural networks can be treated as one large neural network. This allows us to use
standard back propagation to train all the components simultaneously.

Implementation Details

In our experiments, we fix Δn = 12 i.e. we sample pairs of frames which are separated by
12 frames. We follow the VGG-M architecture for the Appearance ConvNet and Motion
ConvNet till the FC6 layer. The only difference is the size of Conv1 filters in the Motion
ConvNet which has 24 channels instead of 3 to accommodate convolution on 24 optical
flow maps (12 in the x-direction and 12 in the y direction). This gives us a
4096-dimensional vector representation for each of A, A′ andT. We then concatenate the
three feature vectors to get a 12288 dimensional vector and use a fully connected neural
network to perform the binary classification. The first fully-connected layer has 4096
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output neurons followed by second fully connected layer with 2 output neurons. A
softmax classifier is then used to predict the binary labels.

Patch and Optical Flow Mining

In order to train the binary classification model, we require a large collection of pairs of
frames, the correct block of optical flow maps between them and multiple negative
samples of optical flow blocks. As the training set, we use a large collection of video
which contain humans performing actions. This set is formed by combining the training
set videos from the UCF101 [65](split1), HMDB51 [47] (split1) and the ACT[79]
datasets. For every pair of consecutive frames we precompute the horizontal and vertical
directional optical flow maps using the OpenCV GPU implementation of the TVL1
algorithm[50].

As inputs to the Appearance ConvNet we randomly sample a spatial location and crop
224x224 patches at that location from two frames separated by Δn(= 12) frames. For the
Motion ConvNet, we sample the 224x224 patches from each of the 12 horizontal and 12
vertical flow maps in between the two sampled frames at the same location, as the
positive (label= 1) which gives us a 224x224x24 dimensional array. As the negative
examples (label= 0), we randomly sample another 224x224x24 block from a random
spatial location in a randomly picked video. During training, we pick the negatives from
the same batch in the mini-batch stochastic gradient descent procedure and ensure that
negative flow blocks are not picked from the same video as the appearance frames. We
also augment the training data by randomly applying a horizontal flip on a (Frame n,
Frame n+Δn, Optical Flow Block) triplet. Since all motion signals alsomake sense in the
reverse direction temporally (they do not necessarily hold any semantic value), we also
randomly reverse some triplets i.e. (Frame n+ Δn, Frame n, reversed optical flow block).

For the joint training procedure, we use a batchsize of 128 i.e. 128 pairs of patches. The
SoftMax Loss is used to compute the errors to train the network. We initially set the
learning rate to 10−3, momentum to 0.9 and train for 75,000 iterations. We then reduce
the learning rate to 10−4 and train for 25,000 iterations. At convergence, the joint system
performs around 96% on the formulated binary classification task for a held out
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validation set (note that the baseline performance is 66% since we have two negatives for
each positive).

2.4 Experiments

The efficacy of unsupervised feature representation learning methods are generally tested
on tasks for which the learnt representation might prove useful. First, the learnt
representations are finetuned for the task using either the full labelled dataset (generally
trained for a small number of iterations) or a small subset of the training set. Then these
finetuned models are tested to provide evidence for the transferable nature of the
representation learnt.

We follow a similar strategy and perform an extensive evaluation of our unsupervised
model to investigate the transferability of the learned features. In order to build a better
understanding of what the models learn, we first perform a qualitative analysis of the
models. As explained before, since our unsupervised model is trained on action videos,
this leads to an appearance representation (Appearance ConvNet) that is expected to
capture pose properties well. Feature representations that capture pose properties are
valuable for estimating human poses. Another domain where pose information proves
immensely useful [9, 15, 49, 82] is recognizing human actions since any action involves a
series of poses. Following this intuition, we test our learned representation for the Pose
Estimation and Action Recognition tasks.

We also compare our method to two popular and recent unsupervised representation
learning methods which also attempt to learn from videos. The results demonstrate the
superiority of our learnt representation for these tasks. The first unsupervised model,
proposed by Wang et. al in [78], involves enforcing the constraint that two transformed
versions of the same object (different viewpoint, pose, size, etc) needs to represent the
same point in the feature space. This leads to a feature representation that is invariant to
pose, shape and size changes. The second model, proposed in [37], involves enforcing
temporal coherence in the feature space by imposing a prior on the higher order
derivatives to be small. This is trained jointly with the classification loss for the
supervised task. We compare to this model since it is the most recently introduced
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unsupervised technique for videos.

2.4.1 Qualitative analysis of learned models

The first layer of a convolutional neural network is often visualised to verify that the
network learns meaningful representations. We present the visualisations of the 96 filters
in the first convolutional layer of the Appearance ConvNets in Figure 2.4.1. Clearly, the
visualisation shows that the filters learn to model gradient like features.

We investigate the pose capturing capability of the learned unsupervised
representation in the Appearance ConvNet by visualising closest pairs in the FC6 feature
space. We first compute the appearance features for all image in the Leeds Sports
Pose(LSP) dataset [40]. We randomly sample images and find the closest image in the
rest of the dataset use the Euclidean distance between the appearance features extracted.
We present these closest pairs in Figure 2.4.2. From these pairs, it is evident that the
Appearance ConvNet is able to match poses reasonably well. This observation suggests
that the Appearance ConvNet indeed attempts to capture the pose properties of humans.

Figure 2.4.1: Visualisations of filters in the first convolution layer in the Appearance
ConvNet.

2.4.2 Pose Estimation

The task of estimating human poses from videos and images is an important problem to
be solved and has received widespread attention. In its most simple form, the task is
defined as correctly localising the joints of the human. Computer vision research
focusing on pose estimation has given rise to a large number benchmark which contain
videos and images [2, 57, 70] with their annotated joints. We evaluate the efficacy of our
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Figure 2.4.2: Closest image pairs in the FC6 feature space of the Appearance Con-
vNet.

learnt Appearance ConvNet by testing it for estimating human poses in the Frames
Labelled in Cinema (FLIC) dataset [70]. This dataset contains 5003 images with the
annotated joints collected using crowd-sourcing. The train and test splits contain 3987
and 1016 images respectively.

We design a simple deep learning based pose estimation architecture to allow us the
freedom to accommodate other unsupervised models. This also improves interpretability
of the results by minimising the interference of complementary factors on the
performance. Figure 2.4.3 presents an overview of the architecture we use to perform
pose estimation (referred as Pose ConvNet). We copy the VGG-M[7] architecture till
the fifth convolution layer (Conv5). This is followed by a deconvolution layer to upscale
the feature maps. Then 1x1 convolutions are used to predict heat maps for each body
point to be estimated. This network architecture is partly inspired from [71]. The
predicted heat maps are 60x60 dimensional. The FLIC dataset contains annotations for
the (x, y) coordinates of 9 points on the body (nose, shoulders, elbows, hips and wrists).
Hence our architecture uses nine separate 1x1 convolutional filters in the last layer to
predict the heat maps for each annotated point.
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60x60
Nose Heat Map

Deconvolution

1x1 
Convolution

256x256 Image

Figure 2.4.3: Architecture of the pose estimation network. First 5 layers copied from
VGG-M, followed by a deconvolution layer. A 1x1 convolution layer is then used to
predict each output heat map.

Preprocessing

Since the task we are evaluating is pose estimation (and not detection), we first need to
crop the images around the annotated human. We do this by expanding the torso ground
truth box by a fixed scale on all images. We then rescale all cropped images to 256x256.
For each of the new cropped and rescaled images, we generate nine 60x60 ground truth
heat maps, one for each of the joints. The heat map values are scaled between [-1,1] such
that -1 represents background and +1 represents the presence of a body part. These
ground truth heat maps are used to train the convolutional neural network. Since each
ground truth heat map has only one positively activated pixel, the data is not sufficient to
train the whole neural network. So we augment the data by activating a 3x3
neighbourhood in the heat maps.

Training

We use the Euclidean loss to compute the error signal for each output heat map in the
Pose ConvNet. Since we have 9 ground truth heat maps, we have access to 9 error signals.
We use standard backpropagation to train the network and average the gradients from all
the nine euclidean losses. Training the Pose ConvNet directly using this procedure
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converges at predicting all pixels as -1 in the heat maps since the number of positive pixels
are still very small in the ground truth. In order to overcome this, we reweigh the gradient
w.r.t. a positive ground truth pixel by the inverse of number of total number of positive
pixels and similarly for the negative pixels. This ensures that the sum of gradients for the
positive pixels is equal to the sum of gradients for the negative pixels.

Evaluation

The trained Pose ConvNet maps are used to generate body part heat maps for each of the
test images in the FLIC dataset. The highest scoring 20 pixels are identified in each heat
map and the location of the centroid of these pixels is used as the prediction for that body
part. Various evaluation metrics have been studied in the past for evaluating pose
estimations methods [10, 58, 72]. We report accuracies using the Strict Percentage of
Correct Parts(PCP) and the Percentage of Detected Joints (PDJ) metrics. We use the
code made available by [10] to compute these metrics.

We train four models using the Pose ConvNet architecture to investigate the strength
and transferability of our unsupervised representation. We test our unsupervised
Appearance ConvNet by copying parameters to the first five convolutional layers of the
Pose ConvNet and randomly initialising the last two layers. We then finetune the model
on the training data from the FLIC dataset. We follow a similar procedure for the baseline
model [78]. We also train an instance of the Pose ConvNet from scratch with random
initialisation to compare with our model. The Strict PCP accuracies for these models are
presented in Table 2.4.1 and the PDJ accuracies at varying precision values is presented in
Table 2.4.2. The Appearance ConvNet beats the accuracy of the randomly initialised
baseline by a large margin indicating that the Appearance ConvNet indeed learns a
representation useful for Pose Estimation. We also observe a significant increase over the
baseline unsupervised model [78] suggesting that the representation learnt by the
Appearance ConvNet encodes properties not captured in the baseline. Surprisingly, we
observe that when the Pose ConvNet is initialised with a model trained to perform action
classification on the UCF101 dataset, it performs worse than random initialisation. This
suggests the invariances learned due to semantic action supervision are not the right
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invariances for pose-estimation. Therefore, using an unsupervised model leads to
unbiased and stronger results. In our experiments, we also observe that using Batch
Normalization[35] while training the Pose ConvNet initialised with Appearance
ConvNet leads to a very narrow increase in performance ( 1.5% in PCP).

Table 2.4.1: Results for the Strict PCP Evaluation for Pose Estimation on the FLIC
Dataset

Body Part
Initialisation Upper Arms Lower Arms

Random 51.9 19.3
Wang et. al Unsupervised[78] 52.8 19.7
UCF101 Action Classification Pretrained 46.7 17.8
Ours 57.1 24.4

ImageNet Classification Pretrained 65.6 34.3

Table 2.4.2: Results for the PDJ Evaluation for Pose Estimation on the FLIC
Dataset

Elbow Wrist
Initialisation Precision→ 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4

Random 20.0 47.3 63.9 74.8 17.2 36.1 49.6 60.8
UCF101 Pretrained 18.5 44.8 61.0 71.1 16.5 34.8 45.2 53.2
Wang et. al Unsupervised[78] 23.0 48.3 66.5 77.6 19.1 36.6 46.7 55.1
Ours 28.0 54.6 68.8 77.6 20.1 40.0 51.6 60.8

ImageNet Pretrained 34.8 62.0 74.7 82.1 29.0 48.5 59.3 66.7

2.4.3 Action Recognition

For the task of action recognition, we use the UCF101 and HMDB51 datasets. We test
on split1 for both datasets since we use the same split to train our unsupervised models.
UCF101 consists of 9537 train and 3783 test videos, each of which shows one of 101
actions. The HMDB51 dataset is a considerably smaller dataset which contains 3570
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train and 1530 test videos and 51 possible actions. Due to the size of the HMDB51
dataset, overfitting issues are accentuated. Therefore, training deep models from scratch
on this dataset is extremely difficult. In [62], the authors suggest multiple data
augmentation techniques to alleviate these issues. In our experiments, we witnessed that
initialising from our unsupervised model also helps in overcoming this issue to a certain
extent which is reflected in the results. We also compare our results to [78] as before.

Similar to the Pose ConvNet, we use the Appearance ConvNet as an initialisation for
action recognition to investigate its performance. We use the same architecture as the
Appearance ConvNet(VGG-M till FC6) followed by two randomly initialised
fully-connected layers at the end to perform classification. The first fully-connected layer
has 2048 output neurons, and the second fully-connected has 101 output neurons for
classification on UCF101 and 51 output neurons for classification on HMDB51.The
softmax classification loss is used to train the action classification network. The input to
the network is a random 224x224 crop from any frame in the video. During training, we
use a batch size of 256, which gives us 256 crops of dimension 224x224 sampled from
random videos. After intialising with the appropriate parameters, we train the whole
model for 14k iterations using learning rate as 10−3 and for another 6k iterations using
learning rate as 10−4.

UCF101 And HMDB51

For testing the network, we uniformly sample 25 frames from the test video. From each
of the 25 frames, we sample 224x224 crops from the corners and the center. We also
generate flipped versions of each of these samples giving us 250 samples per video. We
compute the predictions for each of the samples and average them across all samples for a
video to get the final prediction. The classification accuracies on both datasets are
reported in Table 2.4.3. We also present the results achieved by [62] for training from
scratch and training from a network pretrained on ImageNet for classification. The results
reflect improvement over training from random initialisation by significant margins -
12.3% on UCF101 and 7.2% on HMDB51. This clearly indicates that the Appearance
ConvNet encodes transferable appearance features which are also useful for action
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Table 2.4.3: Results for the Appearance Based action recognition on UCF101 and
HMDB51

Dataset
Initialisation Finetuning/Training UCF101 HMDB51

Random Full Network 42.5% 15.1%
Wang et. al Unsupervised[78] Full Network 41.5% 16.9%
Ours Full Network 55.4% 23.6%
Ours Last 2 layers 41.4% 19.1%

ImageNet Full Network 70.8% 40.5%

recognition. Surprisingly, finetuning just the last 2 fully connected layers also beats
training from scratch on HMDB51 and scores comparably on the UCF101 dataset. This
further emphasises the transferable nature of the Appearance ConvNet.

2.4.4 Static Image PASCAL Action Classification

For the second baseline model [37], classification accuracies are reported on the Pascal
Action Classification dataset. The task involves classifying static images into one of the 10
action classes. The experiment used in [37], involves training the model using just 50
randomly sampled training images while simultaneously enforcing the prior they
formulate. To allow fair comparison, we finetune our Appearance ConvNet using 50
randomly sampled images. We train an action classification network similar to the
network described above but with 10 output neurons. The results for this experiment are
reported in Table 2.4.4. The Appearance ConvNet shows an improvement of 2.5% over
[37] on this task.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Morbi commodo, ipsum
sed pharetra gravida, orci magna rhoncus neque, id pulvinar odio lorem non turpis.
Nullam sit amet enim. Suspendisse id velit vitae ligula volutpat condimentum. Aliquam
erat volutpat. Sed quis velit. Nulla facilisi. Nulla libero. Vivamus pharetra posuere sapien.
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Table 2.4.4: Results for action recognition accuracy in static images using just 50
randomly sampled training images from PASCAL VOC2010 dataset (mean over 5
runs)

Method Accuracy

Random Initialisation (taken from [37]) 15.34%
SSFA[37] 20.95%
Appearance ConvNet initialisation 22.7%

Nam consectetuer. Sed aliquam, nunc eget euismod ullamcorper, lectus nunc
ullamcorper orci, fermentum bibendum enim nibh eget ipsum. Donec porttitor ligula eu
dolor. Maecenas vitae nulla consequat libero cursus venenatis. Nam magna enim,
accumsan eu, blandit sed, blandit a, eros.
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3
Web&Turk: Constraint-transfer forWeakly

SupervisedObjectDetection

3.1 Introduction

The collection of large annotated datasets of visual data has been the backbone for the
recent success of computer vision algorithms. However, the process of collecting detailed
annotations such as bounding boxes is often very expensive and time consuming. For
example, annotating bounding boxes in images is known to be extremely time consuming
with an average of 26-42 seconds per bounding-box on average [66]. Therefore, in recent
years, there has been focus on moving from full-supervision to weaker forms of
supervision such as image labels which are significantly cheaper to obtain. These
image-level labels can be either annotated by humans (classic weakly-supervised) or
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Figure 3.1.1: We propose a constrained-web and constrained-weakly supervised ap-
proach for training object detectors. Our approach uses web domain for leveraging the
strong domain constraints to bootstrap the learning of detectors. These detectors are
then learned to fine-tune on in-domain weakly supervised approaches which in turn
improves the appearance constraints in the web domain.

extracted using web signals (web-supervised).
Both weak human-supervision and web-supervision have pros and cons. In weak

human-supervision, there is no noise at image level labels. The domain shift between
labeling and target domain can be also controlled by hand-picking images from the target
domain for labeling. On the other hand, in case of web-supervision there is significant
noise in the labeling and the domain shift is huge and often not under control. However,
the amount of available data with free labels is enormous and often has some easy
examples [11, 61] (object in focus with little or no background clutter). So, if our
end-goal is to train the object detectors with least amount of annotations, what should be
the right strategy? What is the right data to use for training the detectors?

In this paper, we exploit the advantages of both the domains to tackle the problem of
weakly supervised learning. First, we make an observation that in the classic setting
WSOD approaches end up learning to localize the most discriminative patches which
might be a part of the object, or groups of the same object [4, 5, 29]. For example, for the
class label ‘dog’, the models may localize the head of a dog since it always co-occurs with
the ‘dog’ label. What we need is some extra constraint or knowledge to focus the
attention on the right areas for learning.

Since we want to avoid additional human effort, do any such constraints exist that can
be inferred without human annotations? Interestingly, we observe that while the easy
images from web-supervision do not look realistic (Figure 3.1.2), there is a strong size
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constraint that can be applied while localizing the object (introduced in Section 3.3.3).
We use this constraint to localize objects in web-domain and learn an appearance model
for localization under these constraints. The learned appearance model can in turn be
used to initialize Weakly Supervised Learning (WSL) in the target domain. On the other
hand, the model trained in the weakly supervised setting learns to identify discriminative
patches. Since the size constraint does not account for appearance, the WSL based model
can in turn be used to create constraints that can also account for ‘discriminative-ness’.
Using this alternating strategy, we learn to transfer appearance constraints across domains
while training for the goal of localizing objects.

In our experiments, we first observe that our proposed constrained learning approach
not only outperforms methods using web-supervision, but also surprisingly achieves
performances comparable to its weakly-supervised counterpart. We then show that our
web-supervised framework can be used to augment training with weak supervision and
no additional human effort. To the best of our knowledge, our proposed joint training
approach also outperforms previous Weakly Supervised Object Detection (WSOD)
methods on PASCAL VOC 2007.

In summary, our contributions are: (a) Learning localization of objects by transferring
constraints across domains; (b) Formulating an approach for learning under constraints
for WSOD; (c) Presenting a novel approach that combines web and weak-supervision
that leads to the state of art performance on VOC2007 without any bounding box labels.

3.2 RelatedWork

Over the last decade, a lot of research efforts have focused on the problem of
WSOD [5, 13, 29, 54, 74, 84]. Most approaches treat the task as a Multiple Instance
Learning (MIL) [18, 63] problem, where each image is represented as a bag of object
proposals. The underlying concept is that the image-level label indicates that the bag of
regions contains at least one positive region corresponding to the label. For each class, all
regions from the images not containing the label can be considered negatives. Therefore,
detectors are trained by alternating between optimizing the parameters of the detector
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Figure 3.1.2: Learning localization in both domains has pros and cons. We propose
an approach to make the best use of both domains.

and picking the best region from each bag. It is observed that MIL based approaches for
weakly supervised object detection are extremely susceptible to the initialization. This
leads to a lot of research efforts for intelligent initialization [17, 64] or multi-folding [29].

The advances in deep-learning has also inspired MIL based approaches which leverage
convolutional neural network architectures as the object detector [55, 68, 85]. In [55],
the authors investigate whether convolutional neural networks trained to perform image
classification implicitly model the localization of objects. They use fully-convolutional
networks in order to preserve the spatial correspondence to the inputs. While they show
that such a framework does a good job in point-localization of objects, its performance on
bounding box predictions is not as competitive. Recently, a novel architecture called the
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Weakly Supervised Deep Detection Networks (WSDDN) [4] was proposed for jointly
optimizing classification of region proposals and ranking of regions for each class. This
architecture outperforms previous methods for weak supervision by large margins. We
use the WSDDN architecture as a part of our proposed framework and explain it in
greater detail in Section 2.3.

The key challenge that these approaches still face is that WSOD is an inherently
ambiguous task. There are usually numerous patches whose occurrences correlate with
the presence of some label. Most approaches end up localizing on one of these possible
solutions which is manifested as detection of parts of objects. Numerous works have
identified this issue and proposed approaches to overcome this shortcoming.
ContextLocNet [42] builds on the WSDDN framework, by adding additional streams to
capture the surrounding context for each region. Since we use the WSDDN framework as
our base model, we believe that our proposed formulation can also be extended to the
ContextLocNet framework. In [61], an estimate of the size of an object is used to guide
the weakly supervised learning in anMIL framework and shows impressive results. While
this works well, the learning of a regressor for size estimates requires additional annotated
data. Our proposed framework also leverages the size bias in web-images but does not
require any human supervision.

The ability to train computer vision models automatically on web data would
dramatically reduce the need for human effort in annotation. This makes it an appealing
research avenue in computer vision. In [12], web-data downloaded from Google and
Flickr is used to build a knowledge base by automatically mining patterns in the visual
data. [19] also proposes an approach to automatically extract visual knowledge from the
web and learns to detect a wide range of variance associated with a query. In [11], an
approach is proposed to train object detectors purely using web data. Mining web data
has also been used in various other domains in computer vision like action recognition
[25, 41, 53, 81]. A common observation among these works is that these approaches do
not transfer directly to the domain of natural images. Especially, models that overfit to the
domain bias in web images see a drop in performance when deployed in the wild. This is
very frequently the case with deep neural networks trained on web-data [11]. In contrast
to this, we propose to exploit the domain bias in web-images to guide the weakly
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supervised learning process.
The issue of transferability across domains not only exists in web images, but is also

observed in other domains in computer vision. For example, the domain of rendered
images, paintings, clipart etc. cannot be directly used to train models for deployment in
the world. Since this is such a commonly encountered impediment, a lot of focus has
been given to address this problem of domain adaptation [3, 14, 22, 30–32, 60, 67]. For
example, Saenko et al. [60] address domain adaptation using metric learning approaches,
and Gong et al. [30] propose to use geodesic flow kernel for unsupervised domain
adaptation. To utilize web images, Bergamo and Torresani [3] adapt object classifiers
learned from web images to target datasets with object-centric images. Sun et al. [67] and
Duan et al. [22] propose to train video classifiers by domain transfer from web images.
More recently, Tzeng et al. [73] show that convolutional neural network can learn
domain-invariance features by introducing domain confusion losses. Gupta et al. [34]
propose a cross modal distillation framework to learn visual representations for a new
modality from visual representations from existing modalities.

3.3 Approach

We now describe our constraint-transfer approach for weakly supervised learning. First,
we explain the preliminaries of weakly supervised learning and the base WSDDN model
on which our approach builds upon. We then introduce the constrained setting and also
introduce the web-supervised regime where the original constraints hold. Finally, we
explain how to transfer the constraints and jointly perform the learning using both weakly
and web-supervised data. We will also present the implementation details for facilitating
replication of our experiments. The code for all the experiments shall also be made
publicly available.

3.3.1 Preliminaries: Weakly-supervised learning

In the weakly supervised setting, we have access to image-level labels for each image
indicating the presence or absence of objects of each class. The dataset of images can be
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Figure 3.3.1: An overview of the Weakly Supervised Deep Detection Networks (WS-
DDN) [4] augmented with our domain specific training approach for transferring con-
straints across domains.

formally represented as a set of image and label vector pairs:
D = {(I1, y1), (I2, y2)...(IN, yN)}where I represents an image and y ∈ {0, 1}Ncls

represents a one-hot encoding of the object classes present in the image. Generally, since
our goal is to learn to localize objects, we represent each image as a set of multiple
overlapping candidate regions. For example, in our implementations, we extract region
proposals using EdgeBoxes [86]. In [86], low level cues are used to generate a set of
candidate boxes for object detection. Therefore, we can represent each image as a bag of
region proposals: I(i) = {R(i)

1 ,R(i)
2 , ...,R(i)

N(i)
r
}whereN(i)

r is the number of region
proposals extracted for the ith image.

In this setting, the task of training an object detector involves learning a scoring
function S(yk = 1,R(i)

p ) to score the association of a given region R(i)
p with object class k.

Intuitively, the goal is to learn to identify discriminative patches whose occurrence
correlates with the presence of class k. There have been several approaches in the past that
focus on learning this scoring function directly from the image-level labels. Our approach
builds upon the WSDDN framework which we now describe.

Weakly-supervised Deep Detection Networks

The base model used in [4] is a Convolutional Neural Network (CNN) with an
architecture that overlaps significantly with the popular object detection model
Fast-RCNN [27]. In Figure 3.3.1, we present an overview of the network architecture.
Each image I is first processed using a series of Convolution, ReLu and Pooling operators
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leading to a spatial feature map. Given a region proposal Ri in the image, the
corresponding region in the feature map can be extracted. These extracted feature maps
can be projected to a fixed dimension by performing an adaptive pooling operation. This
operation of extracting a feature of fixed dimension for each region proposal is commonly
referred to as RoIPooling (proposed in [27]). Followed by RoI Pooling, we apply fully
connected layers to finally yield a feature vectorFFC(I,Ri). Note we represent all the
parameters in the CNN leading toFFC by . In [27], the training is done using bounding
box labels. However, in weakly-supervised case, we do not have labels at the level of
bounding boxes. Therefore, [4, 42] use a two-stream architecture to train involving one
classification stream and a localization stream.

The classification stream, consisting of a linear layer with parametersWcls ∈ RNFC×Ncls

and a softmax function, generates a probability distribution over classes for each region
proposal as:

Pcls(yk=1 | I,Ri) =
exp

(
[Wcls]∗,k

T FFC(I,Ri)
)

∑Ncls
j=1 exp

(
[Wcls]∗,j

T FFC(I,Ri)
)

On the other hand, the localization stream also consists of a linear layer with parameters
Wloc ∈ RNFC×Ncls and a softmax function, but generates a probability distribution over
region proposals for each class. Hence it is trying to ‘localize’ the best region for each
class.

Pdet(R∗=Ri | I, yk=1) =
exp

(
[Wloc]∗,k

T FFC(I,Ri)
)

∑Nr
j=1 exp

(
[Wloc]∗,k

T FFC(I,Rj)
)

The final prediction score for each region proposal is the element-wise product of the
classification and localization streams. We shall ignore the conditioning on I for ease of
notation.

S(yk=1,R∗=Ri) = Pcls(yk=1 | Ri) ∗ Ploc(R∗=Ri | yk=1)

We can also obtain the image-wise class label by summing the scores over all regions.
Therefore, P̂(yk) =

∑Nr
i=1 S(yk=1,R

∗=Ri)where P̂(yk) is the score for the image-level
class label. For training the network using backpropagation, we compute the loss between
the predicted class labels with ground truth labels using the binary cross entropy loss

xxxv



(LBCE).

Issues with WSOD

Learning a scoring function without bounding box labels is that this is an inherently
ambiguous task. For the occurrence of a class label, there could be multiple (possibly
overlapping) patches that can associate and provide a discriminative signal. For example,
Figure 3.4.1 (red dashed boxes) shows some localization errors using the WSDDN
approach described above. Such errors where parts of object or groups of objects are
labeled as whole object is very common in weakly-supervised learning. What we need is
some strong prior or constraint to restrict the search space.

3.3.2 A New Domain: Web-supervised

Obtaining constraints in an unrestricted domain like VOC [24] or COCO [48] is
extremely difficult. However, there might be other domains, where due to the domain
bias, some constraints might exist. In this paper, we propose an approach to leverage the
domain bias in web images to identify the extent of objects. Downloading images by
querying the web also gives us access to weak labels since the query can be used as the
label. Therefore, in our cross-domain setting, we have access to another freely available
dataset for weak supervision which we represent as
D′ = {(I ′1, y1), (I ′2, y2)...(I ′N, yN)}. In Figure 3.1.2, we present samples from both
domains and present the key pros and cons of each domain for learning localization.

From Figure 3.1.2, it is evident that there is a noticeable difference between the type of
images in both domains. In particular, the images from the web possess a characteristic
domain bias of cleaner backgrounds and large centered objects. This domain bias has
been shown to cause a negative effect on computer vision models trained on data
automatically downloaded from the web [11]. We now show how this domain bias can in
fact be exploited to guide the weakly supervised learning.
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3.3.3 Web Constraints for WSOD

The model presented so far simply tries to localize the regions that maximize the
classification and localization scores. In Section 3.4.5, we show qualitatively that this
model very frequently localizes on parts/groups of objects. What is missing in these
models is a guiding force that helps improve the tightness of a bounding box around an
object. In this section, we propose an approach to leverage the domain bias in web images
as this guiding force.

We have previously observed that images downloaded by querying the web often
consist of a large centered object with minimal clutter in the background (see
Figure 3.1.2). We first construct a simple prior based on the size of region proposals to
favor larger predictions on web images. For a set of region proposals {R′1,R′2, ...,R′Nr

} in a
web image image I′, we define the prior as:

Ppr(R∗=Ri) =
area(Ri)∑Nr
j=1 area(Rj)

As explained in Section 3.3.1, the localization stream of WSDDN localizes an object class
by generating a probability distribution over the region proposals for each class.
Intuitively, we want the localization stream to favor larger objects on web images, in order
to avoid localizing on parts of objects. To achieve this, we guide the localization stream by
minimizing the distance between the predicted distribution Ploc and the prior Ppr. We
formulate this as a minimization of the KL-divergence between the two distributions:

Lcons(I′, y) =
Ncls∑
k=1

yk DKL

(
Ppr(R∗)

∣∣∣∣∣∣ Ploc(R∗ | yk=1)
)

The above constraint is fairly strong since it does not account for the ‘discriminative-ness’
of the appearance of regions. We also observed in our experiments, that training our joint
model (described in Section 3.3.4) using the above formulation led to degenerate
solutions. This occurs possibly because the model quickly learns to imitate the prior since
the target distribution Ppr doesn’t depend on the appearance of the regions.

In order to retain the appearance information, we need to create a constraint which
also accounts for the correlation of a region with a specific class. The model learned for
localization using the binary cross entropy loss, possesses a weak estimate of this
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correlation. More specifically, the predicted distribution Ploc ranks the regions based on
the association with the class label. Therefore, we first infuse the predicted distribution
Ploc into the prior and use the new distribution to guide the localization. In this way, we
transfer the appearance ‘discriminative-ness’ from the target domain back to the
web-domain. Intuitively, the predicted distribution Ploc is first perturbed by
incorporating the prior knowledge Ppr, and the new distribution is used as the target. This
leads to the following formulation:

Pnewpr (R∗=Ri | yk=1) =
Ploc(R∗=Ri | yk=1) ∗ area(Ri)∑Nr
j=1 Ploc(R∗=Rj | yk=1) ∗ area(Rj)

Lcons(I′, y) =
Ncls∑
k=1

yk DKL

(
Pnewpr (R∗ | yk=1)

∣∣∣∣∣∣ Ploc(R∗ | yk=1)
)

Note that in the computation of the gradient ofLcons for back-propagation, we treat
Pnewpr (R∗ | yk=1) as a constant target distribution.

Algorithm 1: Joint Constrained Training of WSOD
Initialize θ,Wcls,Wloc;
InitializeDBCE ⊆ D ∪D′;
InitializeDcons ⊆ D′;
while not converged do

for i = 1 : BCEiter do
I, y← sample(DBCE);

θ ← θ − η ∗
∂LBCE(I, y)

∂θ
;

Wcls ← Wcls − η ∗
∂LBCE(I, y)

∂Wcls
;

Wloc ← Wloc − η ∗
∂LBCE(I, y)

∂Wloc
;

end
for i = 1 : CONSiter do

I, y← sample(Dcons);

Wloc ← Wloc − η ∗
∂Lcons(I, y)

∂Wloc
;

end
end
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Table 3.4.1: Average precision results for detection on Pascal VOC2007 test set us-
ing only data downloaded from the web.

Method plane bicycle bird boat bottle bus car cat chair cow table dog horse mbik man plant sheep sofa train TV mean
DBCE Constrained Init

a Web 40.6 37.2 28.1 26.2 11.6 51.5 31.7 28.0 11.0 27.6 12.1 15.3 34.9 41.1 10.8 13.7 28.0 32.8 43.3 25.6 27.6
b Web " 44.5 36.4 28.7 27.3 11.2 51.9 43.6 36.9 10.9 22.7 12.6 32.5 38.6 44.6 14.7 12.9 26.0 24.8 43.6 26.4 29.5

LEVAN 14 36.2 12.5 10.3 9.2 35.0 35.9 8.4 10.0 17.5 6.5 12.9 30.6 27.5 6.0 1.5 18.8 10.3 23.5 16.4 17.1
Webly Supervised 30.2 41.3 21.7 18.3 9.2 44.3 32.2 25.5 9.8 21.5 10.4 26.7 27.3 42.8 12.6 13.3 20.4 20.9 36.2 22.8 24.4

3.3.4 Joint Constrained Training for WSOD

The goal of this work is to transfer knowledge about localization from the web-domain to
the domain of images with weak-supervision. We propose a joint training framework that
combines the size constraint on web-domain with the weak-learning from both web and
weak-supervision domain. It is important to note that the constraint lossLcons makes
sense only for images belonging to the web-domain. So jointly optimizing both
objectives cannot be achieved by simply optimizing the sum of the loss functions for all
the data. Instead, we create two sets of samples with weak supervisionDBCE ⊆ D ∪D′

andDcons ⊆ D′. The training is done using an alternating optimization by minimizing
LBCE onDBCE and separately minimizingLcons onDcons using Stochastic Gradient
Descent (SGD) in turns. In our experiments, we observed that, while minimizingLcons, it
is important to fix the parameters of the CNN θ except parameters of the localization
streamWloc. We hypothesize that this is necessary since otherwise the network is
encouraged to learn low-level domain specific cues to minimize the domain specific loss
Lcons. In Algorithm 1, we summarize the strategy we propose for sampling and
alternating between the two objectives to update the parameters of the weakly supervised
object detector.
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Table 3.4.2: Average precision results for detection on Pascal VOC2007 trainval set
using only data downloaded from the web.

Method plane bicycle bird boat bottle bus car cat chair cow table dog horse mbik man plant sheep sofa train TV mean
DBCE Constrained Init

a Web 41.7 27.7 30.3 24.9 11.8 46.2 29.0 23.7 3.9 27.0 11.7 15.1 38.0 44.6 10.3 12.8 20.0 30.4 42.8 22.9 25.7
b Web " 49.2 27.7 31.3 21.9 11.4 48.0 39.1 39.3 4.6 24.0 12.4 30.9 39.2 47.5 14.9 13.0 19.5 22.7 41.1 22.0 28.0

Table 3.4.3: Average precision results for detection on Pascal VOC2007 test set us-
ing different settings of data and initialization

Method
plane bicycle bird boat bottle bus car cat chair cow table dog horse mbik man plant sheep sofa train TV mean

DBCE Constrained Init

a Pascal 37.7 44.2 23.2 24.6 11.8 54.0 49.4 37.9 11.1 32.7 20.4 25.3 40.1 48.6 10.3 16.4 34.9 32.6 49.0 46.1 32.5
b Pascal " 41.4 45.1 25.9 21.7 13.0 56.8 47.6 43.4 10.1 32.0 35.1 40.8 44.5 47.0 9.7 12.8 34.5 34.4 47.3 47.2 34.5
c Pascal+Web 44.5 42.8 30.1 30.4 9.1 58.9 49.9 37.0 11.5 27.9 25.4 26.9 38.7 51.3 2.8 15.6 34.6 34.3 51.1 44.6 33.4
d Pascal+Web " 46.2 46.3 33.6 24.3 11.6 56.7 52.2 46.4 11.4 34.0 19.0 35.2 44.5 50.9 5.2 14.9 34.3 34.5 53.8 46.8 35.1
e Pascal Web 45.8 47.3 31.2 28.8 13.9 60.2 49.4 36.1 12.5 32.5 32.6 26.9 43.3 53.8 6.8 18.1 34.2 36.6 49.2 52.7 35.6
f Pascal " Web 44.3 43.0 30.6 25.6 13.6 56.3 48.9 45.1 6.6 33.9 31.7 41.2 43.4 52.5 10.7 14.8 32.1 36.5 50.1 52.7 35.7
g Pascal+Web Web 44.9 43.2 32.4 28.0 13.8 59.2 50.9 37.4 11.5 31.6 32.7 29.0 43.8 52.8 2.7 16.8 34.1 41.6 48.7 48.9 35.2
h Pascal+Web " Web 49.3 42.2 33.1 24.2 12.9 57.5 52.0 52.2 12.1 32.1 33.8 44.5 48.1 52.5 13.1 15.3 31.9 38.4 50.2 46.3 37.1

WSDDN-SSW-S [4, 42] 49.8 50.5 30.1 12.7 11.4 54.2 49.2 20.4 1.5 31.2 27.9 18.6 32.2 49.7 22.9 15.9 25.6 27.4 38.1 41.3 30.5
ContextLocNet [42] 57.1 52.0 31.5 7.6 11.5 55.0 53.1 34.1 1.7 33.1 49.2 42.0 47.3 56.6 15.3 12.8 24.8 48.9 44.4 47.8 36.3
WSOL using Size Estimate AlexNet* [61] 36.0
WSOL using Size Estimate VGG-16*[61] 37.2

Table 3.4.4: CorLoc [17] results for detection on Pascal VOC2007 trainval set using
different settings of data and initialization.

Method
plane bicycle bird boat bottle bus car cat chair cow table dog horse mbik man plant sheep sofa train TV mean

DBCE Constrained Init

a Pascal 60.0 54.7 47.7 44.1 26.5 67.2 69.4 56.0 14.9 65.1 23.7 43.7 65.2 71.8 29.5 37.7 64.6 41.1 63.5 59.7 50.3
b Pascal " 62.1 57.9 51.1 38.8 31.3 69.4 72.2 59.2 14.4 63.7 35.8 48.1 66.0 73.5 26.7 37.3 72.2 32.4 66.5 63.7 52.1
c Pascal+Web 62.8 56.2 57.7 41.5 28.8 70.8 68.8 53.2 12.7 63.4 29.0 45.9 66.1 79.8 8.3 34.7 68.8 44.0 69.2 65.8 51.4
d Pascal+Web " 70.2 56.2 48.8 45.7 28.6 67.9 73.5 64.0 13.1 64.1 39.1 58.2 68.7 81.4 22.1 37.4 70.8 43.6 63.5 66.2 54.1
e Pascal Web 66.7 54.8 54.4 44.1 34.0 70.9 72.0 52.9 22.5 63.4 45.0 45.2 67.7 80.3 20.1 39.9 69.5 39.8 66.9 66.7 53.8
f Pascal " Web 68.3 55.3 54.4 41.7 32.4 68.9 71.1 55.4 20.0 68.3 40.7 50.5 67.1 79.4 23.5 38.1 72.2 42.9 67.3 65.9 54.2
g Pascal+web Web 68.5 50.6 56.9 43.5 31.2 68.0 72.4 52.9 15.0 66.2 45.9 45.7 64.3 80.7 9.4 38.6 66.7 46.0 65.4 66.7 52.7
h Pascal+web " Web 68.5 53.3 54.7 43.9 29.5 67.3 72.5 66.3 20.9 66.2 42.7 55.0 64.8 78.1 15.5 34.9 70.1 40.4 63.9 65.3 53.7

WSDDN-SSW-S [4, 42] 80.4 62.4 53.8 28.2 26.0 68.0 72.5 45.1 9.3 64.4 38.8 35.6 51.4 77.1 37.6 38.1 66.0 31.2 61.6 53.0 50.0
ContextLocNet [42] 83.3 68.6 54.7 23.4 18.3 73.6 74.1 54.1 8.6 65.1 47.1 59.5 67.0 83.5 35.3 39.9 67.0 49.7 63.5 65.2 55.1
WSOL using Size Estimate AlexNet* [61] 60.9
WSOL using Size Estimate VGG-16*[61] 64.7

3.4 Experiments

In this section, we first briefly describe the human-annotated dataset PASCAL VOC
2007, the collection of web-data and other implementation details. We then present a
quantitative evaluation of our constrained weakly supervised detection framework under
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Figure 3.4.1: We present visualizations of predictions made by our best performing
model (−) compared to the baseline WSDDN (−−). The top two rows show images
where our model successfully localizes the object when the baseline models fail. The
images in the bottom two rows represent cases where our model fails to correctly lo-
calize the object.

different settings of supervision. We also investigate some initialization strategies which
help in improving the performance further. Finally, we perform a qualitative analysis of
the predictions from our framework compared to the baseline models.

3.4.1 Datasets

For evaluating our weakly supervised object detector, we use the PASCAL VOC 2007
dataset [24] which contains 20 classes of objects. This is the most commonly used dataset
to assess the performance of WSOD methods. While the dataset includes bounding box
annotations, we simply use the image-level object class labels for training. In the testing
phase, the mean average precision (mAP) metric is used to quantify the performance of
object detectors. Weakly supervised object detectors are also evaluated using the
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CorLoc [17] metric on the training set. The metric computes the AP on training images
given the image-level class labels.

For the web-supervised setting, we download a large collection of images by querying
Google image search. In [12], an approach is proposed to expand the list of queries for
each class(‘Category Expansion’). This approach leads to queries like ‘porsche’ and
‘ferrari’ for the ‘car’ category. We follow the list of queries provided in the supplementary
material of [12] to download images for each of the 20 PASCAL VOC categories. This
gives us a dataset of 147128 images. In order to facilitate replication of our results, the list
of queries and class-wise statistics of the dataset will be included in the supplementary
material.

3.4.2 Implementation Details

The WSDDN [4] framework was implemented using the Caffe toolbox [39]. Note that
we replace the spatial pyramid pooling layer with the RoI Pooling layer which serves the
same purpose. We shall make our implementation accessible on the web to allow
replication, comparison and benchmarking. In all our experiments, to optimize the binary
cross entropy loss, we use SGD with a batch size of 1, learning rate 0.00001, weight decay
0.0005 and momentum 0.9. Note that the batch size of 1 still leads to ~2000 samples of
regions. For PASCAL VOC 2007, we use the Edge Boxes made publicly available by [4].
We initialize our models by copying parameters from an ImageNet pretrained model
(except when stated otherwise). These hyperparameters are the same as proposed in [4].
The training is done for 30 epochs while dropping the learning rate by a factor of 10 after
15 epochs. In all our experiments, we ensure that the number of iterations of SGD is the
same. When images from the web are used (for eitherLBCE orLcons), we ensure that each
class is sampled with equal chance. In the setting where images from the web and
PASCAL VOC are combined, at each iteration, we first randomly sample the domain and
then sample images from the chosen domain. For optimizing the constraint loss, we use
SGD with a batch size of 40, learning rate of 0.001 and keeping the remaining
hyperparameters and sampling strategy same as before. We observed that BCEiter in the
range 1000-2000 with CONSiter = 100works best. These hyperparameters were
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manually tuned by visualizing the perturbed predicted distributions Pnewpr .

3.4.3 Web-supervised object detection

We first evaluate our framework in web-supervised setting. Here we only use web images
and exclude all images collected with human annotations of PASCAL VOC. We train the
WSDDN using the binary cross entropy lossLBCE (refer to asWSDDN-Web).
Surprisingly, we observe that this base WSDDN model directly outperforms all previous
web-supervised object detection methods [12, 19]. Note that the models proposed
in [12, 19] do not use an ImageNet based pretraining. In [12], they show that their
initialization performs comparably to ImageNet pretraining when finetuned for object
detection. So we can expect that the same trends hold considering the large difference in
performance.

We also trained the model using our joint training strategy using the alternating
optimization (again using only web images). In Table 3.4.1 and 3.4.2, we compare the
detection mean average precision (mAP) for the two experiments. We witness an
increase in performance of about 2% mAP indicating that the joint optimization with
constraint loss contributes significantly to the localization using the same data. We
observe that the ‘car’ and ‘dog’ classes show that largest gain in performance of 11.9%
mAP and 17.2% mAP respectively. Incidentally, these classes have the highest number of
images in the collection of web-images. This suggests the improvements might scale to
some extent with the variation across web-images per class.

3.4.4 Cross-domain WSOD

We also conducted experiments to verify whether the constraint loss allows us to transfer
information about localization to the target domain. For comparison, we first train the
WSDDN framework using images from PASCAL VOC 2007. We observe that we
achieve a performance of 32.5mAP (which is 0.2mAP lower compared to the publicly
released matlab implementation [4]). The joint framework was then trained using
PASCAL VOC for the binary cross entropy loss (LBCE) and the constraint loss on
web-images (Lcons). In Table 3.4.3 and Table 3.4.4, we again evaluate the performance of
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these models using the detection mAP on the ‘test’ set and CorLoc on the ‘trainval’ set.
For this experiment, we try all possible settings: (a)LBCE on PASCAL Only (baseline

WSDDN); (b)LBCE on PASCAL,Lcons on Web; (c)LBCE on PASCAL+Web, NoLcons;
(d)LBCE on PASCAL+Web,Lcons on Web. As it can be seen using binary cross entropy
loss on both PASCAL and Web images along with constraint loss on web images provides
best performance. It can also be observed that the constraint loss enhances performance
in all settings.

However, we still have not evaluated appearance transfer from Web to PASCAL
images. The initialization in all the previous (a)-(d) was the ImageNet model. So, for the
next experiment, we transfer appearance information from the web-domain by
pretraining the WSDDN framework on web domain and finetune on the target domain.
While this strategy is effective, we show that our proposed constraint loss provides a
complementary contribution leading to further gains. We repeat the experiments in the
settings described so far, but use theWSDDN-Webmodel as initialization instead of an
ImageNet pretrainedmodel. The results for these experiments can be found in Table 3.4.3
and Table 3.4.4 (Rows 5-8). Again: (e)LBCE on PASCAL Only; (f)LBCE on PASCAL,
Lcons on Web; (g)LBCE on PASCAL+Web, NoLcons; (h)LBCE on PASCAL+Web,Lcons

on Web. We observe that initializing from the WSDDN-Web model gives us further
improvements leading to a 4.6% mAP increase over the baseline WSDDN.

We also present results from other previous relevant works for comparison.
ContextLocNet [42] is a recently proposed architecture for weakly supervised learning
and also builds on the WSDDN framework. The key idea proposed in [42] is to utilize
the features of the region surrounding each candidate box in the localization stream.
While we outperform the detection mAP of [42], we believe that both ideas are quite
complementary in nature. We can use context+web-domain constraints together to
further improve weakly supervised learning. WSOL using Size Estimates [61] performed
weakly supervised object detection using the size estimate of objects as a cue. For
estimation of the size, they train a regressor using object size annotations for PASCAL
VOC 2012. In contrast, we do not use any additional human annotations and achieve
better detection performance compared to AlexNet and similar performance to VGG16
based models of [61]. While we achieve higher mAP on detection, [61] achieves much
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higher CorLoc. One possible hypothesis is that, compared to our simple prior, the
accurate size cue leads to better localization at the cost of human annotation effort.

3.4.5 Qualitative Analysis

We observe from the quantitative analysis that the proposed joint training framework
consistently outperforms training without constraints. We now qualitatively analyze the
models trained with and without constrained training. In Figure 3.4.1, we present
predictions from both models - base WSDDN trained on PASCAL VOC (red) and the
best performing model using joint constrained training (green). It is evident from the
predictions that the trained model is better at avoiding localization of parts.

A common failure mode of our framework is the localization of faces for ‘person’ class
(Figure 3.4.1, Column 3, Row 3-4). Upon investigation, we realized that web-images for
the ‘person’ class tend to cover only the face or upper body possibly due to a photography
bias. This is also reflected in the lowered CorLoc performance in Table 3.4.4.
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4
Conclusion

In this thesis, we presented two approaches to improve computer vision models using
inexpensive forms of supervision. The first approach presents an unsupervised algorithm
that takes advantage as the motion signal in videos as supervision to train an appearance
representation. We train the unsupervised system on action videos in order to force the
appearance representation to learn pose features. We demonstrate this property of the
feature representation using qualitative results and quantitative results on Pose
Estimation in the FLIC dataset, Action Recognition in videos on the UCF101 and
HMDB51 datasets and still image action recognition on PASCAL VOC. The finetuning
results emphasise the highly transferable nature of the representations learned. We
compare to two other video-based unsupervised algorithms and show that our trained
representation performs better consistently on these tasks. As a future goal, an interesting
direction to pursue would be extending this method to generic videos. In the second part
of the thesis, we present an approach to combine weakly-supervised learning from
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two-domains using constraint-transfer. Current WSOD approaches struggle to find right
localization due to parts and groups of object being more discriminative. This paper
exploits the benefits of two domains: web-supervised and weakly-supervised VOC.
Specifically, it uses web-images which have minimal background clutter and strong size
bias to learn an appearance model for objects. We use this model as initialization to
perform joint weakly-supervised learning in both web-domain and PASCAL together.
The weakly-supervised model is in turn used to improve the target for the constraint step
by accounting for ‘discriminative-ness’. We show that such an alternating training
procedure using easy images can improve the performance on hard PASCAL images
themselves. Our approach provides significant boost over the baseline WSDDN by
almost 4.6% mAP and also reduces the gap between web-supervised and weakly
supervised methods.
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