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Abstract— The budgeted information gathering problem -
where a robot with a fixed fuel budget is required to maximize
the amount of information gathered from the world - appears
in practice across a wide range of applications in autonomous
exploration and inspection with mobile robots. Although there
is an extensive amount of prior work investigating effective ap-
proximations of the problem, these methods do not address the
fact that their performance is heavily dependent on distribution
of objects in the world. In this paper, we attempt to address
this issue by proposing a novel data-driven imitation learning
framework.

We present an efficient algorithm, EXPLORE, that trains a
policy on the target distribution to imitate a clairvoyant oracle
- an oracle that has full information about the world and com-
putes non-myopic solutions to maximize information gathered.
We validate the approach on a spectrum of results on a number
of 2D and 3D exploration problems that demonstrates the
ability of EXPLORE to adapt to different object distributions.
Additionally, our analysis provides theoretical insight into the
behavior of EXPLORE. Our approach paves the way forward
for efficiently applying data-driven methods to the domain of
information gathering.

I. INTRODUCTION

This paper considers the budgeted information gathering
problem. Our aim is to maximally explore a world with a
robot that has a budget on the total amount of movement
due to battery constraints. This problem fundamentally recurs
in mobile robot applications such as autonomous mapping
of environments using ground and aerial robots [1], [9],
monitoring of water bodies [12] and inspecting models for
3D reconstruction [13], [11].

The nature of “interesting” objects in an environment and
their spatial distribution influence the optimal trajectory a
robot might take to explore the environment. As a result, it
is important that a robot learns about the type of environment
it is exploring as it acquires more information and adapts it’s
exploration trajectories accordingly. This adaptation must be
done online, and we provide such an algorithm in this paper.

To illustrate our point, consider two extreme examples of
environments for a particular mapping problem, shown in
Fig. 1. Consider a robot equipped with a sensor (RGBD
camera) that needs to generate a map of an unknown envi-
ronment. It is given a prior distribution about the geometry of
the world, but has no other information. This geometry could
include very diverse settings. First it can include a world
where there is only one ladder, but the form of the ladder
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Fig. 1: EXPLORE trains a policy to gather information. The effectiveness
of a policy to gather information depends on the distribution of worlds. (a)
When the distribution corresponds to a scene containing ladders, the learnt
policy executes a helical motion around parts of the ladder already observed
as it’s unlikely that there is information elsewhere. (b) When the distribution
corresponds to a scene from a construction site, the learnt policy executes
a large sweeping motion as information is likely to be dispersed.

must be explored (Fig. 1a), which is a very dense setting.
Second, it could include a sparse setting with spatially
distributed objects, such as a construction site (Fig. 1b).

The important task for the robot is to now try to infer
which type of environment it is in based on the history
of measurements, and thus plan an efficient trajectory. At
every time step, the robot visits a sensing location and
receives a sensor measurement (e.g. depth image) that has
some amount of information utility (e.g. surface coverage of
objects with point cloud). As opposed to naive lawnmower-
coverage patterns, it will be more efficient if the robot could
use a policy that maps the history of locations visited and
measurements received to decide which location to visit next
such that it maximizes the amount of information gathered
in the finite amount of battery time available.

The ability of such a learnt policy to gather information
efficiently depends on the prior distribution of worlds in



which the robot has been shown how to navigate optimally.
Fig. la shows an efficient learnt policy for inspecting a
ladder, which executes a helical motion around parts of
the ladder already observed to efficiently uncover new parts
without searching naively. This is efficient because given
the prior distribution the robot learns that information is
likely to be geometrically concentrated in a particular volume
given it’s initial observations of parts of the ladder. Similarly
Fig. 1b shows an effective policy for exploring construction
sites by executing large sweeping motions. Here again the
robot learns from prior experience that wide, sweeping
motions are efficient since it has learnt that information is
likely to be dispersed in such scenarios.

Thus our requirements for an efficient information-
gathering policy can be distilled to two points:

1) Reasoning about posterior distribution over world
maps: The robot should use the history of movements
and measurements to infer a posterior distribution of
worlds. This can be used to infer locations that are
likely to contain information and efficiently plan a
trajectory. However the space of world maps is very
large, and it is intractable to compute this posterior
online.

2) Reasoning about non-myopic value of information:
Even if the robot is able to compute the posterior and
hence the value of information at a location, it has to
be cognizant of the travel cost to get to that location.
It needs to exhibit non-myopic behavior to achieve
a trade-off that maximizes the overall information
gathered. Performing this computationally expensive
planning at every step is prohibitively expensive.

Even though it’s natural to think of this problem setting

as a POMDP, we frame this problem as a novel data-driven
imitation learning problem [26]. We propose an algorithm
EXPLORE (Exploration by Learning to Imitate an Oracle)
that trains a policy on a dataset of worlds by imitating a
clairvoyant oracle. During the training process, the oracle
has full information about the world map (and is hence
clairvoyant) and plans movements to maximize information.
The policy is then trained to imitate these movements as
best as it can using partial information from the current
history of movements and measurements. As a result of
our novel formulation, we are able to sidestep a number
of challenging issues in POMDPs like explicitly computing
posterior distribution over worlds and planning in belief
space.

Our contributions are as follows

1) We map the budgeted information gathering problem
to a POMDP and present an approach to solve it using
imitation learning.

2) We present an approach to train a policy on the non-
stationary distribution of event traces induced by the
policy itself. We show that this implicitly results in the
policy operating on the posterior distribution of world
maps.

3) We show that by imitating an oracle that has access to

the world map and thus can plan optimal routes, the
policy is able to learn non-myopic behavior. Since the
oracle is executed only during train time, the compu-
tational burden does not affect online performance.

The remainder of this paper is organized as follows.
Section II presents the formal problem, while Section III
contains relevant work. The algorithm is presented in Section
IV and Section VI presents experimental results. Finally we
conclude in Section VII with discussions and thoughts on
future work.

II. PROBLEM STATEMENT
A. Notation

Let V be a set of nodes corresponding to all sensing lo-
cations. The robot starts at node vs. Let £ = (v1, v, ..., vp)
be a sequence of nodes (a path) such that v; = vs. Let =
be the set of all such paths. Let ¢ € M be the world map.
Let y € Y be a measurement received by the robot. Let
H : VxM — Y be a measurement function. When the robot
is at node v in a world map ¢, the measurement y received
by the robot is y = H (v,¢). Let F : 2¥ x M — Rxg
be a utility function mapping a subet of nodes and a world
map to a utility. For a path £ and a world map ¢, F (£, ¢)
assigns a utility to executing the path on the world. Note
that F is a set function. Given a node v € V, a set of nodes
V C V and world ¢, the discrete derivative of the utility
function F is Az (v|V,¢) = F(VU{v},¢) — F(V,9)
Let 7 : 2 x M — R>q be a travel cost function. For a
path ¢ and a world map ¢, T (&, ¢) assigns a travel cost to
executing the path on the world.

B. Problem Formulation

We first define the problem setting when the world map
is fully known.
Problem 1 (Fully Observable World Map; Constrained
Travel Cost). Given a world map ¢, a travel cost budget
B and a time horizon T, find a path & that maximizes utility
subject to travel cost and cardinality constraints.

argmax JF (&, 9)
e=

st. T(€,¢)<B (1
€] <T+1

Now, consider the setting where the world map ¢ is

unknown. Given a prior distribution P(¢), it can be inferred
only via the measurements y; received as the robot visits
nodes v;. Hence, instead of solving for a fixed path, we
compute a policy that maps history of measurements received
and nodes visited to decide which node to visit.
Problem 2 (Partially Observable World Map; Constrained
Travel Cost). Given a distribution of world maps, P(¢), a
travel cost budget B and a time horizon T, find a policy
that at time t, maps the history of nodes visited {v; Z;% and
measurements received {yl}f;% to compute node v, to visit
at time t, such that the expected utility is maximized subject
to travel cost and cardinality constraints.



C. Mapping to MDP and POMDP

1) Mapping fully observable problems to MDP:
The Markov Decision Process (MDP) is a tuple
(S, M, A,Q, R, T) defined up to a fixed finite horizon T. It
is defined over an augmented state space comprising of the
ego-motion state space S (which we will refer to as simply
the state space) and the space of world maps M.

Let s; € S be the state of the robot at time ¢. It is defined
as the set of nodes visited by the robot till time t, s; =
(v1,v2,...,v:). This implies the dimension of the state space
is exponentially large in the space of nodes, S = 2/VI. The
initial state s; = v, is the start node. Let a; € A be the
action executed by the robot at time ¢. It is defined as the
node visited at time t+1, a; = v4y;1. The set of all actions is
defined as A = V. Given a world map ¢, when the robot is
at state s the utility of executing an action a is F (s U a, ¢).
Let Ageas (s,6) C A be the set of feasible actions that the
robot can execute when in state s in a world map ¢. This is
defined as follows

Afeas (s,0) ={a | a € A, T (sUa,¢) <B} (2)

Let Q(s,a,s’) = P(s'|s,a) be the state transition function.
In our setting, this is the deterministic function s’ = s U a.
Let R(s,¢,a) € [0,1] be the one step reward function. It
is defined as the normalized marginal gain of the utility
function, R (s,¢,a) = %. Let m(s,¢) € II be a
policy that maps state s and world map ¢ to a feasible action
a € Ageas (8, ¢). The value of executing a policy 7 for ¢ time

steps on a world ¢ starting at state s.

t
V;SW (Sa (b) = Z EsiNP(s’|s,7r,7L) [R (5i7 ¢7 7T(Si, ¢))] 3)
i=1

where P(s’|s,m, i) is the distribution of states at time ¢
starting from s and following policy 7. The state action value
Q7 (s, ¢,a) is the value of executing action a in state s in
world ¢ and then following the policy 7 for ¢ — 1 timesteps

Q?(sv ¢a a) =R (Sa ¢a Cl) + Es’~P(s’|s,a) [‘/7521(8/7 ¢)] “4)
The value of a policy 7 for T steps on a distribution of
worlds P(¢) and starting states P(s)

J (1) = Esop(s),p~pio) (VT (5, 0)] Q)
The optimal MDP policy is mypp = arg max J (7).

2) Mapping partially observable probleTlroszto POMDP:
The Partially Observable Markov Decision Process
(POMDP) is a tuple (S, M, A, Q,R,O,Z,T). The first
component of the augmented state space, the ego motion
state space S, is fully observable. The second component,
the space of world maps M, is partially observable through
observations received.

Let o € O be the observation at time step t. This is
defined as the measurement received by the robot o, =
yi. Let Z (s,a,¢,0) = P(o|s,a,d) be the probability of
receiving an observation o given the robot is at state s and
executes action a. In our setting, this is the deterministic
function o = H (a, ¢).

Let the belief at time ¢, 14, be the history of state, action,
observation tuple received so far, i.e. {(s;,a;,0;)}!_;. Note
that this differs from the conventional use of the word belief
which would usually imply a distribution. However, we use
belief here to refer to the history of state, action, observations
conditioned on which one can infer the posterior distribution
of world maps P(¢). Let the belief transition function be
P’ |4, a). Let w(s,) € II be a policy that maps state s
and belief ¢ to a feasible action a € Afeas (S, @). The value
of executing a policy 7 for ¢ time steps starting at state s
and belief v is

t
VI (5,0) = Y Eyopy g, [B (506, 7 (si,14))] - (6)
i=1 p~P(pl1)i)

s;~P(s'|s,7,1)
where P(¢|¢,7,4) is the distribution of beliefs at time
¢ starting from ¢ and following policy 7. P(¢[);) is the
posterior distribution on worlds given the belief 1);. Similarly
the action value function Qf is defined as

Q7 (s,1),a) =Egpp(olw) [ (8, ¢,a)] +

E sl | Vi (5'50)]
The optimal POMDP policy can be expressed as
7 = argmaxE ,op (1), [Q}_m(s,w,fr(s, w))} )
well s~P(s|7,t),
Y~ P(h|7,t)
where U(1 : T') is a uniform distribution over the discrete
interval {1,2,...,T}, P(s | 7,t) is the distribution of states
following policy 7 for ¢ steps, P(v | 7,t) is the distribution
of belief following policy 7 for ¢ steps. The value of a policy
7 € II for T steps on a distribution of worlds P(¢), starting
states P(s) and starting belief P (1))

J(7) = Egnp(s) pmpw) [VE (5,0)] ©)
where the posterior world distribution P(¢ | ¥) uses P(¢)
as prior.

)

III. RELATED WORK

Problem 1 is a submodular function optimization (due to
nature of F) subject to routing constraints (due to 7). In
absence of this constraint, there is a large body of work
on near optimality of greedy strategies by Krause et al.[19],
[21], [20] - however naive greedy approaches can perform
arbitrarily poorly. Chekuri and Pal [2] propose a quasi-
polynomial time recursive greedy approach to solving this
problem. Singh et al.[30] show how to scale up the approach
to multiple robots. However, these methods are slow in
practice. Iyer and Bilmes [14] solve a related problem of
submodular maximization subject to submodular knapsack
constraints using an iterative greedy approach. This inspires
Zhang and Vorobeychik [35] to propose an elegant general-
ization of the cost benefit algorithm (GCB) which we use
as an oracle in this paper. Yu et al.[34] frame the problem
as a correlated orienteering problem and propose a mixed
integer based approach - however only correlations between
neighboring nodes are considered. Hollinger and Sukhatme
[12] use sampling based approaches which require a lot of
evaluations of the utility function in practice.



v &)
°

N

® ° o
[ [-% Q v
» 2 %
+ o
(<3 v
k)\ o
9 -l ©0 0@
PPN > e
||
oo g
[}
baa o Qn oy @

o
2
ae
o
L e oo

s ©

Rollin with policy mmix
to get state sy, belief 1y

Sample world ¢
from database P(¢)

Problem 2 in the absence of the travel cost constraint
can be efficiently solved using the framework of adaptive
submodularity developed by Golovin et al.[6], [7] as shown
by Javdani et al.[16], [15] and Chen et al.[4], [3]. Hollinger
et al.[10], [11] propose a heuristic based approach to select a
subset of informative nodes and perform minimum cost tours.
Singh et al.[31] replan every step using a non-adaptive infor-
mation path planning algorithm. Such methods suffer when
the adaptivity gap is large [10]. Inspired by adaptive TSP
approaches by Gupta et al.[8], Lim et al.[25], [24] propose
recursive coverage algorithms to learn policy trees. However
such methods cannot scale well to large state and observation
spaces. Heng et al.[9] make a modular approximation of the
objective function. Isler et al.[13] survey a broad number of
myopic information gain based heuristics that work well in
practice but have no formal guarantees.

Online POMDP planning also has a large body of work
([171, [28], [22]. Although there exists fast solvers such as
POMCEP (Silver and Veness [29]) and DESPOT (Somani et
al.[32]), the space of world maps is too large for online
planning.

IV. APPROACH

A. Overview

Fig. 2 shows an overview of our approach. The central
idea is as follows - we train a policy to imitate an algorithm
that has access to the world map at train time. The policy
7(s,1)) maps features extracted from state s and belief ¢ to
an action a. The algorithm that is being imitated has access
to the corresponding world map ¢.

B. Imitation Learning

We now formally define imitation learning as applied to
our setting. Let 7 € Il be a policy defined on a pair of state
and belief (s,v). Let the distribution of states and beliefs
induced by roll-in ' with policy 7 be P(s|7) and P(¢|7). Let
L (s,1,7) be the loss of a policy & when executed on state
s and belief 1. This loss function implicitly captures how
well policy 7 imitates a reference policy (such as an oracle
algorithm). Our goal is to find a policy 7 which minimizes
the observed loss under its own induced distribution of state

IRoll-in be the process of executing a policy 7 from the start to a certain
time horizon. Similarly roll-out is the process of executing a policy from
the current state and belief till the end.

Update learner 7 to
map (s¢, 1, a) to QTOF

Query oracle mor with a;
to get Q™ (s, ¢, ar)

Fig. 2: Overview of EXPLORE which iteratively trains a learner 7 to imitate a clairvoyant oracle ToR.

and beliefs.

T = aI‘gH}inEswP(s‘ﬁ-)’wwp(w‘ﬁ) [£ (S,’(/J,ﬁ')] (10)
well

This is a non-i.i.d supervised learning problem. Ross and

Bagnell [26] show how such problems can be reduced to

no-regret online learning using dataset aggregation for one

step loss (DAGGER) and later [27] extend the approach to

where the loss is the cost-to-go of an oracle reference policy

by aggregating values to imitate (AGGREVATE).0

C. Solving POMDP via Imitation of a Clairvoyant Oracle

When (8) is compared to the imitation learning frame-
work in (10), we see that in addition to the induced state
belief distributions, the loss function analogue L (s, 1), ) is
Q?_H_l(s, ¥, 7(s,1)). This implies rolling out with policy
7. For poor policies 7, the action value estimate Q;ﬁ_t 11
would be very different from optimal values Q}_t 11

In our approach, we alleviate this problem by defining a

surrogate value functions to imitate - the cumulative reward
gathered by a clairvoyant oracle.
Definition 1 (Clairvoyant Oracle). Given a distribution of
world map P(¢), a clairvoyant oracle wor(s, ¢) is a policy
that maps state s and world map ¢ to a feasible action
a € Afeas (S, ) such that it approximates the optimal MDP
policy, Tor ~ mvpp = argmax J ().

TE
The term clairvoyant is used because the oracle has full
access to the world map ¢ at train time. The oracle can be
used to compute state action value as follows

Q?OR(& (,25, a’) =R (53 ¢a a) + ES/NP(S/ls,a) [V;TiolR(Sla QS)]
(11)
Our approach is to imitate the oracle during training. This
implies that we train a policy 7 by solving the following
optimization problem

#=argmaxE oy, (@7, (s, 6 7(s,9))] (12)

#ell s~P(s|7,t),
¢~P(9),
Y~P(Y|p,7,t)

D. Algorithm

Alg. 1 describes the EXPLORE algorithm. It takes as
input the training distribution P(¢), the action set A, time



Algorithm 1 EXPLORE: Imitation Learning of Oracle

1: Initialize D < ), 71 to any policy in Il
2: for i =1to N do

3: Initialize sub dataset D; + ()

4 Let roll in policy be mmix = Bimor + (1 — 8i)7;
5: Collect m data points as follows:

6: for j =1 to m do

7 Sample world map ¢ from dataset P(¢)

8 Sample uniformly ¢ € {1,2,...,T}

9 Assign initial state s; = v

10 Execute mpix up to time ¢ — 1 to reach (s, 1)
11: Execute any action a; € Afeas (St, @)

12: Execute oracle mor from ¢t + 1 to T on ¢

13: Collect value to go Q7" = Q7°% | (s¢, ¢, ay)
14: D; + D; U {st,z/)t,at,t,Q?OR}

15: Aggregate datasets: D + D|JD;

16: Train cost-sensitive classifier ;41 on D

17: (Alternately: use any online learner ;11 on D;)

18: Return best 7; on validation

horizon T, the oracle policy mor, number of EXPLORE
iterations N and number of episodes per iteration m. The
algorithm iteratively trains a sequence of learnt policies
(1, 72,...,7n) by aggregating data for an online cost-
sensitive classification problem and returns the best policy
7r; on validation.

mry is initialized as a random policy (Line 1). At iteration
i, the policy that is used to roll-in is a mixture policy of
learnt policy 7; and the oracle policy mor (Line 4) using
mixture parameter (3;. A set of m cost-sensitive classification
datapoints are captured as follows: a world ¢ is sampled
(Line 7). The mmix is used to roll-in to a random time from
an initial state to reach (s¢, ;) (Lines 8—10). An exploratory
action is selected (Line 11). The clairvoyant oracle is given
full access to ¢ and asked to roll-out and provide an action
value Q7% (Lines 12-13). {s;, ¢y, ar,t, Q7°%} is added
to a dataset D; of cost-sensitive classification problem and
the process is repeated (Line 14). D, is appended to the
original dataset D and used to train an updated learner 7,41
(Lines 15-17).

V. ANALYSIS

Following the analysis style of AGGREVATE [27], we first
introduce a hallucinating oracle.
Definition 2 (Hallucinating Oracle). Given a prior dis-
tribution of world map P(¢$) and roll-outs by a policy
7, a hallucinating oracle Tor computes the instantaneous
posterior distribution over world maps and takes the action
with the highest expected state-action value as computed by
the clairvoyant oracle.

Tor(s, ¥) = arg max By g/ y,7.0) [Q7 41 (5, ¢, a)]
ac (13)
The hallucinating oracle is an effective policy for infor-
mation gathering as alluded to by Koval et al.[18] and we
now show that we implicitly imitate it.
Lemma 1. The policy optimization rule (12) is equivalent

to

[Q;Ci%-kl(‘sa ¢7 771'(57 d)))]

T = argmaX]E t~U(1:T),
Fell s~ P(s|7,t),
¢~P(9),
P (Y|, 7 t)

Consequently our learnt policy has the following guarantee

Theorem 1. N iterations of EXPLORE, collecting m regres-
sion examples per iteration guarantees that with probability
at least 1 — ¢

J(7) >J (Tor)

-2 AIT\/ Eclass T Ereg + O ( log ((1/5)/Nm))

T?log T
oS )

where ¢ is the empirical average online learning regret on
the training regression examples collected over the iterations
and cclass IS the empirical regression regret of the best
regressor in the policy class.

For both proofs, refer to [5]. We now analyze the compu-
tational complexity during training and testing phase. From
Alg. 1, the training complexity can be derived to be

N [m (0.5TO(|V|) + O(oracle)) + O(learn)] (14)

We use an efficient greedy oracle (GCB [35]) such that
O(oracle) = 0.57°0(|V]) but in general can be exponential
in T. The test-time complexity is O(|V]).

VI. EXPERIMENTAL RESULTS
A. Implementation Details

Our implementation is open sourced for both MATLAB
and C++ (https://bitbucket.org/sanjiban/
matlab_learning_info_gain).

1) Problem Details: The utility function F is selected
to be a fractional coverage function (similar to [13]) which
is defined as follows. The world map ¢ is represented as a
voxel grid representing the surface of a 3D model. The sensor
measurement H (v, ¢) at node v is obtained by raycasting on
this 3D model. A voxel of the model is said to be ‘covered’
by a measurement received at a node if a point lies in that
voxel. The coverage of a path £ is the fraction of covered
voxels by the union of measurements received when visiting
each node of the path. The set of nodes V is created by
uniformly randomly sampling poses. The travel cost function
T is chosen to be the euclidean distance. The values of
total time step 7" and travel budget B varies with problem
instances and are specified along with the results.

2) Learning Details: We now describe how the tu-
ple (s,a,®) is mapped to a vector of features f =
[fic [Eot] ' The belief v/ is represented by an occupancy
map. Given a candidate action a, a sensor model can be used
to raycast from corresponding node v on the occupancy map
and compute various information gain metrics as described
in [13] denoted by f1g. Given a state s (corresponds to a
path &) and action a (corresponds to a node v), the vector
fmot encodes the relative rotation and translation required to
visit v from £. We observed that this feature representation
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Fig. 3: Comparison of EXPLORE with baseline heuristics on a 2D exploration problem on 2 different datasets - dataset 1 (concentrated information) and
dataset 2 (distributed information). The problem details are: T' = 30, B = 2500, |.A| = 300. Sample world maps from (a) dataset 1 and (b) dataset 2.
Training dataset is created with 10 world maps, each with 10 random node sets to create a dataset size of 100. Test results on 1 representative world map
with 100 random node sets are shown for (c) dataset 1 and (d) dataset 2. A sample test instance is shown along with a plot of cumulative reward with
time steps for EXPLORE and other baseline heuristics. The error bars show 95% confidence intervals. Snapshots of execution of EXPLORE, Rear Side
Voxel and Average Entropy are shown for (e) dataset 1 and (f) dataset 2. The snapshots show the evidence grid at time steps 7,15 and 30.

TABLE I: Learning Details

has powerful generalization capabilities given the ‘local’

nature of information gain metrics. Hence, if a completel Problem Train Test EXPLORE Feature
‘ . g e p y Dataset m  Dataset Iterations N  Dimension |f|
different world is encountered at test time, as long as there
. . . 2D 100 100 100 16
is sufficient overlap between artifacts such as walls, corners 3D 100 10 10 16

or object sizes, the feature distributions will match. We use
random. forest [23] as a funct.ion approximator. We use the  map As EXPLORE uses these heuristic values as part of its
generalized cost benefit algorithm (GCB) [35] as the oracle  feature vector, it will implicitly learn a data driven trade-off
owing to its small run times. Details are specified in Table. . petween them.

3) Baseline: For baseline policies, we compare to the
class of information gain heuristics discussed in [13]. The
heuristics are remarkably effective, however, their perfor- We create a set of 2D exploration problems to gain a
mance depends on the distribution of objections in a world  better understanding of the behavior of the EXPLORE and

B. 2D Exploration
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Fig. 4: Comparison of EXPLORE with baseline heuristics on a 3D exploration problem where training is done on simulated world maps and testing is done
on a real dataset of an office workspace. The problem details are: 7' = 10, B = 12, |.A| = 50. (a) Samples from 100 simulated worlds resembling an office
workspace created in Gazebo. (b) Real dataset collected by [33] using a RGBD camera. (c) Plot of cumulative reward with time steps for EXPLORE and
baseline heuristics on the real dataset. (d) The 3D model of the real office workspace formed by cumulating measurements from all poses. (e) Snapshots
of execution of Occlusion Aware heuristic at time steps 1, 3,5, 9. (f) Snapshots of execution of EXPLORE heuristic at time steps 1, 3,5, 9.
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Fig. 5: Comparison of EXPLORE with baseline heuristics on a number of experiments both 2D and 3D. Each row corresponds to different datasets. The
columns contain information about the dataset, representative pictures and performance results for all algorithms. The numbers are the lower and upper
confidence (for 95% CI) of cumulative reward at the final time step. The algorithm with the highest median performance is emphasized in bold.

baseline heuristics. A dataset comprises of 2D binary world
maps, uniformly distributed nodes and a simulated laser. The
training size is 100, T = 30, B = 2500.

1) Dataset 1: Concentrated Information: Fig. 3a shows a
dataset created by applying random affine transformations
to a pair of parallel lines. This dataset is representative
of information being concentrated in a particular fashion.
Fig. 3c shows a comparison of EXPLORE with baseline
heuristics. The heuristic Rear Side Voxel performs the best,
while EXPLORE is able to match the heuristic. Fig. 3e shows
progress of EXPLORE along with two relevant heuristics
- Rear Side Voxel and Average Entropy. Rear Side Voxel
takes small steps focusing on exploiting viewpoints along
the already observed area. Average Entropy aggressively

visits unexplored area which is mainly free space. EXPLORE
initially explores the world but on seeing parts of the lines
reverts to exploiting the area around it.

2) Dataset 2: Distributed Information: Fig. 3b shows a
dataset created by randomly distributing rectangular blocks
around the periphery of the map. This dataset is representa-
tive of information being distributed around. Fig. 3c shows
that the heuristic Average Entropy performs the best, while
EXPLORE is able to match the heuristic. Rear Side Voxel
saturates early on and performs worse. Fig. 3¢ shows that
Rear Side Voxel gets stuck exploiting an island of informa-
tion. Average Entropy takes broader sweeps of the area thus
gaining more information about the world. EXPLORE also
shows a similar behavior of exploring the world map.



Thus we see that on changing the datasets the performance
of the heuristics reverse while our data driven approach is
able to adapt seamlessly. Other datasets are shown in Fig. 5.

C. 3D Exploration

We create a set of 3D exploration problems to test the
algorithm on more realistic scenarios. The datasets comprises
of 3D worlds created in Gazebo and simulated Kinect. To
show the practical usage of our pipeline, we show a scenario
where a policy is trained on synthetic data and tested on a
real dataset.

Fig. 4a shows some sample worlds created in Gazebo to
represent an office desk environment on which EXPLORE is
trained. Fig. 4b shows a dataset of an office desk collected
by TUM Computer Vision Group [33]. The dataset is parsed
to create a pair of pose and registered point cloud which
can then be used to evaluate different algorithms. Fig. 4c
shows that EXPLORE outperforms all heuristics. Fig. 4f
shows EXPLORE getting good coverage of the desk while
the best heuristic Occlusion Aware misses out on the rear
side of the desk. Fig. 5 shows more datasets where training
and testing is done on synthetic worlds.

VII. CONCLUSION

We presented a novel data-driven imitation learning frame-
work to solve budgeted information gathering problems. Our
approach, EXPLORE, trains a policy to imitate a clairvoyant
oracle that has full information about the world and can
compute non-myopic plans to maximize information. The
effectiveness of EXPLORE can be attributed to two main
reasons: Firstly, as the distribution of worlds varies, the clair-
voyant oracle is able to adapt and consequently EXPLORE
adapts as well. Secondly, as the oracle computes non-myopic
solutions, imitating it allows EXPLORE to also learn non-
myopic behaviors.
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