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Abstract

Object detection models have made significant progress in recent years. A major impediment in

rapidly deploying thesemodels for instance detection is the lack of large annotated datasets. For exam-

ple, finding a large labeled dataset containing instances in a particular kitchen is unlikely. The brute

force data collection approach would require a lot of manual effort for each new environment with

new instances. In this thesis, we explore three methods to tackle the above problem. First, we present

how we can use object tracking in videos to propagate bounding box annotations from one frame to

the subsequent frames. Next, we showhow 3D reconstruction can be used to produce annotations for

object detection and pose estimation. Finally, we present a novel approach for generating synthetic

scenes with annotations for instance detection. Our key insight is that ensuring only patch-level real-

ism provides enough training signal for current object detector models. A naive way to do this results

in pixel artifacts which result in poor performance for trained models. We show how to make detec-

tors ignore these artifacts during training and generate data that gives competitive performance to real

data. Our results show that we outperform existing synthesis approaches and that the complementary

information contained in our synthetic data when combined with real data improves performance by

more than 10 AP points on benchmark datasets.
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The famous pipe. How people reproached me for it! And

yet, could you stuff my pipe? No, it’s just a representation,

is it not? So if I had written on my picture ‘This is a pipe’,

I’d have been lying!

René Magritte

1
Introduction

Researchers in computer visionhave long sought tobuild amodel of theworld fromvisual input alone.

A small but significant sub-task in thatmassive undertaking is to be able to represent objects. Over the

yearsmany diverse ideas have been suggested regardingwhatmight be the correctway tomodel objects

in computer vision. Considered in the context of research inobject detection, the innocuous line, “Ceci

n’est pas une pipe” (This is not a pipe), scribbled by the surrealist artistRenéMagritte below the picture
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of a pipe in the painting titledThe Treachery of Images takes newmeaning. Hewas referring to the fact

thatwhat he had drawnwasmerely the picture of a pipewhichwas different from the actual pipe itself.

Human perception is good enough to recognize the concept of a pipe from an artistic representation

of it and recognize yet unseen pipes. The same is expected from computer vision systems today. The

ideal scenario would be able to do so with minimal supervision.

Imagine using an object detection system for an environment like your kitchen. Such a system

needs to recognize different kinds of objects, and also be able to distinguish between many different

instances of the same object category, e.g. your cup vs. my cup. With the tremendous progress that has

been made in visual recognition, as documented on benchmark detection datasets, one may expect to

easily take a state-of-the-art system and deploy it for such a setting.

However, one of the biggest drawbacks of using a state-of-the-art detection system is the amount

of annotations needed to train it. For a new environment with new objects, we would likely need

to curate thousands of diverse images with varied backgrounds and viewpoints, and annotate them

with boxes. Traditionally, vision researchers have undertaken such amammoth task8,26 for a few com-

monly occurring categories like man, cow, sheep , but this approach is unlikely to scale to all possible

categories, especially the instances in your kitchen. In a personalized setting we need annotations for

instances like your cup. We believe that collecting such annotations is a major impediment for rapid

deployment of detection systems in the real world settings of robotics or other personalized applica-

tions.
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Figure1.1:Object vs Instance Detection. Instance detection involves fine-grained recognition within the same ‘object

category’. In this example, instance recognitionmust distinguish amongst 6 classes: 2 types of granola bars and 4 types of

coffee cups. Object detection would distinguish only amongst 2 classes: coffee cups and granola bars. Instance detection

must model minute differences between instances of the same generic object category.

1.1 Instance Detection

Instance detection requires accurate localization of a particular object, a particular brand of cereal, a

particular cup . In contrast, generic object detection detects an entire generic category like a cereal box

or a cup (see Figure 1.1). In fact, in the instance detection scenario correctly localizing a cereal box of

some other brand is counted as a mistake. Instance detection occurs commonly in robotics, AR/VR

where one is interested in distinguishing instances, your cup vs. my cup, rather than the entire category.

Thus, instance detection can also be viewed as fine-grained recognition.

1.2 Traditional Dataset Collection

Building detection datasets involves a data curation step and an annotation step. Data curation in-

volves collecting internet images for generic detection datasets8,26. This fails for instance datasets as

findingmany internet images of the instances of interest is not easy. For instance detection45 data cura-
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tion involves placing the instances in varied background andmanually collecting the images. Manually

collecting these images requires one to pay attention to ensure diversity in images by placing the object

in different backgrounds and collecting different viewpoints. The annotation step is generally crowd

sourced. Depending on the type of data, human annotations can be augmented with object tracking

or 3D sensor information24,13,1,46,52.

Unfortunately, both these steps are not suitable for rapidly gathering instance annotations. Firstly,

as we show in our experiments, even if we limit ourselves to the same type of scene, , kitchens, the

curation step can lack diversity and create biases that do not hold true in the test setting. Secondly, as

the number of images and instances increase,manual annotation requires additional time and expense.

1.3 Organization

In this thesis, we tackle the problem of the human effort involved in collecting and annotating images.

In Chapter 2, we describe how we can leverage videos to reduce the number of bounding boxes to be

labeled. In Chapter 3, we explore how 3D reconstruction can be used to produce both bounding box

annotations and pose labels. In Chapter 4, we go a step further and show how human labeling can be

eliminated by synthesizing scenes by cropping objects from videos. We showcase how these methods

of data collection stack up against data annotated by humans.
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We must perceive in order to move, but we must also move

in order to perceive

J.J. Gibson

2
Leveraging Videos for Object Detection

Video collection is effortless given the advent of the high quality portable cameras on mobile phones.

Another advantage of using videos for dataset creation is the ease with which multiple views of the

object can be captured. It is necessary that multiple viewpoints of the object be collected for training

object detectors because we want to capture the diversity in appearance of instances due to viewpoint

variations. Since it is easy for a person to collect different viewpoints of the object by recording a video,
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we intend to collect training data by leveraging the temporal coherence present in videos.

2.1 Current Approach

Manual annotation is usually done byMechanical Turk workers online. A dataset consisting of train-

ing images is hosted online. The workers access the images by the Mechanical Turk interface and

annotate the images. The collected data serves as the ground truth for training machine learning algo-

rithms.

Instead of using images, wepropose to use videos. The current approachdoes not take into account

the temporal coherence present in videos. Annotations made in one frame can be used to provide

information regarding the previous and consecutive neighbouring frames.

2.2 Proposed Approach

In order to take advantage of the temporal coherence present in videos we propose the following ap-

proach. To collect the video, the object is kept in view of the camera as a person walks around it to

collect data from all viewpoints. The object is not kept in isolation but along with other objects. An

advantage of using videos however is that since the consecutive frames are correlated, there is a pos-

sibility of reusing the labels and bounding boxes marked in one frame in the subsequent frames by

tracking the object in the bounding box. Since we do not have a perfect model of the object right now

the tracking might not track the object throughout the entire video. However, we can still track the

bounding box for some frames. When the tracking fails, the annotator can redraw the new bounding
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Figure2.1:Wemodified the classic object detection pipeline to include a video annotation tool The tool is useful to propa-

gate labels across multiple frames by using object tracking. This reduces the effort involved in labeling images.

box fromwhere tracking can begin again. From the point of view of providing training data to an ob-

ject detector, the fact that the frames are correlated poses a problem. If the frames are near duplicates

then our machine learning algorithm won’t benefit much from having similar looking images in the

training set. We decide to use a perceptual hash algorithm to check for similarity of images and discard

near duplicates from the training set.

Our suggested pipeline can be seen in Fig. 2.1 We modified a publicly available video annotation

tool called VATIC to track objects in bounding box in consecutive frames. It automatically annotates

the images where the tracking is successful while adjusting the location and size of the bounding box.

A human is still required in the loop because the tracker might still be confident in its tracking and

label some frames in a wrong manner. For tracking, we have the option to use either:

1. Linear interpolation between manually annotated frames

2. Tracking-Learning-Detection which also models the present appearance of the object being

7
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tracked

2.3 Results

We wanted to gauge how effective this technique might be for the task of object detection. To do so,

we build a keyboard detector by collecting 5 videos of keyboards. In our experiments, we found that a

person labeled approximately 100 different frames out of 4500 frames. After discarding the duplicates,

we end upwith approximately 1000 distinct frames. The pipeline of training an object detector in this

fashion will not require any coding and can be done using a web interface.

We trained a keyboard detector from the 1000 images collected from 5 videos of the keyboard in

different settings. The choice of detector is Faster RCNN 39 which is the state of the art approach in

object detection right now. The choice of detector does not affect the data collection method. One

can see the results of object detection in 3 test clips in which the keyboard is placed in the office under

different lighting conditions here.

2.4 Discussion

The approach in this section modified an existing method of data collection to reduce annotation ef-

fort by about 10 times. However, these experiments laid the foundationof ourworkonusing structure

from motion and synthesizing images for object detection which forgoes human annotation effort al-

together.
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Reconstruction helps recognition

Jitendra Malik

3
Generating Pose and Bounding Box

Annotations from 3D Reconstruction

Like the previous chapter, we explore how we can use videos to reduce the manual effort involved in

annotation. However, instead of requiring anyhuman annotationwe try to avoid human annotations

altogether.
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3.1 Current Approach

InPASCAL3D 55, the authors suggest the use of aGUI to find a 3Dmodel fromadatabase thatmatches

the object in the image and use a series of operations like zoom, rotate etc. to align the 3D model to

the image. This alignment allows one to annotate objects in images with 3D pose. More recently,

researchers have produced pose annotations by rendering the 3D model using Render-for-CNN47.

The disadvantages of the approaches are as follows:

1. Too much manual effort in using the GUI

2. No real images in the Render-for-CNN dataset

3. High-quality 3D object models might not be available for rendering

The above approaches are suitable for scenarios where one doesn’t have access to objects while cap-

turing the images. However, for our use case we can assume we have access to the instances.

3.2 Proposed Approach

In our approach we propose to use Structure from From(SFM) 54 to produce datasets with pose and

bounding box annotations.

Our approach(See Fig 3.1) is as follows:

1. Record the object from all viewpoints

2. Initially features in match sequential frames

3. Merge matched frames by performing bundle adjustment

4. We get 3D model of object and all the cameras’ poses
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5. Remove the 3D points of the support surface by fitting a 3D plane

6. Remove outliers by finding connected components and retaining largest one

7. For each image, we re-project the 3Dpoints to find bounding box aswe knowprojectionmatrix
for each camera

Our method is most similar to that described in42. However, in our case we are creating datasets

for instance detection and do not need to perform the pairwise alignment of 3D models described in

the above paper.

3.3 Results

In Fig 3.2, we show some examples of pose and bounding box annotations generated by our approach

based on SFM. This approach provides significant advantages over traditional approaches because it

removes the requirement of humans labeling bounding boxes or aligning 3Dmodels. However, there

is a step which involves estimating the support surface. This is based on a heuristic that the biggest

plane in the 3D reconstructed point cloud will belong to the support surface. We propose to use a

deep learning based segmentation approach that estimates the salient object more robustly.

The proposed approach is not restricted to videos collected by walking around objects. To ease the

process of dataset curation, objects can be placed on a turntable and multiple views of the object can

be captured by rotating the turntable. Visual SFM is agnostic to the fact how the multi-view images

are collected.
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a) Frames from the raw video

b) 3D Reconstruction of the Scene c) After post-processing

d) Pose and Bounding Box Annotated Dataset 

Figure3.1:Pipeline for generating annotations for pose and bounding box from videos using Structure fromMotion.
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Figure3.2:Examples of datasets generated by our approach. The bottom rows show failure cases where the bounding

box has beenwrongly predicted. The errors are introduced due to the support surface estimation step.
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I don’t want realism. I want magic!

Tennessee Williams

4
Synthesizing Scenes for Instance Detection

4.1 Introduction

In this chapter, we explore a novel approach for dataset generation that aims to reduce the annotation

effort required. Recently, a successful research direction to overcome this barrier is to use synthetically

rendered scenes and objects47,34,22 to train a detection system. This approach requires a lot of effort

to make the scenes and objects realistic, ensuring high quality global and local consistency. Moreover,
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models trained on such synthetic data have trouble generalizing to real data because of the change in

image statistics 5,36. To address this, an emerging theme of work 16 moves away from graphics based

renderings to composing real images. The underlying theme is to ‘paste’ real object masks in real

images, thus reducing the dependence on graphics renderings. Concurrent work 12 estimates scene

geometry and layout and then synthetically places object masks in the scene to create realistic training

images. However, the scene layout estimation step may not generalize to unseen scenes. We show a

simpler approach that does not require such scene geometry estimation to create training images.

Our key insight is that state-of-the art detection methods like Faster-RCNN 39 and even older ap-

proaches like DPM9 care more about local region-based features for detection than the global scene

layout. As an example, a cup detector mostly cares about the visual appearance of the cup and its

blending with the background, and not so much about where the cup occurs in the scene: the table-

top or the ground. We believe that while global consistency is important, only ensuring patch-level

realism while composing synthetic datasets should go a long way to train these detectors.

However, naively placing object masks in scenes creates subtle pixel artifacts in the images. As these

minor imperfections in the pixel space feed forward deeper into the layers of a ConvNet25, they lead to

noticeably different features and the training algorithm focuses on these discrepancies to detect objects,

often ignoring tomodel their complex visual appearance. As our results show (Table 4.1), suchmodels

give reduced detection performance.

Since our main goal is to create training data that is useful for training detectors, we resolve these

local imperfections and maintain patch level realism. Inspired from methods in data augmentation

and denoising auto encoders 51, we generate data that forces the training algorithm to ignore these

15



artifacts and focus only on the object appearance. We show how rendering the same scene with the

same object placement and only varying the local consistency parameter settings (Section 4.4.2)makes

the detector robust to these subtle pixel artifacts and improves training. Although these images do not

respect global consistency or even obey scene factors such as lighting , training on them leads to high

performance detectors with little effort. Our method is also complementary to existing work 34,47,12

that ensures global consistency and can be combined with them.

Data generated using our approach is surprisingly effective at training detection models. Our re-

sults suggest that curated instance recognition datasets suffer from poor coverage of the visual ap-

pearances of the objects. With our method, we are able to generate many such images with different

viewpoints/scales, and get a good coverage of the visual appearance of the object with minimal effort.

Thus, our performance gain is particularly noticeable when the test scenes are different from the train-

ing scenes, and thus the objects occur in different viewpoints/scales.

4.2 Related Work

Instance detection is a well studied problem in computer vision. 57 provides a comprehensive overview

of the popular methods in this field. Early approaches, such as 6, heavily depend on extracting local

features such as SIFT 30, SURF 3, MSER 32 and matching them to retrieve instances29,48. These ap-

proaches do not work well for objects which are not ‘feature-rich’, where shape-based methods21,10,19

are more successful.

Modern detection methods 14,39,15 based on learned ConvNet features23,44,25 generalize across fea-
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Generated Scenes (Training Data)

Object Instances Background Scenes

Paste

Detections on Real Images
Learn

Cut

Figure4.1:Wepresent a straightforwardway to rapidly generate training images for instance detection withminimal

human effort. We automatically extract object instancemasks and render it on random background images to create

realistic training images with bounding box labels. Our results show that such data is competitive with human curated

datasets, and contains complementary information.

ture rich and feature poor objects43. With the availability of powerful commodity GPUs, and fast de-

tection algorithms27,38, these methods are suitable for real-time object detection required in robotics.

More recently, deep learning based approaches in computer vision are being adopted for the task of

pose estimation of specific objects 33,56,53. Improving instance detection and pose estimation in ware-

houses will be signifcantly useful for the perception pipeline in systems trying to solve the Amazon

Picking Challenge7.

The use of these powerful methods for object and instance detection requires large amounts of

annotated data. This requirement is both impractical and expensive for rapidly deploying detection
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systems. Sythesizing data is oneway to address this issue. Recently, researchers47,36 showed how to use

rendered images of objects to do both object detection and pose estimation. They render 3D models

of objects from different viewpoints and place them against randomly sampled backgrounds. 34 also

highlight the importance of using photo-realsitic models in training CNNs.

There is a wide spectrum of work where rendered datasets are used for computer vision tasks. At

one end, we have datasets with images of single objects on random backgrounds47,36,34,35. On the

other end, there are datasets where the entire scene is rendered 11,40,17. On that spectrum our work lies

in between as we do not render the whole world but use real images of both objects and backgrounds

to compose new scenes. In this sense, our work closely related to contemporary work from 16 which

generates synthetic data for localizing text in scenes.

Sedaghat 42 show how an annotated dataset can be created for the task of object pose estimation

by taking videos by walking around the object. 18 uses synthetic data from4 for multi-view instance

recognition. 31 use real and synthetic images for 2D-3D alignment.

Similarly, 50,5 render 3D humans in scenes and use this data for pose estimation. Tasks requiring

dense annotation, such as segmentation, trackinghave also shownbenefit byusing such approaches 17,11,41,40.46

show a novel approach for collecting data of objects in a closed domain setting.24,13,1 annotate 3D

points belonging to an object in the point cloud reconstruction of a scene and propagate the label

to all frames where the object is visible. As synthetic data can be significantly different from real im-

ages,49 show a domain adaptation approach to overcome this issue. In contrast, our work composes

training images using real object and background images.

The existing approaches to sythesizing datasets also focus largely on ensuring global consistency
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and realism22,50,5,12. While global consistency is important, we believe that local consistency matters

more for training detection systems. Our approach ensures that when we train our detection model

it is invariant to local discrepancies.

4.3 Approach Overview

Wepropose a simple approach to rapidly collect data for instance detection. Our results show that our

approach is competitive with the manual curation process, while requiring little time and no human

annotation.

Ideally, wewant to capture all the variations that cause an instance to appear different. Figures 4.1, 1.1

show how a single instance of an object appears drastically different when seen from different views,

scales, orientation and lighting conditions. Thus, distinguishing between such instances requires the

dataset to have good coverage of viewpoints and scales of the object. Also, as the number of classes

increases rapidly with newer instances, the long-tail distribution of data affects instance recognition

problems. With synthetic data, we can ensure that the data has good coverage of both instances and

viewpoints. Figure 4.2 shows the main steps of our method:

1. Collect object instance images: Our approach is agnostic to the way the data is collected. We
assume that we have access to object images which cover diverse viewpoints and have a modest
background.

2. Collect scene images: These images will serve as background images in our training dataset. If
the test scenes are known beforehand (like in the case of a smart-home or a warehouse) one can
collect images from those scenes. As we do not compute any scene statistics like geometry or
layout, our approach can readily deal with new scenes.

19



Randomly Sample Objects Randomly Sample Negatives Randomly Sample Scenes

2D
Rotation

Out of plane
Rotation

1. Collect Images of Objects and Scenes

2. Predict Object Mask

ConvNet
Image Mask

Segmented Objects

3. Data Augmentation

Augmentations

4. Synthesize Same Scene with Different Blending Modes

Truncations Occlusions Different Blending Modes
Invariant to Local ArtifactsModel real world scenarios

Figure4.2:Wepresent a simple approach to rapidly synthesize datasets for instance detection without human annota-

tion. We start with a set of images of the instances and background scenes. We then automatically extract the object

mask and segment the object. We paste the objects on the scenes with data augmentation removing pixel artifacts cre-

ated by pasting. Training on this synthesized data provides competitive results to training on real data. We also show how

synthetic data provides complementary information to real data.
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3. Predict foreground mask for the object: We predict a foreground mask which separates the
instance pixels from the background pixels. This gives us the object mask which can be placed
in the scenes.

4. Paste object instances in scenes: Paste the extracted objects on a randomly chosen background
image. We ensure invariance to local artifacts while placing the objects so that the training
algorithm does not focus on subpixel discrepancies at the boundaries. We add various modes
of blending and synthesize the exact same scene with different blending tomake the algorithm
robust to these artifacts. We also add data augmentation to ensure a diverse viewpoint/scale
coverage.

4.4 Approach Details and Analysis

Wenowpresent additional details of our approach andprovide empirical analysis of our design choices.

4.4.1 Collecting images

We first describe how we collect object/background images, and extract object masks without human

effort.

Images of objects from different viewpoints

We choose the objects present in Big Berkeley Instance Recognition Dataset (BigBIRD)45 to conduct

our experiments. Each object has 600 images, capturedby five cameraswith different viewpoints. Each

image also has a corresponding depth image captured by an IR camera.
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Figure4.3:Given an image of a new unseen object instance, we use a ConvNet to predict foreground / background pixels.

Using these predictions we automatically obtain an object mask. This method generalizes to transparent surfaces where

traditional methods relying on depth sensors for segmentation fail (second row).

Background images of indoor scenes

We place the extracted objects from the BigBIRD images on randomly sampled background images

from the UW Scenes dataset24. There are 1548 images in the backgrounds dataset.

Foreground/Background segmentation

Once we have collected images of the instances, we need to determine the pixels that belong to the

instance vs. the background. We automate this by training a model for foreground/background clas-

sification. We train a FCN network28 (based on VGG-1644 pre-trained on PASCAL VOC8 image

segmentation) to classify each image pixel into foreground/background. The object masks from the

depth sensor are used as ground truth for training this model. We train this model using images of

instances which are not present in our final detection evaluation. We use2 as a post-processing step to

clean these results and obtain an object mask. Figure 4.3 shows some of these results. In practice, we

found this combination to generalize to images of unseen objects with modest backgrounds and give
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good quality object masks from input images. It also generalizes to transparent objects, , coca cola

bottle, where the depth sensor does not work well.

4.4.2 Adding Objects to Images

After automatically extracting the object masks from input images, we paste them on real background

images. Naïvely pasting objects on scenes results in artifacts which the training algorithm focuses on,

ignoring the object’s visual appearance. In this section, we present steps to generate data that forces the

training algorithm to ignore these artifacts and focus only on the object appearance. To evaluate these

steps empirically, we train a detectionmodel on our synthesized images and evaluate it on a benchmark

instance detection dataset (real images).

Detection Model

We use the Faster R-CNN 39 method and initialize the model from a VGG-1644 model pre-trained on

object detection on the MSCOCO26 dataset.

Benchmarking Dataset

After training the detection model on our synthetic images, we use the GMU Kitchen dataset 13 for

evaluation. There are 9 scenes in this dataset. Three dataset splits with 6 scenes for training and 3

for testing have been provided in 13 to conduct experiments on the GMU Kitchen dataset. We follow

these splits for train/test and report the average over them. No images or statistics from this dataset are

used for either dataset synthesis or training the detector. We reportMean Average Precision (mAP) at
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No Blending Gaussian Blurring Poisson Blending

Figure4.4:Different blendingmodes usedwhile generating datasets. Thesemodes help themodel in ignoring artifacts

arising from pasting objects on background scenes. More details in Section 4.4.2

IOU of 0.5 ? in all our experiments.

Blending

Directly pasting objects on background images creates boundary artifacts. Figure 4.4 shows some ex-

amples of such artifacts. Although these artifacts seem subtle, when such images are used to train

detection algorithms, they give poor performance as seen in Table 4.1. As current detection meth-

ods 39 strongly depend on local region-based features, boundary artifacts substantially degrade their

performance.

The blending step ‘smoothens’ out the boundary artifacts between the pasted object and the back-

ground. Figure 4.4 shows some examples of blending. Each of these modes add different image varia-

tions, , Poissonblending 37 smooths edges and adds lighting variations. Although these blendingmeth-

ods do not yield visually ‘perfect’ results, they improve performance of the trained detectors. Table 4.1

lists these blending methods and shows the improvement in performance after training on blended

images.

Tomake the training algorithm further ignore the effects of blending, we synthesize the exact same

scene with the same object placement, and only vary the type of blending used. We denote this by
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‘All Blend + same img’ in Table 4.1. Training on multiple such images where only the blending factor

changes makes the training algorithm invariant to these blending factors and improves performance

by 8 AP points over not using any form of blending.

Data Augmentation

While pasting the objects on background, we also add the following modes of data augmentation:

1. 2D Rotation

The objects are rotated at uniformly sampled random angles in between 30 to−30 degrees to
account for camera/object rotation changes. Table 4.1 shows a gain of 3 AP points by adding
this augmentation.

2. 3D Rotation

As we can control this step, we have many images containing atypical 3D rotations of the in-
stances which is hard to find in real data. Table 4.1 shows a gain of more than 4 AP points
because of this augmentation. In Section 4.5.2 and Figure 4.6, we show examples of how a
model trained on human collected data consistently fails to detect instances from certain view-
points because the training data has poor viewpoint coverage and different biases from the test
set. This result shows the value of being able to synthesize data with diverse viewpoints.

3. Occlusion and Truncation

Occlusion and truncation naturally appear in images. They refer to partially visible objects (see
Figure 4.2 for examples). We place objects at the boundaries of the images tomodel truncation
ensuring at least 0.25 of the object box is in the image. To add occlusion, we paste the objects
with partial overlap with each other (max IOU of 0.75). Like other modes of augmentation,
we can easily vary the amount of truncation/occlusion. As Table 4.1 shows, adding trunca-
tion/occlusion improves the result by as much as 10 AP points.
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Figure4.5:A few randomly chosen samples from our synthesized images. We describe the details of our approach in

Section 4.4.
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4. Distractor Objects

We add distractor objects in the scenes. This models real-world scenarios withmultiple distrac-
tor objects. We use additional objects from the BigBIRD dataset as distractors. Presence of
synthetic distractors also encourages the learning algorithm to not only latch on to boundary
artifacts when detecting objects. Adding such data improves performance by 3 AP points.

Figure4.6:Missed detections on the Active Vision Dataset 1 for amodel trained on the hand-annotated GMUDataset 13.

Themodel consistently fails to detect certain viewpoints as the training data has poor viewpoint coverage and has biases

different from the test set. Each row shows a single instance.

Ground Truth Images

Corresponding False Positives

Figure4.7:Examples of false positives from the UNC dataset by the detector trained on the hand-annotated bounding

boxes from the GMUdataset. Object detectors trained on hand annotated scenes also need new negatives to be able to

performwell in newer scenes.
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4.5 Experiments

We now compare the effectiveness of our synthesized data against human annotated data on two

benchmark datasets. We first describe our common experimental setup.

Synthesized Data

We analyze our design choices in Section 4.4 to pick the best performing ones. We use a total of 33

object instances from the BigBIRD Dataset45 overlapping with the 11 instances from GMU Kitchen

Dataset 13 and the 33 instances from Active Vision Dataset 1. We use a foreground/background Con-

vNet (Section 4.4.1) to extract the foreground masks from the images. The foreground/background

ConvNet is not trained on instances we use to evaluate detection. As in Section 4.4, we use back-

grounds from the UW Scenes Dataset24 We generate a synthetic dataset with approximately 6000

images using all modes of data augmentation from Section 4.4. We sample scale, rotation, position

and the background randomly. Each background appears roughly 4 times in the generated dataset

with different objects. Tomodel occlusions we allow amaximumoverlap of 0.75 between objects. For

truncations, we allow at least 0.25 of the object box to be in the image. For each scenewe have three ver-

sions produced with different blending modes as described in Section 4.4.2. Figure 4.5 shows samples

of generated images. We use this synthetic data for all our experiments.
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Model

We use a Faster R-CNN model 39 based on the VGG-1644 pre-trained weights on the MSCOCO26

detection task. We initialize both the RPN trunk and the object classifier trunk of the network in

this way. We fine-tune on different datasets (both real and synthetic) and evaluate the model’s per-

formance. We fine-tune all models for 25K iterations using SGD+momentum with a learning rate

of 0.001, momentum 0.9, and reduce the learning rate by a factor of 10 after 15K iterations. We also

use weight decay of 0.0005 and dropout of 0.5 on the fully-connected layers. We set the value of all

the loss weights (both RPN and classification) as 1.0 in our experiments. We ensure that the model

hyperparameters and random seed do not change across datasets/experiments for consistency.

Evaluation

We report Average Precision (AP) at IOU of 0.5 in all our experiments for the task of instance localiza-

tion. Following 1, we consider boxes of size at least 50 × 30 pixels in the images for evaluation.

4.5.1 Training and Evaluation on the GMU Dataset

Similar to Section 4.4, we use theGMUKitchenDataset 13 which contains 9 kitchen sceneswith 6, 728

images. We evaluate on the 11 objects present in the dataset overlapping with the BigBIRD45 objects.

We additionally report results from 12. Theirmethod synthesizes images by accounting for global scene

structure when placing objects in scenes, , ensure that cups lie on flat surfaces like table tops. In con-

trast, ourmethoddoes not use take into account such global structure, but focuses on local consistency.
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Real Data Synthetic + Real Data Real Data Synthetic + Real DataSynthetic Data

(a)

(c)

(e)

(g)

Synthetic Data

(b)

(d)

(f)

(h)

Figure4.8:We show qualitative detection results andmark true positives in green, false positives in red and arrows to

highlight regions. The top two rows are from the GMUKitchen Scenes 13 and the bottom two rows from the Active Vision

Dataset 1. (a), (b): Model trained on real datamisses objects which are heavily occluded (a) or stops detecting objects
as viewpoint changes from a to b. (c), (d): Model trained on synthetic data detects occluded and truncated objects.

(e): Combining synthetic data removes false positives due to training only on real data. (g), (h): Combining real data

removes false positives due to training only on synthetic data. (f), (g): Viewpoint changes cause false negatives. (Best
viewed electronically)

We note that their method 12 uses a different background scenes dataset for their synthesis.

Table 4.2 shows the evaluation results. We see that training on the synthetic data is competitive

with training on real images (rows 1 vs 3) and also outperforms the synthetic dataset from 12 (rows 2 vs

3). Combining synthetic data with the real data shows a further improvement for all synthetic image

datasets (rows 4, 5). These results show that our approach is not only competitive with real data and

existing synthetic data, but also provides complimentary information. Figure 4.8 shows qualitative

examples illustrating this point.
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4.5.2 Evaluation on the Active Vision Dataset

To test generalization across datasets, we now present experiments where we train on either our syn-

thetic data or the GMU Dataset 13, and use the Active Vision Dataset 1 for evaluation. The Active

Vision Dataset 1 has 9 scenes and 17, 556 images. It has 33 objects in total and 6 objects in overlap with

the GMU Kitchen Scenes. We consider these 6 objects for our analysis. We do not use this dataset for

training.

We train a model trained on all the images from the GMU Dataset (Section 4.5.1). This model

serves as a baseline for our model trained on synthetic data. As Table 4.3 shows, a model trained on

our synthetic data is still competitive to the model trained on all the real data. The performance gap

between these datasets is smaller than in Section 4.5.1.

Failure modes of real data

Upon inspecting the errors20 made by the GMU model, we see that a common error mode of the

detector is its failure to recognize certain views in the test-set (see Figure 4.6). These viewpoints were

sparsely present in the human annotated training data. In contrast, our synthetic training data has a

diverse viewpoint coverage. The model trained on the synthesized images drastically reduces these er-

rors. Combining the synthesized images with the real images fromGMUgives a further improvement

of 10 AP points suggesting that synthesized images do provide complementary information.
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Varying Real Data

We investigate the effect of varying the number of real images to the synthesized data. We randomly

sample different amounts of real images from the GMU Dataset and combine them with the syn-

thetic data to train the detector. As a baseline we also train the model on varying fractions of the real

data. In Table 4.3 we see that by collecting just 10% images and adding our synthetically generated

images, we are able to get more MAP than using the real images in the dataset without the synthetic

images. This highlights how useful our approach of dataset generation is in scenarios where there is a

dearth of labeled images. This performance is also tantalizingly close to the performance of combining

larger fractions of real data. This result reinforces the effectiveness and complementary nature of our

approach.

4.6 Discussion

Our key insight while generating synthetic scenes was to maintain local consistency by using real im-

ages of objects and get a diverse coverage of instance viewpoint and scales. Instead of trying to achieve

photo-realism we render scenes with varying blending modes to make the model ignore blending arti-

facts. We showed how our improvements can affect detection performance of current state-of-the-art

methods because they rely on region-based features. Ourmethod performs favorably to existing hand

curated datasets and captures complementary information. We show that combining just 10% of real

annotations with our synthesized data achieves performance that is tantalizingly close to that achieved

by using all the real annotations.
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From a practical viewpoint, our work can be adapted even more to specific applications. If one

is building a detection system(especially if the camera’s location is fixed and known), one might not

desire to have amodel that recognizes the object of interest from all viewpoints. For example, an object

detection system running on a CCTV camera that is attached on the ceiling sees more top views of the

object or a fixed camera in a warehouse or factory that sees only front/side views of the object. One

would want to incorporate this information in the model by training on more pertinent views of the

same instance. In the approachwe have proposed, one can create datasets with relevant samples of the

instance without additional physical effort.
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Table4.3:Results on the entire Active Vision dataset by varying amount of real data from the GMUKitchen Scenes train

dataset

Dataset coca honey hunt’s mahatma nature red mAP
cola bunches sauce rice v2 bull

Real Images 57.7 34.4 48.0 39.9 24.6 46.6 41.9
Synthetic 63.0 29.3 34.2 20.5 49.0 23.0 36.5
Synthetic + Real Images 69.9 44.2 51.0 41.8 48.7 50.9 51.1

10% Real 15.3 19.1 31.6 11.2 6.1 11.7 15.8
10% Real + Syn 66.1 36.5 44.0 26.4 48.9 37.6 43.2
40% Real 55.8 31.6 47.3 27.4 24.8 41.9 38.2
40% Real + Syn 69.8 41.0 55.7 38.3 52.8 47.0 50.8
70% Real 55.3 30.6 47.9 36.4 25.0 41.2 39.4
70% Real + Syn 67.5 42.0 50.9 43.0 48.5 51.8 50.6
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5
Conclusion

As modern computer vision approaches for tasks like object detection and pose estimation have im-

proved in performance, the demand for large annotated datasets has also increased. A key reason be-

hind this increase is the growing popularity of data-intensive deep learning based approaches in com-

puter vision. A factor that might prevent the large scale adoption of these approaches for detecting

instances might be the dearth of such datasets. In order to make these approaches more accessible, we
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present three different approaches to reduce the annotation effort involved. We show how classical

approaches in computer vision for the problems of object tracking and Structure from Motion can

be used to tackle the data problem for deep learning based object detection approaches. Finally, we

generate synthetic scenes for the task of instance detection. The key insight we found is that generat-

ing scenes with lots of random variations improves performance of object detectors and is much easier

than synthesizing photo-realistic scenes. Future work on object pose estimation can also benefit from

our approach. By associating pose labels to the object instance images and rendering them, one can

get a large collection of detection and pose labels. This holds practical value, as large datasets of par-

ticular instances with accurate pose labels are hard to collect. In practice, a combination of all these

approaches can be used to generate large annotated datasets without much human intervention.
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