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Abstract

With the progress in deep learning based methods, visual pattern mining has
seen a significant improvement in extracting visual patterns in the form of mid-level
elements[ 18] and using these patterns for object recognition tasks. The problem with
the previous approaches is that they are fully supervised and requires a large amount
of labelled data for pattern mining. But how to make it work when there is little or no
labelled data? In this work, we propose an unsupervised pattern mining algorithm
which works very well given a large unlabelled dataset. We further extend it to
show how it also adapts to include labelled data as well and thus, is able to extract
information from both labelled and unlabelled data together. This property makes it
very useful for low-shot recognition tasks where the labelled data is present in very
small quantities and there is an abundance of unlabelled data. In this work we show
the effectiveness of our pattern mining algorithm on the task of low-shot fine grained
recognition and image labelling. We show that our unsupervised mining algorithm
is able to detect fine grained patterns of good quality even without using any labels
and if given a few labelled images there is a significant improvement in quality and
diversity of patterns. We also show the ability of our approach in labelling more
images from the large unlabelled pool and adding them iteratively to the labelled set
in a semi-supervised learning based approach. Our method performs much better
than the baselines which include previous state of the art approaches to fine grained
recognition.
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Chapter 1

Introduction

Recently, a lot of work has been done in visual mid-level element discovery. Mid-level pat-
terns are essentially patches in images which satisfy following two properties: Representative-
ness which means that the patterns should be present frequently enough and Discriminativeness
which means that they should be present frequently in a particular category but not in rest of
the world. These two properties make the patterns interesting as they can be effectively used
to distinguish one object category from another. Figure shows examples of such patterns
for different animals. These mid level elements have been used a lot in tasks like classification,
action recognition, discovering stylistic elements, etc.

A lot of techniques have been proposed in the last few years for extracting patterns. The
traditional methods are based on hand crafted features and are less efficient. Very recently,
Mid level Deep Pattern Mining [18]] was the first work to propose an algorithm to mine for
patterns in a fully automatic manner very efficiently. They also used CNN activations instead
of HOG features (HOG is considered as a lossy descriptor) used by it’s predecessors which
resulted in a lot of improvement in their tasks. Another advantage of their approach is that it can
handle large amounts of data really well and can mine patterns very efficiently irrespective of
the number of images present. There are some issues with their approach. Firstly, the approach
is fully supervised and thus, requires category labels for pattern mining process. It cannot be
used with any unlabelled dataset. Their approach only works well when there is an availability
of a large labelled dataset. But when we have only a few labelled images there is not enough
information available to extract many diverse patterns that can generalize to the entire dataset
which is another problem with their approach. In this work, we propose a way to mine patterns
in an unsupervised way while ensuring diversity of detectors at the same time. Inspired by the
techniques used in [[18]], we propose a visual pattern mining method that can work with a large
pool of unlabelled data very efficiently and effectively. It requires no labels whatsoever. It is
a fact that the availability of unlabelled data on the web is much more than labelled data and
labelling data tends to be very expensive and inefficient. Our approach can take advantage of this
and can easily utilize vast amount of information from the unlabelled data.

Although labelling a lot of data tends to be expensive, it is fairly inexpensive and easy to label
data of the order of a few hundreds. In this work we further extend our pattern mining approach
to handle this situation as well. Our approach can thus extract information from both labelled
data and unlabelled data together and to our knowledge there has been no work previously in
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Figure 1.1: Examples of patterns for different animal categories.

this direction. It gives us the ability to use our approach for low-shot recognition tasks where
usually there is an abundance of unlabelled data and a lack of labelled data. In this work we will
focus on the task of low-shot fine grained recognition and we show that given very few labelled
images, out approach performs much better that the fully supervised pattern mining approach in
the previous work [18]. Since very few images are labelled the supervised algorithm proposed in
[18]] has very less information to mine patterns from as it can only use those few labelled images
and their patterns may not generalize well to the entire dataset. In this work, we show that our
method utilizes the large number of unlabelled images along with the few labelled images and are
able to extract better patterns patterns and identify fine grained categories more accurately. Our
patterns generalize much better to the entire dataset and has a much better coverage of categories
of the dataset because the ability to use the large unlabelled dataset enables our algorithm to see
and learn from all this extra information present and it tries to extract patterns from as many
different images and as many different categories as it can.

Another contribution of our work is that we also use our approach to label the unlabelled data
present very effectively and efficiently. We employ semi-supervised bootstrapping like approach
to label more images and add those images to our labelled set. This further expands the utility of
our approach and showcases how it can be used in so many different scenarios and applications.
We show that our method outperforms all other previous baselines including the supervised min-
ing method and other state-of-the-art approaches to fine grained recognition when starting with
a small initial labelled set and a large unlabelled set. We show better performance in not only
fine grained recognition task but the labelling of images is also much better when our approach
is used compared to other baselines.



Chapter 2
Related Work

2.1 Mid level visual pattern mining

Mid level elements were first introduced by Singh et al. [23] and have been used extensively for
tasks related to images such as image classification [6} [11} [17, 24]], object detection[1], discov-
ering stylistic elements[3) [16] and estimating geometry[13]]. For videos, [[10] have studied mid
level pattern mining extensively provided examplar-SVM based procedure to mine for discrim-
inative patches. But all these approaches are based on hand-crafterd features and typically have
to search through thousand of image patches to find discriminative and representative patterns.
As the size of data grows, this type of searching becomes more and more inefficient. Recently,
[18]] introduced a pattern mining approach for images integrated with deep learning and works
well on large datasets. This approach handles big data very efficiently but a drawback of this
approach is that it requires a large labelled data. It used information from all labelled images to
extract interesting patterns and use them for recognition task. Our approach is inspired by their
work and we propose a method which is capable of mining patterns in an unsupervised way and
using all the untapped information in the large unlabelled data. In addition to that our method
can also make use of a few labelled images as well to get even better and diverse patterns which
enables our approach to be used in low-shot recognition tasks.

2.2 Fine Grained Recognition

A lot of work has been done in the area of fine grained recognition in the past. Many recent
methods have taken advantage of part annotations , [2], [3], [29]; co-segmentation techniques
[[15] and bounding box annotations [20] for fine-grained recognition. On the other hand many
traditional [/]], [26], [27] and [28] as well as recent deep learning based methods [[19] do not use
additional annotations similar to our work.

But all of the above methods are fully supervised and use the entire labelled data in their
approaches. How to deal with this when there is little to no data labels present ? Labelling a few
images of the order of a few hundred is easy and inexpensive. We propose a low shot learning
approach to tackle this problem. Given very few fine grained images, our approach is able to
use both the labelled images and a large pool of unlabelled images to get patterns for all the fine
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grained categories and then recognize fine grained images using those patterns. In addition to
low-shot recognition task, we employ semi-supervised bootstrapping based approach to further
label the unlabelled set of images.

2.3 Semi-supervised Learning

Among the various levels of supervision that have been explored in the community, semi su-
pervised learning approaches [30] try to achieve a good balance between maximizing accuracy
while minimizing human input. A commonly used semi-supervised technique is the bootstrap or
self-learning approach [30] where an agent initially learns from a small amount of labeled data.
It then retrieves images from a large unlabeled pool whose labels it is most confident of, and
transfers these to the labeled set to re-learn its model. Such approaches often suffer from seman-
tic drift [4] and various approaches have been successfully used to resist this drift [4, 22]]. In this
work, our approach inspired from graph laplacian based approach [8] which has been shown to
work very well for low-shot tasks.



Chapter 3

Approach

This section explains our overall approach. Each part of the approach is described in the follow-
ing subsections. Section 3.1 describes the basics of a few data mining techniques, specifically
frequent pattern mining and association rule mining .Section 3.2 describes the our unsupervised
pattern mining algorithm in detail. Section 3.3 describes the motivation and process of adding
a little supervision for low-shot tasks and modification of pattern mining algorithm. Section 3.4
describes the entire fine-grained recognition process in detail.

3.1 Data Mining: Market basket analysis

In this section, we will first explain what the core market basket method entails. Market basket
analysis is a modelling technique used for data mining which models two things: how often a
person buys a particular item from a store; and an “if-then” rule i.e. if he buys that particular
item, what other items he tends to buy along with it.

We define an “itemset” A = {ay, as, as, ..., a,} as the set of all n items present in the store. A
“transaction” ¢; is a subset of itemset A which refers to the items bought by person i in the store.
We define a “transaction database” D = {ti,ts,t3,...,1,,} as a set of transactions of m people
who visited the store. For a subset X of the itemset A to be frequently occurring, we need to find
the fraction of transactions containing X. This term is know as “support” of the itemset X.

_ #{ilte D, X Ct}
- m

supp(X)

For any two subsets X C A and Y C A, an association rule X — Y is an if-then rule implying
that if items in X are bought then items in Y are also bought by the same person. “Confidence”
of arule X — Y is defined as fraction of people who buy items in both X and Y to the people
who buy items in X only. This essentially illustrates a relationship between X and Y: how often
Y is bought with Y.
supp(X UY)
supp(X)

Given the market basket approach, we next explain how we use this analysis for mining
patterns in an unsupervised way first. After that we propose a way to incorporate the few labelled
images we have available with us.

conf(X =-Y)=
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Figure 3.1: Unsupervised Pattern Mining process

3.2 Unsupervised Pattern Mining

In this section we will explain our pattern mining algorithm in detail. Our aim is to automatically
find “interesting” patterns for each category. These patterns should represent that particular
category. To identify such patterns, we follow two rules of pattern mining:

¢ Representative: For a pattern to be an interesting pattern, it should be representative of
a category. It means that these patterns should appear frequently enough and present in
majority of the videos in that category.

¢ Discriminative: A pattern is discriminative for a category if it distinguishes that particular
category from others i.e. it is present frequently in the videos belonging to that category
but not present frequently in other categories.

The entire process is given in figure [3.1] Each step in the process is explained below.

3.2.1 Pre-processing

In this section we will explain how we generate “patches” from images and extract their features
which will be used for the pattern mining algorithm described below. From each image, we will
first sample small patches at 2 scales: 128x128 and 64x64 pixels. The sampling stride is 32
pixels spatially. For each of the patches, we will extract it’s 4096 dimensional CNN activation
using the model we trained above. In this way we extract patches from all the images belonging
to a dataset. The total number of patches extracted from each of the datasets amounts to almost 1
million on average. The next section explains how we discover a few “interesting” patterns from
all the extracted patches.

3.2.2 Creating transaction database

Transactions must be created before any pattern mining algorithms can process. In our work,
as we aim to discover patterns from image patches through pattern mining, an image patch is
utilized to create one transaction. For creating transactions, we utilize two important properties
of CNNs shown by [18] which are Sparsification and Binarization. As shown by them, the quality
of CNN feature is fairly preserved when we perform binarization and sparsification depending
upon the extent to which these properties are applied. To binarize a CNN vector, we only consider
top 'k’ values of the fc7 feature vector. In our experiments we set 'k’ to be 30. The rest of the
values are set to 0. After this, all non-zero values are set to 1. This creates a binarized vector
from fc7. Now to sparsify it, we only consider indices of the non-zero values in the binarized
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Example Image Transaction data (Augmenting label)

{3, 20, 57,.., 13, 1}, {2, 22, 47,..,, 13, 1}, {3, 205, 57,..., 17, 1}, {3, 2030, 3057,..., 13, 1}

Sparsified and augmented to create transaction data

]

Binarizing (Setting non-zero values to 1)
{0,0,1,...,0}, {0,1,0,...0}, {0,0,1,...1}, {1,0,1,...,0}
@
Considering top 30 activations and setting rest to 0
{0,0,9,...,0}, {0,100.76,0,...0}, {0,0,1.87,...2.1}, {6.6,0,12.09,...,0}

Fc7 features for each patch
{1.2,3.4,9,...,4}, {9,100.76,8.2,...5}, {0.9,0,1.87,..2.1}, {6.6,3.4,12.09,...1}

Figure 3.2: Transaction creation for an image

vector. Since there will be only ’k’ indices, the fc7 vector has been converted to a 'k’ dimensional
vector.

Now we process on to creating the full transaction database. Firstly, we augment the fine
grained dataset with a random set of images from imagenet (that do not belong to fine grained
categories). In this case, the entire fine-grained dataset will serve as the positive data with +1
class label and the random images we added will serve as negative data with class label -1. Now
we extract patches and the corresponding fc7 features from each image in this augmented dataset
as described in section ??. Now for each patch we have a 4096 dimensional feature vector and
we will use the sparsified version of the vector as explained earlier. To this 'k’ dimensional
vector, we augment *+1° if the patch belongs to an image in our fine grained dataset. Otherwise,
we augment ’-1’. Thus, each transaction in our transaction database represents one patch the
dimension of the transaction is "k+1’. We make such transactions from all the patches collected
from all the images in the augmented dataset. For every patch, we perform this step. Figure
[3.2] shows this process for an image. Collection of transactions corresponding to all the patches
creates the transaction database.

3.2.3 Association Rule Mining

Once we have a transaction database, we use Apriori algorithm to mine for a set of patterns using
association rule mining. Apriori algorithm is essentially a fast way of counting and extracting
relevant information form a large transaction database. Basically it follows the principle that if
one element is not frequent then any combination of this element with any other element can
never be frequent. For example, if an element *23’ is found 5 times in the entire transaction
database, a combination 23,4 cannot occur more than 5 times. Thus, the algorithm starts with
single length elements and selects the subset which are frequent which gives all length 1 frequent
elements. It then considers all combinations of length 2 from elements in this subset and finds
out which combinations are frequent. This gives all frequent length 2 elements. The process
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Figure 3.3: Apriori algorithm.

continues until all elements of all possible lengths are found which are frequent. Figure[3.3|gives
an overview of the algorithm. We show below how each of the patterns extracted satisfies our
requirements for being an ’interesting’ pattern. Each pattern P extracted satisfies two constraints:

e supp(P) > MinSupport

for some fixed value of MinSupport.

Since the support of the pattern P satisfy above constraint, this ensures that the “represen-
tativeness” criteria of pattern mining algorithm is satisfied because only those patterns will
be considered which are present frequently in the dataset. The patterns which occur rarely
will not satisfy the above criteria.

conf(P— > +1) > MinConf

for some fixed value of MinConf.

This criteria ensures that only those representative patterns will be considered further
which are present more often in the fine grained dataset and NOT in the random image
set we augmented to the dataset (which had the label -1 for all the images). The idea be-
hind this is that similar types of background (example sky, water, etc) occurs in most of
the fine grained images and using the random set of images against that removes the back-
ground patterns since only those patterns will satisfy this criteria that won’t be present in
random images often. Since the background is usually similar in most of natural images,
this will help remove patterns corresponding to background images.

3.2.4 Ensuring Diversity

Using association rule mining as described above, we have ensured that most of the background
patterns will be removed and fine grained patterns will be extracted. We can see that the problem
with this approach is that it will simply give us patterns which occur most frequently in the entire
dataset (since the entire dataset is assigned +1 category). So it is possible that the top patterns
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extracted in this way may only include a few of the fine grained categories and not represent
all of them. To ensure the diversity of patterns, we employ a greedy reward based approach.
We first extract 100,000 patterns using the above approach. We assign each image of the fine
grained dataset a score/reward of 1. Every extracted pattern is composed of patches from some
images. The score of a pattern is taken as the sum of scores of all images represented by this
pattern. Whenever we extract an pattern with maximum score, we reduce the score of the images
represented by that pattern by a fixed amount. This will result diverse patterns because there is
a high chance that the pattern selected next represents images most of which have a score of 1
i.e. they haven’t been represented by any pattern before. Running this algorithm in an iterative
manner results in diverse patterns. In this way we can order all the 100,000 patterns by extracting
1 pattern in each run of the loop. The top 10,000 patterns extracted in this way tend to be quite
diverse in nature and increase the amount of fine grained classes represented by them. The
diversity of patterns and coverage of categories increases by a lot and the patterns become more
useful and effective for recognition tasks because not these patterns can easily be generalized to
the entire dataset.

3.2.5 Retrieving detectors and encoding images

After extracting top patterns using the method proposed above, we have to convert the patterns
to detectors which can be used for object recognition task. Similar to [18]], for each extracted
pattern we consider all the patches that pattern is composed of and merge the patches together
using LDA based merging method where we first combine the features of all the patches a pattern
is composed of, subtract the merged value by mean of the dataset and divide it by the covariance
of the dataset. For a pattern ’p’, the detector ’d’ is given according to the equation below.

d=( Z featurepaen, — Mmeandata)/coVdata
VpatchDp

This technique when used for the top 10,000 patterns mined above will give us a final set of
10,000 detectors.

After retrieving the detectors, we can use them to encode an image and generate a new feature
representation for the new image. To accomplish that we fire each detector on the image in a
sliding window fashion and take the max score per detector per region encoded in a 2-level (1 1
and 2 2) spatial pyramid. We concatenate these responses from all the top detectors to form the
feature vector for the image. For our experiments, we consider an image at 3 scales and the final
feature representation of an image is the outcome of max pooling on the features from all three
scales. Every image can be represented in this new feature space and further recognition task can
be performed in this new feature space instead of fc7.
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3.3 Adding supervision

3.3.1 Motivation: Problem with No labelled data

The pattern mining algorithm explained above is completely unsupervised and requires no labels.
But after we encode all the images in the new feature space, the classification task would again
require labels. Also, in such a high dimensional data, simple clustering techniques like k-means
clustering or spectral clustering in any feature space don’t work well so we couldn’t directly
cluster the images this way.

But we have a set of extracted patterns along with the large unlabelled dataset. Can we use
patterns to somehow cluster the unlabelled set to extract categories automatically ? For this
purpose, we tried bi-clustering technique. Biclustering is a data mining technique which allows
simultaneous clustering of the rows and columns of a matrix. Firstly, to generate such a matrix,
we used both our extracted patterns unlabelled images in fc7 feature space. We generated a
NUMdetectors X MUMimages Where each cell 7, j of the matrix corresponds to maximum score when
detector ¢ was fired on image j is sliding window fashion. We tried to form bi-clusters of this
matrix.

In our experiments, we tried several bi-clustering algorithms namely, Cheng and Church,
Bipartite Spectral Graph Partitioning, OPSM, Iterative Signature (ISA) , Spectral Biclustering,
Information Theoretic Learning (ITL), xMOTIF, Plaid, FLOC, BiMax, Bayesian Biclustering,
LAS, Qubic and Fabia [9] but unfortunately none of them seemed to work. The patterns and
images couldn’t be clustered together. Figure shows an example of this approach. Top 4
clusters are shown on CUB dataset [25]]. The yellow labels on the images show actual categories
of the images in the CUB dataset. Clearly we can see that bi-clustering approach fails to give
good clusters as each cluster has images belonging to many categories in the dataset. None of
the clusters we found were pure in terms of image categories.

3.3.2 Labelling a few images

Since the images could not be clustered wither directly or using bi-clustering techniques, we pro-
posed to label a few images of the order of 2 images per category. Labelling at this scale is very
easy and inexpensive and we propose a semi-supervised bootstrapping based approach for the
recognition task. In addition to that, this approach labelled the unlabelled images automatically
as well. Now since we have a few labelled images with us, can we extend our pattern mining
algorithm as well to use these additional images ? In the next section, we modify our pattern
mining algorithm such that it uses this small labelled set along with the unlabelled set to extract
even better and diverse patterns.

3.3.3 Modifying Pattern Mining algorithm

Figure [3.5] shows the modified pattern mining approach incorporating labelled data as well. We
add an additional step in the process. In the pattern mining algorithm we described previously, we
added a diversity approach to increase the coverage of patterns. After the reward based procedure
in that approach, we are able to get better and a diverse set of patterns by simply considering the
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Image cluster 1

Image cluster 2

Image cluster 3

Image cluster 4

Figure 3.4: Failure case: Bi-clustering approach. Showing impure clusters formed.

top few patterns from the sorted order. But now we can make the pattern filtering procedure even
better if we use a few labelled images for each fine grained category. For example, if we label 2
images per category we can use these 2 labelled images and get a subset from the set of patterns
mined above which even higher diversity and perform better for fine-grained recognition. To
accomplish this, we first take the patterns in the order which is the output of the previous step
and again we use the similar reward based approach but this time we use only the few images
we have labelled and we set score/reward on each category instead of each individual image.
Thus, instead of considering what images are represented by each pattern, we will consider what
categories are represented by each pattern and greedily select one pattern in each loop with the
maximum score. This will give us a more diverse subset of patterns because it will ensure that
the number of categories covered by the top most patterns in the new order cover as many classes
as possible. In this way our proposed method has the ability to use the entire set of unlabelled
images and the few labelled images to get a diverse set of patterns.
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Figure 3.6: Low-shot Fine grained Recognition and Image Labelling.

3.4 Fine Grained Recognition and Image Labelling

We use our modified pattern mining algorithm for the task of low-shot fine grained recognition.
We consider a fine grained dataset as a collection of a few labelled images (2 images per cat-
egory). Rest of the images constitute the large unlabelled set. Figure describes the entire
process. Along with the recognition task, we emply semi-supervised learning based approach to
label the unalelled dataset as well.

3.4.1 Training Networks from Scratch

To show the effectiveness of our approach, we use publically available fine grained recognition
datasets which are frequently used in previous works on fine-grained recognition. We observed
that there is some overlap between the test set of these fine grained datasets and the image-
net training dataset. Figure shows examples of images which overlap between CUB test
dataset and Imagenet training dataset. Thus, using a model pre-trained on imagenet would not be
suitable in our case. So we train our base models from scratch. Since we are focussing on low-
shot learning, we do not want our model to see even the training images of fine grained dataset
before. In order to achieve this, we train one model for each dataset. For a particular dataset, we
remove all images from the imagenet which have similar categories as the fine grained dataset
we are using. For example, in case of Stanford Dogs dataset, we remove all 120 categories of
dogs from imagenet and train our base model on remaining 880 categories. All our base models
follow Caffe reference model architecture.

3.4.2 Binary Fine Tuning

While training our base models from scratch and removing all the categories corresponding to the
fine-grained dataset, we ensured that the network hasn’t seen any of those categories. But a deep
network tends to perform better when it has an overview of what that object looks like. In order
to incorporate this within our network, we do a binary finetuning of the network where the entire
fine-grained dataset is treated as one category and the random negative dataset (an equal number
of random set of images selected from the imagenet dataset) is treated as a second category and
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Figure 3.7: Some examples of test images from CUB dataset present in Imagenet training dataset

the network is fine tuned to classify fine-grained dataset from other random images. In this way
for example we can make the network see what ”dogs” look like without using any fine-grained
labels. As we show in our experiments, the binary fine-tuned network tends to perform better
than the network trained from scratch even though we didn’t provide any fine-grained labels.
This proves to be a good way to make the deep model learn about a particular object and it’s
variations without explicitly providing labels for it.

3.4.3 Extracting patterns and encoding

After fine-tuning process, we use the images to extract patterns. We use our modified pattern
mining approach which we described earlier for this purpose and incorporate both labelled and
unlabelled data. After extracting patterns, we encode all the images in the new feature space as
we explained earlier. The semi-supervised learning process occurs in this new feature space.

3.4.4 Semi Supervised learning

Given few labelled and many unlabelled images, we employ self learning bootstrap approach.
We start with the initial labelled set and train predictors on this set. We run our predictors on
the unlabelled set and transfer images with maximum confidence of belonging to a particular
category to the labelled set. As the iterations continue, more and more images will be labelled
and the labelled set will grow. There is one problem with using standard bootstrap method
- semantic drift. Since we have very few images initially, the predictors trained are not very
powerful. Thus they may assign wrong categories to unlabelled images with high confidence
and those images will be transferred to the labelled set. Now the labelled set won’t remain pure
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since images are being transferred to incorrect categories. Now when we train predictors in the
second iteration, they won’t be trained correctly because the images they are trained on may not
belong to correct categories. This error gets accumulated over iterations and more and more
images are added to incorrect categories in the labelled set and the labelled set becomes more
and more impure.

To solve this issue, we propose the use of 2 different predictors and only transfer images
which have high scores corresponding to both of them. Such an approach resists semantic drift
and image labelling becomes better. The 2 predictors we emply here are described below.

¢ Graph Laplacian based approach: Given a few labelled images per category and many
unlabelled images, we use similar approach given in [8] for propagating labels to unla-
belled images. This approach is based on binary classification. To use it for the task
of multi-class classification, we run this for each category separately where the labelled
images of all other categories are treated as negative in the algorithm. This outputs a prob-
ability value of an image belonging to the selected positive category. After performing this
for each category, we obtain the probabilities of every image belonging to each category.
This process is done in the new encoded feature space. We vary the parameters of the al-
gorithm to get better clusters in each step of our approach. Since our data is not extremely
big, we do not use approximate eigen functions. We use the exact eigen values and this
improves our results.

¢ Support Vector Classification: We use the labelled images as the training set in the new
encoded feature space and train a binary svm for each category seperately. The binary svm
is trained so that it becomes consistent with the graph laplacian based method above and
it’s easy to combine the scores. We then use the trained svm model to predict labels and
get the probability distribution of categories for all the unlabelled images.

Each approach above will assign category labels to every unlabelled image and provide the
probability distribution of that image belonging to each category. For each image, we use a
weighted average of the two probability values calculated by the two methods described above
to get the final score. Thus, the final probability of an image I belonging to a category C is:

p(c‘[)final = p(C’[)methodl + p(C’[)methodZ

where methodl is the graph laplacian based approach and method?2 is the SVM based ap-
proach described above.
After computing the final probabilities of all the images, category of image [ is assigned as

Yy = argéllinp(C’I)final

In our case, we transfer one image in each category which has the highest probability of
belonging to that category. We can then perform pattern mining process again using the new set
of labelled images. Note that in our pattern mining approach, the category labels are used only
in the last step where we filter detectors based on category reward method. Thus we do not have
to spend time in mining process in each iteration. The expensive mining process is only done
once in the beginning. In each iteration we simply re-rank the detectors based on reward system
using new set of labelled images and use the top detectors selected to encode the images again.
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This above process is performed iteratively and we add one in each iteration which has the
maximum score in each category to our set of labelled images. For testing, we use the provided
test set of the fine grained dataset. The test set remains fixed across iterations. At each iteration
we simply train an svm predictor using the labelled set in the current iteration on the new encoded
feature space and calculate the prediction accuracy on the given fixed test set.
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Chapter 4

Experiments

4.1 Datasets

We show our experiments on 4 fine-grained datasets namely CUB (Birds) dataset [25]], Stanford
Dogs dataset [12], Stanford Cars dataset [14] and the FGVC-Aircraft dataset [21]. The CUB
dataset has 6033 images in total comprising of 200 fine grained categories and 3000 images for
training. The training set includes 15 images per category. The Stanford Dogs dataset has 20,580
images in total comprising of 120 categories. There are about 12000 images in the training set.
For both CUB and Dogs dataset, there are bounding boxes annotations available but we don’t use
these additional annotations in our work. The Cars dataset contains 16,185 images of 196 classes
of cars. The data is split into 8,144 training images and 8,041 testing images, where each class
has been split roughly in a 50-50 split. The aircrafts dataset contains 10,200 images of aircraft,
with 100 images for each of 102 different aircraft model variants.

4.2 Results

In this section we will show the effectiveness of our pattern mining approach for extracting inter-
esting patterns and performing low-shot fine grained recognition tasks based on the experiments
on several datasets. All the experiments are based on Caffe Reference deep architecture. In the
beginning we first show some ablation studies where we demonstrate how each of our choices
in our mining algorithm has increased the performance of our approach. Next we use the best
version of our approach in the semi-supervised setting for fine grained recognition and image
labelling and compare it against 3 baselines namely alexnet fc7 features, supervised mining al-
gorithm [[18]] and current state of the art bilinear cnn models [19].

4.2.1 Ablation study
Quantitative results

Table shows the classification accuracies for CUB dataset for two scenarios. The first col-
umn is when we use all labelled images and the second column is when we use only 5 labelled
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images. There is no bootstrapping performed here. It’s just fine grained recognition in the new
encoded feature space. In this table, we show accuracies corresponding to addition to each and
every choice we have made in our pattern mining approach. U PM stands for the basic unsu-
pervised pattern mining algorithm without fine tuning or diversity approaches. UPM + BF'T
adds binary fine tuning on top of basic method. Reward(Images) and Reward(Categories)
add reward based approaches on top of the basic approach for images and categories respec-
tively. Note that reward based approach for categories requires the labelled data as well. Reward
based approach for images requires only unlabelled data as explained in our approach. As we
can see that in both the scenarios the performance improves with each choice that we add to
the approach which shows that every choice is effective. We also compare our methods with 4
baselines: F'ishervectorSift which uses fisher vectors on sift space, £'C'7 which is recognition
accuracy in fc7 feature space, S PM which is the recent work on supervised pattern mining al-
gorithm and BC'N N which is the current state-of-the-art for fine grained recognition for CUB
dataset. We can see that as the amount of labelled data decreases, our approach outperforms all
these baselines. Our approach turns out to be the best one for low-shot recognition tasks,

Qualitative results

We saw that each of our choices have increased the quantitative performance of our algorithm.
But what about qualitative performance ? To show the effectiveness of our diversity based ap-
proach, we visualize the detectors as well. For each of the datasets, we show the top patterns
extracted using our unsupervised pattern mining algorithm without ensuring diversity. These
examples are themselves show that even just using our unsupervised approach gives really good
and consistent patterns. But after we employ our diversity algorithm, both with images and
categories, we see that patterns corresponding to more categories come into picture. We cover
categories that weren’t present before. This further strengthens our claim along the quantitative
results that the choices in our algorithm are indeed making a difference and improving perfor-
mance.

Figure shows a few examples of detectors from CUB dataset with just unsupervised pat-
tern mining technique without using diversity approach. After we apply binary rewards based
approach, we find that more diverse classes are discovered and figure .2 shows some of these
additional categories discovered. This ensured that our diversity based approach is indeed work-
ing well and new diverse categories are being discovered. Similarly figure 4.3|shows the patterns
for Stanford Dogs dataset before the diversity approach and figure shows newly discovered
categories after the diversity based approach. Figure @.5]shows the patterns for Stanford Cars
dataset before the diversity approach and figure 1.6 shows newly discovered categories after the
diversity based approach. Similarly for the aircrafts dataset, figure and figure {8 show the
visualizations before and after diversity algorithm is employed respectively. The consistency of
improvement in all the datasets shows that our approach is generalizable and can work for any
dataset.
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Method

Full dataset

5 labelled im-
ages per cate-

gory
Fisher vector SIFT [19]] 0.16 0.09
FC7 [19] 0.24 0.13
SPM (MDPM) [[18] 0.35 0.22
SPM + BFT (MDPM) [[18]] 0.37 0.24
BCNN + BFT [19] 0.38 0.25
UPM 0.28 0.23
UPM+BFT 0.32 0.26
UPM+BFT+Reward(Images) 0.34 0.27
UPM+BFT+Reward(Images)+Reward(Categories) 0.35 0.28

Table 4.1: Ablation study: CUB dataset Fine grained Recognition

4.2.2 Fine grained Recognition

In this section we compare the performance of our approach with the baselines in the semi-
supervised setting. For all the datasets, we start with 2 images per category and keep on adding
1 image in each iteration to the labelled set. Figure 4.9] for the CUB dataset, figure for
the Stanford Dogs dataset, figure for Stanford Cars dataset and figure for the Aircrafts
dataset show that our approach performs much better than the baselines. Our method outperforms
the performance for all the datasets. The recognition accuracy is much better across the iterations
and our method also resists the semantic drift much more than other baselines and thus, the
labelling of images is much more accurate in our case. Again, the consistency of improvement

in all the datasets shows that our approach is generalizable and can work for any dataset.
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Figure 4.2: Addition of new classes and patterns with Reward based method: CUB dataset
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Figure 4.4: Addition of new classes and patterns Reward based method: Stanford Dogs dataset
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Figure 4.6: Addition of new classes and patterns Reward based method: Stanford Cars dataset
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Figure 4.8: Addition of new classes and patterns Reward based method: Aircrafts dataset
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Chapter 5

Conclusion

We have proposed an unsupervised pattern mining algorithm in this work and we show that it is
an effective way of using untapped information from a large unlabelled data together with the few
labelled images we have available with us and extract useful patterns which helps distinguishing
among different fine grained categories. In this work we show the effectiveness of our pattern
mining algorithm on the task of low-shot fine grained recognition and image labelling. We show
that our unsupervised mining algorithm is able to detect fine grained patterns of good quality even
without using any labels and if given a few labelled images there is a significant improvement
in quality and diversity of patterns. We also show the ability of our approach in labelling more
images from the large unlabelled pool and add them iteratively to the labelled set in a semi-
supervised learning based approach. Our method performs much better than the baselines which
include previous state of the art approaches to fine grained recognition.
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