
Planning and Localization Using Contacts

Bradley L. Saund

CMU-RI-TR-17-26

April 2017

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Howie Choset, Co-chair
Reid Simmons, Co-chair

Matt Mason
Arun Srivatsan

Submitted in partial fulfillment of the requirements
for the degree of Masters of Computer Science.

Copyright c© 2017 Bradley L. Saund





Abstract
Contacting the world can provide stability, support, and sensory information,

however many robots avoid contact whenever possible. Contacts present the physical
danger of large forces as well as challenging computational issues, but enabling
robots to reason about contacts extends the extent to which robots can perceive and
act in the world.

This thesis explores both localization and planning where contacts are required.
Computational issues arise due to the local nature of contacts, yielding subspaces of
intersection thin manifolds, so several common techniques in robotics are adapted
to better handle the local effects of contact A particle filter is augmented to update
from a precise measurement that would ordinarily eliminate most particles. An effi-
cient information gain metric is defined using these particles to predict useful future
measurements. A new dynamics model and associated cost function are created for
a robotic arm, which although are not faithful to real dynamics, are conditioned well
for use in existing planning methods. This artificial but useful dynamics model is
shown in both trajectory optimization and sampled-based planning. The techniques
are demonstrated in simulation and physical hardware.
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Chapter 1

Introduction

Contacting the world can provide stability, support, and sensory information. Humans benefit
from touching the world in situations from blindly detecting an object in the back of the refriger-
ator, to leaning on a stair railing. In the recent DARPA robotics challenge top robotics research
teams from around the world submitted robots to attempt an obstacle course, and during these
challenges many of these robots fell on the stairs. Not a single robot used the railing [3]. Even
drunk people know to use railings, so there is plenty of room for improvement in robotics.

However, in robotics there are good reasons to avoid contact with the environment. Hitting
the world can provide large forces that destabilize or break the robot. Relying on contacts can be
dangerous as slight alterations in the world or errors in robot position may drastically alter the
contact forces. Instead of firmly grasping a handle, a few centimeters of error have caused robots
to embarrassingly grasp air and fall over. Even when working entirely in simulation contacts
between rigid bodies cause problems for physics engines.

Contacts introduce non-smooth discontinuities, which presents a challenge for many tools in
the roboticists arsenal. The benefits of contacts occur on a measure-zero manifold in the robot’s
configuration space. For example, hand rests comfortably on a table at a specific configuration of
shoulder, elbow, and wrist positions. A slight extension of the elbow while fixing all other joints
leads to the hand puncturing the table, while a slight contractions pulls the hand into the air and
the table might as well not exist. Random sampling and gradient descent are two techniques

Figure 1.1: Humans using contact to improve reach, accuracy, and stability
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Figure 1.2: Robots working on the outside of parts held firmly in jigs

repeatedly used in robotics, but both have difficulty with these measure-zero contact manifolds.
This thesis explores and extends techniques of sampling based and gradient methods to the prob-
lems of localization and planning, with the addition of contact forces and measurements.

1.1 Motivation

My personal motivation for the topics covered in this thesis come, in part, from my past ex-
perience as a robotics engineering building robots that build airplanes. Currently, large robotic
arms equipped with expensive, specialized end effectors perform a variety of tasks for aerospace
manufacturing, including drilling holes, inserting fasteners, milling, carbon fiber placement and
layup, and sealant application. While there are many potential directions of research to improve
these already impressive machines, two striking issues are addressed by my work.

1.1.1 Jigs are More Expensive Than Robots

Robots that perform one type of task on one section of an airplane can cost millions of dol-
lars. However the jig that holds the airplane section while the robot works can cost more than
the robot, partically because these jigs may have more actuators and tighter tolerances than the
robotic system. When the robot begins work on a new section, before ever making a measure-
ment the jig has already located the part to within a few inches. A few scripted measurement
with a probe, programmed by an engineer, are sufficient to fully localize the part to within the
needed tolerances. When amortized over many airplanes the per-part cost drops. However, this
process is inflexible and poorly suited to low-rate manufacturing.

If the robot could localize the part from a wide range of part configurations, and if the robot
could reason about internal assembly tolerances then jigs could be make more cheaply, robots
would become more versatile, less part-specific programming would be required, and machining
accuracy could improve.

2



Figure 1.3: Workers crawling in the confined spaces of an airplane wing

1.1.2 Robots Stay on the Outside
Large robotic arms cannot fit in the confined spaces of an aircraft. While a team of people may
include workers on both the inside and outside, large robots are limited to just the outside. A
person has a limited reach but uses walkways to move close to access openings and then uses
redundant degrees of freedom to reach inside confined spaces. Robots are not yet able to traverse
terrain in the same manner as people [3], so robotic arms may be mounted on a linear track
to improve reach [53] but this comes no where close to the redundancy in human degrees of
freedom.

Thin robots with a long reach can automate the injury-prone tasks which require people to
contort into uncomfortable positions. Such robots could outperform human arms, necessitating
smaller and less frequent access holes in the structure.

1.2 Approach
The work in this thesis address two separate problems. The first is the task of localizing an object
through touch probing. The second is the task of planning a trajectory for a robotic arm that is
too long to support its own cantilevered weight, and so must rest on the environment for support.

1.2.1 Localization
In the localization task the robot must estimate the pose X of an object based on a set of mea-
surements Zt = {z1, ..., zt} made by probing the object. The robot chooses where to probe,
and the measurements are a function of the object and chosen measurement action. A triangular
mesh describes the object geometry and a frame is attached to this mesh. The state X is the

3



(a) (b)

Figure 1.4: (a): The robot performing a touch measurement
(b): The belief of the part location and measurement

SE(3) transformation from a fixed world frame to this part frame. This is a 6-dimensional state
stored as position (x, y, z) and orientation angles (α, β, γ). Initially it is assumed the geometry
is rigid, thus the state can be fully described as the SE(3) configuration of a frame attached to
the part, while later later, the approach is generalized to parts with internal uncertainty. A further
assumption is that the part is fixed in space relative to a world frame and that probing actions do
not perturb the state.

Rather than calculating a single best estimate of the pose, a probability distribution repre-
sents the uncertainty in knowledge. Estimating the probability distribution is important both for
choosing effective measurements and knowing when the part is localized sufficiently. For feasi-
bility, this probabilistic belief is represented numerically by a set of points drawn from the true
distribution called particles. A measurement updates the belief using a particle filter [60].

However particle filters behave poorly both when the dimensionallity of the system grows
large and when measurements become precise [37]. In the problems considered there is a large
initial uncertainty, and achieving high tolerance performance necessitates measurements with
low uncertainty. Updating the belief after performing such a measurement will eliminate most
particles, leaving a poor representation of the posterior. This problem is called particle starvation.

This thesis first describes a solution to particle starvation during touch localization (section
3.1) developed in collaboration with Shiyuan Chen [52] by using a particle filter with an alternate
update procedure that is able to combine accurate measurements with the prior. This particle filter
is then generalized to parts with internal uncertainty (section 3.2).

To minimize the time taken to localize the part, the robot should choose informative measure-
ment actions. To achieve this, many actions are sampled and the one with the highest expected
information gain is selected. Fully predicting this is also computationally expensive, thus pre-
vious methods using this metric introduce delays during which the robot pauses between mea-
surements and yet still only samples a small number of actions. Our approach involves a fast
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approximation for information gain that takes advantage of the discretized belief from the parti-
cle filter (section 3.3). This enables the sampling of hundreds of potential measurement actions
in a few seconds.

Figure 1.4 shows the experimental setup. A 7-DOF robotic arm equipped with a touch probe
performs measurements on an object (a). These measurements are used to update the belief (b).
The belief is the used to determine good information gathering future measurement actions.

1.2.2 Motion Planning
The motion planning task considered here involves planning trajectories for a robotic arm through
an environment. The robot arm begins at initial joint angles and the goal is to apply torques on
the joints to move the end effector of the robot to some specified location in the workspace.
When planning, the robot arm kinematics and dynamics, joint torque limits, and the environment
are known. Of particular interest is the dynamics model, as it models contact forces at specified
locations on the robot.

When not in contact with the environment the robot dynamics obey the manipulator arm
equation [43]. However, when in contact, additional forces are applied to the arm obeying a
spring model: The force is proportional to the penetration distance, in the direction pushing the
arm out of the environment.

In the tasks considered in this thesis, the robot is not capable of reaching the goal point with-
out using contact points, thus the motion planner must make use of contacts. Two approaches are
used to plan: trajectory optimization and a sample-based planner. In the trajectory optimization
framework a function determines the cost of a trajectory, and an initial trajectory is iteratively
improved using gradient descent until a local optimum is achieved. The obvious choice for a cost
function would penalize not reaching the goal and penalize joint torques, either through soft or
hard constraints. However due to the local nature of contacts, potentially useful contacts that are
not yet made have no influence on the cost function, and these solutions will never be discovered.
The solution is an augmentation of the dynamics model, allowing contact forces at a distance.
This provides a much better conditioned cost function, at the expense of accurately modeling the
world. Towards the end of optimization the model parameters are altered to enforce a realistic
solution.

When initialized well, this optimization approach produces trajectories that keep joint torques
low by making and breaking contacts. However, the cost function is still littered with non-optimal
local minima, and escaping these prove difficult. Thus a sample-based planner is employed to
generate trajectories that can either directly be used, or that serve as a decent initialization for
the optimization approach. Again the thin contact manifold presents problems. Sampled based
planners rely on generating trajectories to connect probabilistically sampled configurations, but
the thin contact manifold renders naive approaches useless. The solution used augments the
extension function of a sampled based planner, causing extensions to make progress towards
their goal while staying on the contact manifold as necessary.
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Chapter 2

Related Work

2.1 Current Methods for Localizing Objects Using Contact
Sensors

Before performing operations on parts for manufacturing, it is crucial that the position and ori-
entation of that part are known to within some tolerance. While there are many methods of
localizing a part, this work uses a touch probe to actively gain information through measure-
ments on the part surface. Though it is possible to ignore uncertainty in some tasks, the this
work explicitly reasons over the belief distribution of the part’s state to address more challening
tasks. One approach, the particle filter, maintains this distribution through a finite set of samples.
A second approach, the Kalman filter, maintains an analytic expression for the belief distribution.
Both approaches require adaptations for use in contact localization.

2.1.1 Particle Filters
Particle filters, touch measurements, and maximal information gain measurement selection have
all been used in localization tasks. Since their introduction particle filters have been popular
due to their ease of implementation and ability to model complex distributions, process models,
and measurement models [60]. However, for a measurement with low uncertainty there exists
only a thin manifold of states consistent with that measurement, yielding a low probability of any
particle existing on that manifold, leading to particle starvation [59]. Handling particle starvation
is described in detail in Chapter 3.1.2.

To address particle starvation, Koval introduced the Manifold Particle Filter, using different
sampling methods depending on the volume of the space consistent with a measurement [36, 37].
This allows a quick update of the belief when the contact sensor is not in contact with the part, and
only requires addressing the harder thin manifold update problem when contact is made. Koval
used multiple methods when updating from measurements when on this thin manifold, and shows
that rejection sampling requires the fewest restrictions on prior knowledge of the environment,
but naive rejection sampling is time consuming. His efficient methods require direct sampling
from the contact manifold, which is not feasible for a complex part.

Petrovskaya focused on global localization of objects via touch [46] and introduced the Series
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Scaling algorithm to overcome particle starvation. The Series Scaling algorithm adaptively alters
the particle density depending on the complexity of the posterior. Multiple passes through the
measurement data are used and the precision of the modeled belief is scaled from low to high,
avoiding unnecessarily precise estimates in exceedingly unlikely regions of belief space. This is
complementary to our approach, and implementing multiple passes on our methods could lead
to a faster update process.

Much of the recent work on touch measurements uses a robotic hand with contact sensors. In
these works evaluation of both actual and simulated measurements required collision checking
between two meshes which is computationally expensive.

Hebert et. al. use geometric (CAD) models of objects such as screwdrivers and door handles
as well as the geometric model of their robotic arm to autonomously choose touch actions that
localize objects sufficiently to perform everyday tasks, such as grasping and opening doors. Their
algorithm greedily selects the next best touch action from a list of candidate actions to maximize
information gain [23].

Javdani shows that selecting the next touch to maximize information gain is submodular
under assumptions of a static object and an action cost independent of object and robot state,
explaining the effectiveness of the greedy approach [26]. This provides a sound theoretical basis
for our approach. Javdani demonstrates the computation of information gain is time consuming
and proposes an alternative method of hypothesis pruning. Our formulation computes the ex-
pected information gain about two orders of magnitude faster, and thus we are able to evaluate
many more potential measurement actions and model the belief using more particles.

Recently, there have been a variety of approaches that allow robots to localize objects solely
with contact sensors. Different contact sensors have been explored and developed, including
basic binary sensors, 6-axis force and torque sensors [13], soft tactile sensor arrays [22], and bio-
inspired fingertips [16]. Localization with laser sensors has also been used in the high-precision
CNC localization, where a 3D point cloud is acquired in order to estimate the transformation
between the actual and planned pose [49]. The localization approach presented here can be
generalized to these sensors which can distinguish between contact and free-of-contact states.

2.1.2 Kalman Filters
Alternative approaches to modeling touch localization adapt a Kalman Filter to model the belief
distribution [11][56]. A Kalman filter requires a Gaussian belief of the estimated state, which
is inaccurate in touch localization. For example, multi-modal distributions appear when it is
ambiguous whether a close edge or far edge was touched.

A Kalman filter also requires a linear measurement models, which does not exist for touch
localization, so this too must be approximated. The Extended Kalman Filter performs first-order
linear approximations of the measurement model, but this diverges for pose estimation with large
initial error [11]. The Unscented Kalman Filter approximates the measurement model through
evaluation at many “sigma” points chosen by tuning parameters. As the pose likelihood given
a measurement varies by many orders of magnitude in different dimensions, these parameters
are sensitive and unreliable. Srivatsan constructs a linear measurement model using two mea-
surements and assuming the correspondence between the probe tip and the touched point on the
object [56]. This allows direct use of a Kalman filter with a true measurement model. However,
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the true correspondence is unknown, and must be approximated, for example through Iterative
Closest Point (ICP) methods.

The approach in this thesis uses a Gaussian kernel applied to set of discrete particles, similar
to a mixture of Gaussians model [59], allowing multimodal beliefs. Neither a local linear ap-
proximation to the measurement model, nor correspondence between the probe tip and touched
object point are required.

2.2 Contacts in Planning
Higher level tasks involve frequent making and breaking of contacts: walking requires footstep
placement, manufacturing involves part handling, and household tasks need object manipulation.
The wide variety of sub-problems lead to different approaches to robotic reasoning and execu-
tion of actions with contacts. In some tasks the the robot must decide between a known set of
fixed contact locations, while in other tasks the contact space is continuous. Contacts may be a
necessity or they may be optional.

In many path planning any contact with the environment is considered a collision and thus
valid paths have no interaction with the environment. However environmental contacts can re-
duce joint torques, damp vibrations, and stabilize an arm. Despite these benefits contacts are usu-
ally avoided because they bring algorithmic complexity during the planning stage and physical
danger to the robot and environment if executed improperly. The increased planning complexity
is due to the contact configurations being a measure-zero manifold in the robot configuration
space, rendering naive planning in configuration space ineffective.

2.2.1 Bracing, Climbing, and Walking
The benefits of bracing have been studied since the 1990s. Lew and Book proposed bracing a
micro/macro manipulator with small precise arm mounted on the end of a long coarse arm and
demonstrated bracing of the macro arm against multiple locations of the environment can damp
vibration caused by the micro arm [6] [40]. Hollis and Hammer explored a similar micro/macro
robot design and demonstrated 1µm accuracy, well over an order of improvement compared to
their unbraced manipulator [24]. Both of these works did not address the planning problem as
both contact locations and robot trajectories were manually specified.

Given a sequence of contact modes for each link, Greenfield computed joint torques to pro-
duce desired dynamic behavior and applied this to a climbing snake robot [21]. Bretl et al. [7]
developed algorithms for climbing robots that first select contact locations then create collision
free trajectories for the robot’s limbs between these contact locations.

The recent DARPA Robotics Challenge showcased state of the art walking robots. Rather
than solving for a trajectory and contact locations simultaneously some approaches have sepa-
rated these two problems. The dominant planning architectures hierarchically separated stages
of contact planning. Highest, and slowest, in the hierarchy a planner decides the path for a
simplified model of the robot through the workspace using heuristic costs. Lower down in the
hierarchy, a footstep planner determines the contact locations for feet to best achieve the higher
level trajectory. Still further down, another planner determines joint trajectories to move the feet
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into the requested footstep locations while maintaining stability [12] [3]. Tonneau et al [61] ap-
proaches from the opposite direction and first generates a trajectory then considers a discrete set
of contacts close to that trajectory.

2.2.2 Sample based planning
Sampling based planners probabilistically probe the configuration space searching for feasible
paths. The valid configuration space is never explicitly represented, and all that is needed is a
function that determines whether a specific configuration is valid. The Rapidly-exploring Ran-
dom Tree (RRT) is a sampling based planner which build trees of valid trajectories (edges) be-
tween points in configuration space (nodes). To grow these graphs a new point in configuration
space is sampled, and the closest point on the existing tree is extended towards this sampled
point, as shown in Algorithm 1. [38]

Algorithm 1 T = (V,E)← RRT(xstart)
1: T ← InitTree( xstart )
2: while GoalNotReached(T,Xgoal) do
3: xsample ∈ X ← Sample()
4: xnearest ← Nearest(T, xsample)
5: T← Extend(xnearest, xsample, T )
6: end while

In the most basic implementation, the Extend function constructs a linearly trajectory in con-
figuration space from xnearest towards xsample, and terminates the extension either when xsample is
reached or the trajectory enters an invalid region. [38] This extension step requires augmentation
to be useful in planning with contacts. Sampling based planners will never sample directly on
the measure-zero contact manifold, and linearly extending a contact configuration to a new sam-
pled point will immediately leave the contact manifold, immediately entering an invalid region
in configuration space, producing no progress.

Berenson developed a variation of an RRT planner capable of handling measure-zero man-
ifolds by projecting invalid path extensions onto the valid configuration space [4]. The Con-
strained Bi-directional RRT (CBiRRT) performs a linear extension from xnearest towards xsample
as before, producing an intermediate point xs. However if xs is an invalid configuration, a pro-
jection function is used to potentially create a valid configuration.

xnews ← Projection(xs) (2.1)

If xnews is valid and is making progress toward xsample, the extension algorithm continues. If
either the Projection function failed to produce a valid configuration, or the extension toward
xnews moves the trajectory further from xsample then extension is terminated and the RRT algo-
rithm continues with a new randomly sampled point. In CBiRRT the method of projection must
be provided by the user, and it is not obvious how to construct a productive projection function
for an arm where multiple contacts are allowed. This thesis uses a sampling based planner that is
able to traverse thin manifolds by using a cost function, instead of a projection function, to guide
the extension.
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Figure 2.1: Constrained Bidirectional Rapidly Exploring Random Tree (CBiRRT) extending the
tree onto a measure-zero valid manifold in configuration space

2.2.3 Trajectory Optimization

In contract to sampling based planners, trajectory optimization addresses the path planning prob-
lem by incrementally improving an initial trajectory. Trajectory optimization uses a cost function
to assign a cost to every trajectory, and an initial trajectory is repeatedly adjusted to reduce this
cost. While a large class of work focuses on trajectory optimization with unknown dynamics,
in this thesis it is assumed the dynamics are known, and the guiding approach is to assume the
dynamics are locally linear and perform updates to the parameters of the trajectory based on the
gradient of the cost function. This approach will converge to local, but not necessarily global,
minimal cost trajectories. Contact forces present an initial challenge, as the assumption of locally
linear dynamics no longer holds.

Deits et. al. handles the foot placement contacts for walking robots through mixed-integer
optimization [12]. In a path for a walking robot there are an integer number of footstep place-
ments, but the trajectories of the feet and robot are continuous. One approach is to fix the number
of footsteps and run a purely continuous optimization over the trajectories. This continuous op-
timization is then repeated for each integer number of footsteps considered plausible. To reduce
the number of optimization, their approach assigns a cost to each footstep allowing for faster
pruning. This approach works because the integer parameter is relatively simple, i.e. once the
right foot steps the only next contact to consider is the left foot.

Both Posa et. al. [48] and Mordatch et. al. [42] handle the discontinuous contacts by
smoothing. Both formulations assume a given set of locations on the robot are allowed to make
contact with the given environment. Both works write the cost of a trajectory as a function of
both joint torques and contact forces, thus the contact forces are a slack variable, and treated
as parameters of the trajectory. Of course in reality a robot cannot choose the contact force
applied, as the force is generated by electron repulsion as a function of the distance between the
environment and the robot. However, this inaccurate physics model smooths the cost function
and allows the robot to discover the benefits of contacts. Additional constraints are imposed to
ensure the final trajectory is physically feasible.
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Posa et. al. [48] is primarily concerned with large impact forces, and writes the problem
as a constrained optimization. At each iteration the optimizer alters both the joint torques and
the desired contact forces to improve the cost. However this optimization problem has a set of
complementarity constraints which enforce that each section of the robot is either in contact and
can receive a contact force, or it not in contact.

Mordatch et. al. [42] designed an approach called contact invariant optimization, where
a cost continuously models both the benefit and cost of adding contacts and is able to produce
trajectories which add and break contacts. This formulates the problem as a purely unconstrained
optimization, with all physical constraints being added to the cost function. The parameters of
this cost function are both the joint torques and a set of continuous “contact” slack variables,
one for each section of the robot that is allowed to make contact. For each section, the contact
variable can be intuitively be thought of as trade off between the benefits and the challenges
of making contact with the environment. Increasing the contact variable increases the cost as a
function of the distance between the robot section and the environment. Increasing the contact
variable decreases the cost as it allows contact forces to compensate for joint torques. Of course
in reality there is no partial contact, as if a section of a robot is some distance away from the
environment, no contact force is applied. However this formulation of force at a distance makes
the benefit of adding a contact visible to the gradient of the cost function. To ensure the final
trajectory is feasible, the cost of physically infeasible partial contacts is increased dramatically
towards the end of the optimization.

This thesis uses a similar approach to Mordatch’s contact invariant optimization to construct
an unrealistic but useful dynamics model. Experiments demonstrate these methods on physical
robots.
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Chapter 3

Localization using Contacts

Many robotic tasks require precisely localizing an object, for which tactile sensing is an appeal-
ing sensing modality. As motivation, consider touch localization of a partially manufactured part
that requires additional machining operations. In order to handle objects with complex shape,
prior information of the object shape is used, and most previous work assumes that the geometry
(CAD) model will match the real object exactly.

However, during the manufacturing and assembly processes there are tolerances between
different sections of the assembly. A datum is defined as a geometric constraint within the object
that is used as the reference to define the location of one section of the part with respect to another
section. The tolerance is the allowed deviation of the actual manufactured dimensions from the
nominal designed dimensions. It is assumed a part can be divided into precisely manufactured
sections, and the introduced method focuses on handling errors due to imprecise machining over
large distances and non-critical components, as well as assembly tolerances.

The introduction of tolerance increases the degrees of freedom (DOFs) of the system, as
prior to measurement the true dimensions of the full part are unknown. These internal DOFs can
be modeled as transformations with uncertainty between sections of the object. For objects with
internal tolerances, perfectly localizing a single datum will not necessarily reduce the uncertainty
of the full system sufficiently to perform the desired task. On the other hand, it is usually only
necessary to localize a subset of the sections of an object.

In this localization problem, the task is to estimate the pose of a goal feature given multiple
measurements obtained through probing. These probing measurements are modeled as a Markov
process, where each measurement corresponds to a single action/observation pair. This model
eliminates the need to store all of the past measurements. A particle filter numerically stores and
updates the belief [60].

Figure 3.1 shows a visualization of the initial (3.1a) and final (3.1b) beliefs of the poses of
the sections of the object. The task is to drill a hole, shown as a green cylinder, at a specific
location defined by offsets from other sections. Internal tolerances prevent simply treating the
entire system as a rigid body.

This chapter first considers rigid-body particle filtering for high-precision localization (sec-
tion 3.1), which overcomes the particle starvation problem [52]. The datum-based particle filter
is then introduced to generalize this rigid-body approach for objects with coupled rigid sections
(section 3.2). Two related but different approaches are proposed for this problem. The first ap-
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(a) Initial belief
(b) Belief after localization of goal feature
(green cylinder)

Figure 3.1: Visualization of the belief of the pose of all sections of the part. The green cylinder
is the important section to localize and is defined in space through offsets from the top, right, and
front faces.
(a): The prior belief of the poses before localization. The uncertainty of the goal feature is too
high to perform the task.
(b): The belief of the poses after performing measurements to localize the goal feature. The
pose of the goal feature is now known well enough to perform the task. Although the bottom
edge (purple) and perpendicular section still have noticeable error, precise localization of these
features is not needed.

proach maintains a single particle filter system that stores the full joint distribution of the coupled
datums, while the second approach simplifies the relationships by assuming independence be-
tween the distribution of the internal transformations and the pose of the sections, and models
the system using separate coupled particle filters.

This chapter then generalizes the technique of choosing informative measurement actions to
accommodate objects with coupled sections. To achieve this, many potential measurement ac-
tions are sampled and the action with the highest expected information gain is selected. Fully
predicting the information gain over the continuous belief is computationally expensive, so sim-
ilar to other approaches [26] this work involves a fast approximation for information gain that
takes advantage of the discretized belief from the particle filter (section 3.3). This chapter con-
cludes with evaluations of the rigid body approach on a real part, and the datum localization on
a simulated part (section 3.4).

3.1 Rigid-Body Object Localization

During my thesis I collaborated heavily with Shiyuan Chen on the task of autonomous localiza-
tion. The rigid body particle filter developed in this section is mostly his work. The datum-based
particle filter described later relies heavily on the framework and methods developed for rigid-
body localization, and this section provides an overview of the relevant details [52]. The task is
to determine the pose of an object by choosing and performing touch measurements, given the
geometry of the object and prior belief over the distribution of poses.

The geometry of the object to be localized is stored in a STL file using a triangular mesh,
defined in the part frame. The pose of the object can then be defined as the transformation
between this part frame and the world frame of the workspace. The object is assumed to be fixed
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in the workspace during measurement and localization, thus the configuration will not change
during the localization process.

In order to estimate the true distribution of the pose, each particle in the particle filter rep-
resents a single potential pose ix ∈ SE(3) of the object. For a rigid body, the pose includes
both translational dimensions (x, y, z) and rotational Euler angles (α, β, γ). The state is a 6D
vector (x, y, z, α, β, γ) in the configuration space. The particle filter updates based on a set of
measurements Mt = {m1, ...,mt} made by the robot directly on the object.

3.1.1 Measurement Model
A measurement action, M is defined by a start point Ap for the probe and a linear trajectory
vectorAv both in R3. The measurement value m is the distance the probe travels in the direction
of Av until contact is made. The point of contact can then be recovered by Ap +m Av

||Av || . The
entire information obtained from the measurement t is zt = {Mt,mt}. Measurement error exists
due to sensor error and robot uncertainty.

3.1.2 Problems with the standard particle filter
A common method of updating particles based on a measurement is importance sampling [59]. In
importance sampling each particle is weighted by the probability of the measurement conditioned
on the state that particle represents. This is usually followed by resampling, where particles are
redrawn from the set of weighted particles with probability proportional to their weights. The
effectiveness of importance sampling relies on the existence of multiple particles consistent with
the measurement, such that inconsistent particles will have low weights and be unlikely to be
resampled, but a sufficient number of particles will be resampled to model the true belief of the
state.

Importance sampling tends to break down in situations with accurate measurements and low
densities of particles. This is because when a measurement is consistent with the true prior
belief yet no particles are consistent with the measurement, a situation called particle starvation,
resampling will yield a set of particles that does not model the true posterior belief. A more
accurate sensor measurement is consistent with a smaller volume of state space, thus a higher
density of particles is required. For higher dimensional state spaces and more accurate sensors
the number of particles required becomes prohibitively computationally expensive. This leads to
the counter-intuitive result that particle filters tend to perform worse as measurement accuracy
increases [37].

3.1.3 Rejection Sampling Method
An alternate approach is to use rejection sampling. Rejection sampling does not require a high
density of particles to avoid particle starvation and failure of rejection sampling is far easier to
notice and resolve. Most importantly, we can increase the limits of state dimensionality and
measurement accuracy that can be handled efficiently.

Rejection sampling generates independent samples from a density f by sampling from a
different distribution g. A constant M is determined such that f(x) ≤ Mg(x) ∀ x. A sample
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x∗ drawn from g(x) is accepted with probability f(x∗)/Mg(x∗) and rejected otherwise. The
process is repeated until the desired number of samples has been accepted. We wish to sample
particles from the posterior bel(xt+1) but cannot do so directly. Instead we sample from our
continuous prior belief bel(x) and possibly reject based on the measurement.

Broad Particles: We first reconstruct the continuous prior belief by broadening each of the
particles. We apply a Gaussian kernel to the particles, with the kernel covariance proportional to
the covariance of the particle states. Rejection sampling may require many diverse samples, so
due to this broadening even if no prior particle is consistent with the measurement, the continuous
belief generated fills in the gaps between particles.

3.1.4 Fast Evaluation of Sampled States
States sampled from this continuous prior are then rejected if they are inconsistent with the mea-
surement. While the formulation of rejection sampling allows us to model complicated measure-
ment error, we implement a binary measurement model. We reject all sampled particles where
the measured point is sufficiently far from all faces of the object. We define “sufficiently far”
as more than 3 standard deviations of the sensor measurement noise. As a low uncertainty mea-
surement will accept only a thin manifold in state space, the probability of sampling a particle
consistent with the measurement may be low, and a lot of sampling may be required, therefore
we desire the rejection process to be fast. This section summarizes work done by Shiyuan Chen
in collaboration on rigid body touch localization [52].

To reduce the computational cost per sampled state we use discretized space, known as a
distance field [15], to precompute and cache the minimum unsigned distance Df (p) from point
p in voxelized space to the object surface ∂S ⊆ R3:

Df (p) = min
q∈R3

(||p− q||+ f(q)) (3.1)

f(q) =

{
0, if q ∈ ∂S
∞ otherwise. (3.2)

As the object is fixed during the localization process, voxelization can be done for the entire
piece based on the given CAD mesh model in the precomputation step.

Voxelization: Voxelization is the key part to transform the mesh model to axis-aligned dis-
cretized space, which can be stored and accessed easily as a standard array. The array form of
the CAD model can greatly facilitate the computation of the distance field, as described below.
Each voxel is assumed to be a cube in 3D space. A fast 3D Triangle-Box Overlap method [2] is
used to label the voxels that overlap the mesh triangles of the object surface. The voxel map is
then mapped to a binary-valued 3D array f(q), where each value is either 0 or∞ depending on
whether the corresponding voxel overlaps the object surface.

Voxelized Distance Field: The computation of distance field Df (p) takes the input of the
computed binary array f(q) (Eq. 3.2), and a linear-time algorithm for 3D distance field construc-
tion [15] is then used. The resulting distance field is also stored in an array for constant time
access during the evaluation of sampled states.

Fast Evaluation: Different configurations result in different poses of the object in the workspace,
which makes it difficult to compute the distance field directly in the world frame. Instead, the
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computation of the voxel map and distance field is relative to the object frame, where the object
is assumed fixed during the entire localization. Each measurement Mt in the workspace is then
transformed into the part frame, where the transform T (xt+1) comes from the pose of the sam-
pled state xt+1. Therefore, by transforming back to the object frame, all measurements on this
same object can share the same distance field, where the minimal unsigned distance distu(Mt, S)
between each measurement Mt and the object S(xt+1) can be obtained directly:

distu(Mt, S(xt+1)) = Df (T (xt+1)
−1Mt) (3.3)

The signed distance dist(Mt, S(xt)) between the probe and the object can be obtained from
the unsigned distance, as shown in Eq. 3.4, by checking whether the voxel is inside or outside of
the object. For the manifold shape object, ray-casting is applied from the corresponding voxel in
a certain direction: the voxel is inside of the object only if the number of intersections between
the ray and mesh is odd

dist(Mt, S(xt) =

{
distu(Mt, S(xt)− rp, if Mt /∈ S
−distu(Mt, S(xt)− rp, otherwise. (3.4)

The unsigned distance dist(Mt, S) is always 0 in the ideal case, however, when evaluating
a sampled state, only those that satisfy |dist(Mt, S)| > Td will be rejected, where Td is the
tolerance selected according to the measurement uncertainty of the touch probe and the robot. If
the distance is within the tolerance, ray-casting is then applied to check intersections from the
start pointAp along the path vectorAv in order to determine whether the path is free of collision
with other parts of the object.

When the measurement is very accurate, in order to sample enough particles from the prior
belief, a large number of states will get rejected, which makes the ray-casting for all sampled
states computationally expensive. Instead, early rejection is applied using a greater distance
distu(Mt, S) + rp before the computation of signed distance.

Suppose that the true distribution is given by a discrete multinomial distribution with k dif-
ferent bins, it can be shown that with probability 1 − δ, the KL-divergence is less than or equal
to ε when the sample size n is given by [17]:

n =
1

2ε
χ2
k−1,1−δ (3.5)

≈ k − 1

2ε

(
1− 2

9(k − 1)
+

√
2

9(k − 1)
z1−δ

)3

(3.6)

where χ2
k−1,1−δ is the upper 1− δ quantile of χ2-distribution with k− 1 degrees of freedom, and

z1−δ is the upper 1− δ quantile of the normal distribution.
Therefore, the number of particles n can be adjusted according to the number k of bins

with support, as shown in Eq. 3.3. The bins are implemented as a multidimensional grid with
fixed size in the configuration space. During sampling, the number k of occupied bins is counted
whenever the newly sampled state falls into an empty bin. The current sample size is counted and
each increment of k will result in an update of desired sample size n. When the actual number
of particles reaches the desired value or a predefined maximal limit, whichever is smaller, the
sampling process finishes.
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3.2 Datum Based Particle Filter
The particle filter localization method presented above assumes that the object matches its CAD
model exactly. However, this is usually not the case, due to tolerances in the manufacturing and
assembly processes. To handle manufacturing deviations, features on parts are not located with
respect to the part frame, but with respect to datums, (edges, surfaces, and holes) on the actual “as
built” part. Incorporating the notion of datums, and their relationships, adds complexity because
the relationship between the datum and the CAD model contains uncertainty. Thus, measur-
ing one section of the assembly provides only uncertain updates to other sections, dependent
on the specified tolerances. The following formulation treats these as semi-rigid parts, where
each complete part is composed of rigid sections, coupled through a probabilistic distribution
of transformations connecting the section frames. The datum based particle filter is introduced
to allow updates on the belief of all sections of a part using the prior distribution of coupling
transformations, and a measurement on a single section.

3.2.1 Datum Representation
The formulation introduced here treats the overall part as composed of separate, known sections.
The problem is to precisely localize some feature which cannot be measured directly (e.g. a
location to drill a hole) with respect to given datums (other sections). To localize the goal feature,
certain datums must be localized in certain dimensions. For instance, Figure 3.2a shows a hole
feature referenced to the top and right edges datums of the part. The true part configuration is
shown in gray in 3.2b and 3.2c. In this example, it is necessary to localize the top edge’s vertical
position and orientation, but not its in-page or horizontal position. Similarly, the right edge only
must be localized horizontally.

Two approaches are now introduced; the first explicitly represents the joint probability distri-
bution between the sections, and the second stores separate, independent probability distributions
for each section. Figures 3.1 and 3.2 visualize the independent-state particle filter. The full-state
particle filter produces similar images.

The rest of this chapter uses the following notation. Xk
t is the set of N particles representing

the belief of section k at time step t. Frequently t is omitted when implicit. Each particle is a
configuration for a single section Xk = {jxk}Nj=1. The omission of k indicates all necessary
particles to represent the belief of the part: X = {Xk} and x = {xk}.

3.2.2 Geometric Relationships
Geometric relationships are defined between two or more part sections. The existence of the
tolerance introduces uncertainty to these relationships, which are modeled as a distribution of
transformations in the configuration space between the pose of each section. More generally, the
conditional probability p(xkt |xt) represents the belief of the pose of section k given the poses of
the other sections.

A measurement is made on a single section at each step by a touch probe. Let the mea-
surement on the section k at step t beMk

t , then the posterior of section k is p(xkt |xt,M
k
t ). In

the following algorithms, the section that a measurement contacts is known. This assumption is
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(a) CAD

(b) Update from a measurement on the top datum

(c) Update from another measurement on the right
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Figure 3.2: Visualization of independent-state particle filter
(a): Side view of the CAD drawing with dimensions (simplified for clarity). This drawing indi-
cates the nominal distance between the top and bottom edge is 0.23m, with a symmetric tolerance
of 5mm. This drawing also defines a hole with a 1cm diameter, and the top edge as its vertical
datum and side edge as its horizontal datum.
(b): The beliefs of the top (green) and right (blue) edges of the part are shown. The true part
location is shown in gray. The measurement (arrow) on the top section partially localized the top
edge. For clarity in the image, the belief of the other sections are not shown, and only 50 of the
500 particles are shown.
(c): A following measurement (arrow) on the right edge further localizes the part. This measure-
ment provides information on the right edge directly, and the top edge indirectly.
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Algorithm 2 Independent-State Particle Filter
Input: number of particles N and number of sections n
Input: sets of particles Xt = {Xk

t }nk=1

Input: observation mi
t

Input: meshes S = {Sk}nk=1,
Input: transformations {p(T ki )}nk=1

Output: particles Xt+1 = {Xk
t+1}nk=1 = {jxkt+1}

1: build distance field Df (p) for section Si
2: for k = 1, ..., n do
3: j ← 1
4: while j ≤ N do
5: x ∼ p(xk|Xk

t )
6: T ki ∼ p(T ki )
7: x̃ ← T ki × x
8: dist← Df (T (x̃)

−1M i
t )

9: if dist ≤ ξ then
10: jxkt ← x
11: j ← j + 1
12: end if
13: end while
14: end for

reasonable if the uncertainty of the prior belief is small compared to the physical size of each
section, and measurements are not chosen on the boundary between sections. If this assumption
does not hold, localization can be performed for the whole object using the methods of section
3.1 to get better estimate, before considering the object as a combination of coupled sections.

3.2.3 Independent-State Representation
My approach is to maintain the probability distribution for each section separately. Instead of
using a full high-dimensional particle filter for the full object, individual 6-dimensional particle
filters are used for each individual section under the approximation that the belief over trans-
formations between sections are fixed and independent. While this loses information compared
with the full joint belief, in practice this loss is acceptable.

As in the rigid body particle filter described in 3.1, a sample in the particle filter for section k
represents a SE(3) pose of the geometry of section k. The transformation information between
different sections are defined explicitly. The prior belief on the transformation from section k to
section j is bel(T jk ), which is a distribution over SE(3) transformations. A measurement on a
single section updates all individual particle filters related through a defined transformation dis-
tribution. Given a measurementMk on the section k, the updated belief becomes p(xjt+1|T

j
k ,M

k)
for a related section j.

The update to the belief bel(xkt ) given a measurement performed on section k itself is iden-
tical to the particle filter update for the rigid object. Since T kk is the identity with probability 1,
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Figure 3.3: Binning of potential measurement on particles for use in calculating information
gain. The three arrows represent the nominal measurement actionM with simulated deviation
δj . The horizontal lines divide the measurement values into the numbered bins.

the updated belief can be written as:

bel(xk) = p(xk|T kk ,Mk) = p(xk|Mk) (3.7)

To update the belief of a section j that has a probilistic prior transform from the measured section
k (k 6= j), each new particle for section j xjt+1 is drawn from the prior of its corresponding particle
filter j. To compute consistency with the measurement, xjt+1 is then transformed from the frame
of section j to the frame of section k:

x̃k = iT kj × xj (3.8)

where iT kj ∼ bel(T kj ) is a sampled transformation from the distribution bel(T kj ). As the mea-
surement was performed on section k, the geometry of section k is used rather than j when
computing the consistency with the measurement. The sampled particle is accepted with prob-
ability p(Mt|x̃k). The above process is repeated until the desired number of particles have been
accepted (shown in Algorithm 2).

3.3 Predicting Effective Measurement Actions

Performing measurements is expensive, so it is important to choose the measurement action that
provides the most information gain on the goal feature. Each action is treated as a probabilistic
decision over a set of particles approximating the belief of the goal feature. This is an approx-
imation for the information gain for the underlying, continuous belief distribution. The best
measurement may not be on the goal feature, and it may be impossible to even measure the goal
feature directly. This formulation predicts the information gain on the goal feature for both a
measurement directly on the goal feature, or indirectly for a measurement on datums or other
sections of the part.
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3.3.1 Information Gain
Given XG, a set of particles representing the belief of the goal feature, the information gain from
a measurement actionM is defined as the expected reduction of entropy.

IG(XG|M) = H(XG)−H(XG|M) (3.9)

H(XG) is the entropy of the particles and H(XG|M) is the entropy of the particles condi-
tioned on the measurement action.

The entropy of a discrete distribution of states depends only on the probabilities of each state
occurring.

H(XG) = −
∑
i

wi logwi (3.10)

where wi is the weight of particle i.
To calculate the conditional entropy, H(XG|M), the measurement action M is simulated

on the part distribution. Performing a measurement action yields a continuous distribution of
measurement value. W samples are drawn from this distribution for each particle:

mi,j = Simulate({M+ δj},iXG) + ηj (3.11)
j ∈ {1, 2, . . . ,W} (3.12)
i ∈ {1, 2, . . . , N} (3.13)

where δj is the deviation from the nominal measurement action, Simulate computes the value for
a measurement action applied to the part in a specific configuration, and with ηj as measurement
noise.

Measurement Simulation

To predict the measurement value obtained from a measurement action: p(mj), the measurement
uncertainty is again approximated by a discrete sampling of the continuous distribution. For a
single measurement action, and for each particle a sampling of measurement values is drawn
from the distribution of measurement values that would be obtained if that particle was the true
state.

The sensor measurement will indicate a distance z traveled along the measurement action A
until reaching the part. We start by examining the distance from the start point along the vector
until the first intersection with the part. Though a crude approximation of the true measurement
value, the benefit of this model is that given a measurement action and part pose, the measurement
value can be calculated as the intersection of a ray and a triangular mesh. Due to their heavy use
in computer graphics, ray-mesh intersection algorithms have been heavily optimized and can be
computed in parallel.

Measurement Width: While a ray is infinitely thin, the touch probe’s spherical tip has a
non-zero diameter, and thus will cast a cylinder rather than a ray. The true value returned by
our sensor is the smallest distance until any contact with the part. Ray casting approximates
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the measurement cylinder by discrete uniformly spaced rays on the cylinder exterior, with the
measurement value as the lowest ray-mesh intersection distance from this set.

Measurement Error: Error is caused both by inaccurate start positions and orientations due to
robot positioning error, as well as inaccuracies in the sensor. In the most extreme cases error may
cause a measurement to move from barely hitting an edge to completely missing the part. Thus
it is clear neither adding a constant error term, nor a dependent Gaussian error will accurately
model the error.

Instead discrete general method models this error. For each measurement action we make
many simulated measurements where we perturb the initial conditions according to an error
model for the robot and perturb the measured value according to a model of the sensor. Because
our ray-mesh intersection method is cheap, the additional cost these extra simulations add is
acceptable.

Bins

H(XG|M) is calculated by dividing the continuous values mi,j into discrete bins, bk. The con-
ditional entropy of this measurement action is then:

H(XG|M) =
∑
k

p(bk) H(XG|bk) (3.14)

where p(bk) is the prior probability that this measurement will fall into bin bk and H(X |bk) is
the entropy of the particles within bin bk. The likelihood of a bin is computed by summing the
weights of the measurements in that bin. Defining the weight of the bin, Wk as:

Wk =
∑
i,j

1(mi,j ∈ bk) · wi (3.15)

then:

p(bk) =
Wk∑
i,j wi

(3.16)

=
Wk

W
(3.17)

Given a bin, the probability of a specific particle is:

p(iX |bk) =
∑

j 1(mi,j ∈ bk) · wi
Wk

(3.18)

Then the entropy of the bin can be calculated:

H(X |bk) = −
∑
i

p(iX |bk) log(p(iX |bk)) (3.19)

Figure 3.3 visualizes this binning process. Three measurement actions (arrows) M + δj
are simulated on three configurations of the part (ix = particle i). The intersection between
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(a) Initial Belief (b) 1 Measurement (c) 2 Measurements

Figure 3.4: Heat maps showing information gain

the simulated measurement action and the part determines the measurement value mi,j . These
measurement values are sorted into bins.

Figure 3.4 visualizes the densely computed information gain for a grid of parallel rays as
the “temperature” in a heat map. Initially (a) probing into the page is likely to miss the part,
so information gain is low for all these measurements and we instead probe sideways. After
this first measurement (b) the uncertainty is reduced, and probing into the page is more likely to
hit the part and provide information. Once this second measurement is performed (c), another
measurement in the same place will not provide more information.

Adaptations are made to this process to accommodate the two representations as described
next:

3.3.2 Information for Full-State Representation

The full-state representation does not maintain a set of particles over just the goal feature, but
rather each particle, X , represents the full 6 × n state. Using these full-state particles for XG

above provides a good metric for localizing every section of the part, but a poor metric for
localizing the goal feature. This metric would often suggest to perform measurements on non-
datum features that are irrelevant to the location of the goal feature. The error in this metric is
due to

H(XG|M) 6= H(X |M) (3.20)

One approach is to incorporate domain knowledge when designing the full-state representa-
tion, by including only the relevant datums necessary for a particular task. Then, any information
on this limited full state will be reduction of uncertainty of at least one datum required for the
task.

An approach that does not require pruning irrelevant sections from the full state involves com-
bining particles that produce similar configuration for the goal feature. To calculate H(XG|M)
using particles X , measurement actions are used to sort the particles into bins as in described
in section 3.3.1. Then, particles that produce sufficiently similar goal feature configurations are
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Measurement Init. Position Init. Angular Final Position Final Angular Average
Error (cm) Uncertainty (cm) Uncertainty (rad) Error (cm) Error (rad) Computation (s)

Physical Robot 0.05 3 0.08 0.22 ±0.09 0.0047 ±0.002 7.0 ±0.3
Simulation of Robot 0.05 3 0.08 0.17 ±0.09 0.005 ±0.003 7.0 ±0.3

Simulation of Accurate Robot 0.01 3 0.08 0.03 ± 0.02 0.0004 ±0.0002 7.8 ±0.3

Table 3.1: Results of Experiments

treated as identical particles when computing entropy, by combining these into groups L.

p(LX |bk) =
∑

i,j 1(mi,j ∈ bk)1(i ∈ L) · wi
Wk

(3.21)

H(X |bk) = −
∑
L

p(LX |bk) log(p(LX |bk)) (3.22)

These group can be constructed by discretizing the space of possible configurations for the goal
feature. An issue which this thesis does not address is the balance of a requiring a reasonably
small number of particles while maintaining sufficient density for this descretization of goal
feature configuration to produce meaningful group sizes.

3.3.3 Information for Independent-State Representation
The independent-state representation does maintain the set of goal feature particles, XG, however
additional steps are needed when computing Eq. 3.11. When simulating M, the robot will
measure some section, S , of the part. Simulating the measurement using XS is straightforward,
but leads to computing IG(XS |M), which is not the desired metric IG(XG|M).

The independent-state representation makes the approximation that the distribution of trans-
formations between sections are fixed and independent, and this approximation is used to achieve
the desired metric. A temporary set of particles X̃

S
is created by sampling transforms T SG and

applying these transforms to XG. X̃S is used in Eq. 3.11 to generate sample measurement values
m̃i,j , which are used in the calculation for bin entropy H(X |bk). While the independence ap-
proximation could be used again in the calculation of bin probabilities p(bk), this approximation
is not needed. Measurements mi,j calculated using XS are used to calculated p(bk).

3.4 Experiments
Experiments were performed in simulation and on a physical system to validate the particle filter
and measurement selection process for a rigid body. Futher experiments performed in simulation
validate the Datum Particle Filter and measurement selection for parts with internal uncertainty.

3.4.1 Robot Results for a Rigid Body
For validating the approach for a rigid body, a robot equiped with a touch probe was used to
localize a model part from an airplane. The touch probe consisted of a 0.6mm spherical tip
mounted to a 100mm rod attached to a 6-D JR3 force/torque sensor. Although contacts in any
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Figure 3.5: Translational and rotational error during localization on the physical robot

direction were possible, the sensor was significantly more accurate with the contact force parallel
to the shaft, and measurements actions were always chosen to place the contact force in this
direction. Under these conditions our sensor exhibited a 1mm repeatability.

After selecting from the set of candidate actions the robot executed the measurement action
by first following a trajectory to the start point Ap, designed to avoid collision with the part. The
end effector was then controlled to move in a straight line in the direction of the measurement
vector Av until contact was detected. To improve measurement accuracy a double-touch was
implemented: the robot first moved the probe tip at a higher velocity (1cm/s) until contact,
backed off slightly, then probed at a much slower velocity (2mm/s). The robot then retreated to
a safe point while the particle filter updated and the next action was selected.

We performed 15 localization trials with identical initial beliefs and true part location. Figure
3.5 shows the translational and rotational error of the mean of the belief distribution compared
with our best measurement of the true state, averaged over all trials. The error bars show one
standard deviation. Summaries are shown in Table 3.1.
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3.4.2 Simulation Results for the Datum Particle Filter
The following experiments validate both the full-state representation approach and independent-
state representation approach in simulation. The software was implemented in ROS using C++.
These experiment simulate a specific task which is common in manufacturing: localizing a target
location, defined by datums, to drill a hole on an object. The datum-based particle filter was
simulated on a structural component used in aircraft. This is the same object as used in the
original rigid-body particle filter paper[52], with adaptations made to allow internal degrees of
freedom. The object is composed of 5 precisely manufactured sections, and tolerance between
sections was determined by engineering drawings (for precisely defined features), and educated
guesses (for loosely defined relationships).

Measurement Selection

The target hole is localized by measuring its referenced datums. Specifically, the pose of the
hole feature (green cylinder) in figure 3.1 is defined by an offset distance from the top and right
sections shown in figure 3.2a, and the axis of the hole is orthogonal to the front plane. The
hole does not exist yet, and thus cannot be measured directly. In order to localize the hole
location precisely without direct measurement on the hole, it is assumed that the transformations
between the target location and its defining datum sections have very small uncertainty along
some dimensions, e.g. the vertical distance between the center of the hole and the top plane.

At each step, the measurement is simulated using ray-mesh intersection algorithms[52]. Po-
tential measurement actions are sampled in the workspace. The information gain for each mea-
surement is calculated based on the current estimated pose of each section. For each measure-
ment performed, candidate actions are evaluated until 500 actions with non-zero information
gain have been modeled. Only the measurement action with the largest expected information
gain is “performed” in simulation and used to update the belief.

Simulation Results

Both proposed approaches are compared in similar settings. A total of 20 measurements are
simulated during each trial. For the full-state representation, a maximum of 800 particles are
used. For the independent-state representation, a maximum of 500 particles are used for each
section. The simulation uses 5 mesh models for different sections. After each update, the average
estimated pose of the hole is computed by averaging the hole poses produced from all particles.

Figure 3.6 shows the comparison between the full-state particle filter and independent-state
particle filter. Translational error and rotational error are defined between the estimated pose of
the hole and its true state. From the simulation, the errors of the estimated pose decreases rapidly
for both approaches after each new measurement is applied on the system.
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Figure 3.6: Comparison of the accuracy of the update step when using full-state particle filter
and independent-state particle filter
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Chapter 4

Planning with Contacts for Support

To reach into confined spaces robot arms must be thin, long, and maneuverable. A thin robot
may have small actuators with limited torque such that the joints cannot support the weight of
the outstretched cantilevered arm. However confined spaces are filled with places to rest for
support, and contact forces can compensate for low joint torque. Robot motion planners that
take advantage of support extend the reach and improve stability for long thin arms.

This chapter considers motion planning for a robot arm that may experience contact forces.
The motion planner’s goal is to output a trajectory of joint positions that will move the robot
from an initial configuration to a configuration with the end effector in a specified location. This
motion is achieved through actuators applying torques at these joints, and the trajectory must
respect the torque limits of the actuators. The arm experiences forces due to gravity, inertial,
friction, and also interaction with the environment, and this dynamics model is described in
detail in section 4.1. Contact forces can be helpful by balancing out gravity, or detrimental by
blocking a desired motion, but planning with contact forces proves difficult due to their large but
local effect.

Section 4.2 describes a solution to the motion planning task that uses trajectory optimization
and is strongly based on Contact Invariant Optimization [42]. To better condition the problem for
optimization, the dynamics are augmented to create smooth gradients around contacts. Section
4.3 describes a sample-based planner capable of using contact forces, and again alterations are
made to handle the thin contact manifold.

4.1 Robot Dynamics

When not in contact with the environment the robot model follows the manipulator arm equation
[43]:

M(θ)θ̈ + C(θ, θ̇)θ̇ +N(θ, θ̇) = τ (4.1)

M andC are determined through the robot’s known mass characteristics. N includes both gravity
and frictional terms. In practiceM,C, andN do not need precise estimation, because closed loop
controllers on the robot can compensate for errors.
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Figure 4.1: The visually accurate robot model (left) and the spherical approximation (right)

4.1.1 Accurate Contact Model

Modeling the dynamics when the robot is in contact with the environment is significantly more
challenging, and creating useful contact models is still an active area of research [48][13][61].
This section describes a somewhat accurate contact model, however this model is ultimately not
used in my path planning approahces. The purpose of introducing this model is to illustrate the
challenges of planning with accurate contact forces.

The true contact forces are caused by strain due to deformations in the environment and
robot which are complicated to model accurately [53], so I make the following assumptions
when modelling contact force as a function of joint angle.

1. Deformations of the environment obey a linear spring model, with spring constant k [5].

2. The robot arm has a discrete set of defined sections which may be in contact with the
environment. In this work each section i is modeled as a sphere with radius ri, as shown
in Figure 4.1.

3. The robot arm is rigid.
To calculate the contact force, first the deformation vector di of the environment is calculated

for each contact section i on the robot. di is the shortest vector in R3 which translates sphere i
out of the penetration with the environment. di is 0 if sphere i does not intersect any object in
the rigid environment. The contactact force felt by section i is:

fi = kdi. (4.2)

Contact force i adds to the joint torques dependant on the jacobian of section i [43]:

τ = JTi Fi (4.3)

Challenges with the Accurate Contact Model

To illustrate the challenges with planning using an accurate contact model, consider the following
toy problem. A single configifuration is desired for a 1DOF robotic arm that minimizes a cost
function which penalizes both torque and distance from a goal. For specific implementation, a
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Figure 4.2: Naive cost function, with sharp changes around contact locations

quadratic cost function is chosen:

L(s) =
∑
||τjoint||2 + d2 (4.4)

Figure 4.2 shows such a cost function, with the goal position at θ = 1.4. At θ = 0 there is
no cost due to torque, as the arm is balanced vertically, but there is cost due to not achieve the
goal position. At approximately θ = ±1.4 the arm perfectly rests on the ground, so again there
is no cost due to torque. Moving slightly towards θ = 0 breaks the contact, so torque increases.
Moving slightly away from θ = 0 forces the arm further into the ground, drastically increasing
the contact force and therefore joint torque.

The global minimum of this cost function, which indeed has the arm near the goal and also
benefits from resting on the ground, is a narrow sliver, making this function poorly conditioned
for optimization. Iterative optimizers tend to fall into the wide basin of attraction for the local
minima at θ = 0.1, as there is no guidance towards the global minima. To find the global minima
optimizers need to either evaluate the cost function for a huge number of states, get lucky, or
have additional information to guide the search.

Although not perfect, the contact model described above has the correct structure. There is
no contact force when the arm is in free space, and the contact force increases quickly once the
robot joints push the arm into the environment. In this model, robot joint angles which cause
significant penetration yeild huge joint torques, while in reality either the robot or environment
would physically fail. This discrepency is acceptable as both situations are not acceptable. Since
this structre is correct, attempting to make a more accurate contact model with not solve the
problem.
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Figure 4.3: Contact distance for the end effector section

Figure 4.4: Arm configuration and simulated (not realistic) contact forces for a variety of arm
configurations and continuous contact variables

4.1.2 Auxiliary Variables

The key approach used in this work softens contacts through the introduction of auxiliary vari-
ables, which drastically smooth the cost function at the expense of increasing the dimensionality
of the state space, using the approaches of Contact Invariant Optimization [42]. Appended to
each state st is a set of auxiliary continuous variables ct, one for each section of the robotic arm
allowed to make contact with the environment. This augmented contact model no longer at-
tempts to match reality, and allows for contact forces at a distance. The variables ct regulate the
magnitude of the normal and frictional artificial contact forces and will be described mathemat-
ically in section 4.2.1. Robot states, as well as the input to cost functions, now include both the
joint angles as well as the auxillary variables, and planners must plan for both simultaneously.

Figure 4.4 helps give intuition on how the contact variables influence these artificial contact
forces. In this figure the end effector is the only section allowed to make contact, and thus there
is a single c. Larger values for c allow larger artificial contact forces to support the cantilevered
arm. The transparent configurations are physically infeasible, as in reality contact forces cannot
be applied at a distance. c does not represent actual contact, but more closely represents the
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“desire” to add a contact.

4.2 Trajectory Optimization
Trajectories for a robotic arm can be created through trajectory optimization, a process that
progressively improves the cost of a trajectory. In this work a trajectory s is a discrete list of
robot states st at increasing points in time, where the state contains joint angles and perhaps
auxillary variables. To transition between timesteps, joint torques are calculated through inverse
dynamics, and these torques must remain below the actuator torque limit.

4.2.1 Smoothing the Cost Function
A local optimal trajectory s∗ is computed by minimizing the cost function of the form

L(s) = LObjectPenetration + LGoal

+ LContactV iolation + Lu (4.5)

LObjectPenetration and LGoal are straightforward, while the interplay between LContactV iolation
and Lu provide the interesting structure allowing the optimization to find paths which use sup-
porting contacts.

Cost LContactV iolation

Each section i of the robot able to make contact has an associated variable ct,i > 0 at each time
step. c intuitively represents the allowable strength of the artificial contact force, which in the
augmented dynamics model may occur even without physical contact. LContactV iolation places a
penalty on forces applied at a distance to encourage physically real behavior.

For each robot section i, and each time step t:

LContactV iolation = γCV
∑
t

∑
i∈sections

ct,idt,i (4.6)

Figure 4.3 shows the contact distance d for a section of a robotic arm. Since this distance is
substantial, the magnitude of the associated contact variable will determine the contribution to
cost. Non-zero values for c are intentionally allowed when the robot is not in contact with the
environment even though this is not physically realistic. However, during optimizing either ct,i
or dt,i will tend towards 0. The term γCV weights the cost of contact violation relative to other
costs. To ensure physically reallistic trajectories, this hyperparameter is increased as optimization
progresses.

Cost Lu

The cost Lu penalizes the input torque, u, necessary to follow the trajectory specified. The con-
tribution from the free manipulator, τFree, is determined from the joint angles by Eq. 4.1. The
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Figure 4.5: The cost function for the arm in Figure 4.2, augmented with the auxiallary contact
variable

contribution from contact forces is not yet determined, since under the augmented dynamics
model artificial contact forces can be applied even without physical contact. Thus, these arti-
ficial contact forces are chosen optimistically to minimize the required joint torque, subject to
regularization.

f, u = argminf̃ ,ũ||J
T f̃ + ũ− τFree|| (4.7)

+ f̃TWf̃ + ũTRũ (4.8)

The input control regularization R is chosen based on the desired penalization of joint inputs.
The contact force regularization W is dependent on the values of c, with

Wj,j =
1

c2i,t + 1

If c is large then, the force regularization is small, so the contact force can be large. If c is small,
the force regularization is large, thus the contact force is heavily penalized and will be small.

Figure 4.4 shows a robot arm in a variety of configurations and with several values of contact
variables. The red arrows indicate the simulated contact force. If the contact variable is large, a
large force can be applied to reduce joint torques even when there is no physical contact. This
serves to reduce the cost due to joint torques. The competing cost LContactV iolation prevents this
contact variable from growing too large for infeasible contacts.

Figure 4.5 shows this augmented cost function for the arm in Figure 4.2. The dimensionallity
of this cost function has increased, yet now there is a strictly descending path from the local
minima of the naive cost function, θ = 0.1, to the global minima. The basin of attraction for the
global minima has increased dramatically.
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Other Cost Terms

LObstacle penalizes penetration of the robot into the environment which is calculated using the
robot forward kinematics. For simplicity, the same simplified spherical model is resued here.
This addition is necessary since the artificial contact model created by Lu and LContactV iolation
no longer ensures obstacle penetration produces high joint torques.

LObstacle =
∑

dObstaclePenetration (4.9)

LGoal is a penalty on the distance from the robot end effector at the last state sT to the goal
location.

LGoal = γG||EndEffectorT − goal|| (4.10)

As this is a soft constraint, the minimum of the cost function may not exactly be at the goal,
but a large γG. The hyperparameter γG can be adjusted to balance reaching the goal with applying
joint torque. An unfortunate detail of this approach is that different tasks may be best optimized
using different hyperparameters.

4.2.2 Initialization Challenges
Although the cost function augmentation described above greatly improves the conditioning of
the cost function with respect to contacts, in practical problems this cost function is still plagued
with local minima due to the challenges of planning, even without contacts. As a simple example,
consider the situation in Figure 4.6, where a robot arm reaches to the goal “X”. In this example
there is no gravity, so the two cost terms are due to the robot not reaching the goal and the robot
penetrating the spheres, demonstrating these local minima are not caused by contacts. In (a) the
robot is at a local minimum, as any motion will either move away from the goal, or into the
spheres, so once again optimization techniques will have difficulty finding the solution shown in
(b).

Good initialization navigates a robotic arm through holes and correctly around obstacles.
Straightfoward initialization techniques include random initialization with random restarts, and
linear joint angle interpolation between starting configuration and a configuration that achieves
the goal. These initializations work well in open environments, but in confined spaces most of
these straightforward or random paths go through walls or not through the intricate openings,
leading to the optimizer finding locally optimal solutions that incur a high cost due to either not
reaching the goal or moving through walls. Thus a sample based planner is employed to provide
a diversity of good initializations.

4.3 Sample Based Planning
It is possible to solve planning problems using a sample based planner, but once again the thin
contact manifold causes challenges. Sample based planners probabilistically sample configura-
tions to explore the feasible space, and through sufficent exploration seek to find the trajectories
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(a) (b)

Figure 4.6: The final state of an optimized trajectory finding a local minimum (a) and the global
minimum (b) for an arm attempting to reach the blue “X”, through a tight space between 4
spheres

to a goal while obeying constraints. Specifically, this section employs the RRT [38], described in
Algorithm 1. The basic RRT algorithm maintains a tree of trajectories (edges) to configurations
(nodes), and grows this tree by extending to randomly sampled configurations. As discussed in
Section 2.2.2, the basic linear extension fails when the only allowable space for the trajectory to
grow is a thin manifold, as in the case of a supporting contact.

Figure 4.7 illustrates this contact manifold. In this example, in some regions of configuration
space a contact is not needed to support the arm, and trajectories may progress in any direction.
The thin ribbon shows the manifold in configuration space where the arm makes contact with
the environment. In the left region the contact is not needed and a trajectory is free to break the
contact, however, the arm is able to reach the right region only by using the support of a contact
force. In cases where the configuration must remain on this manifold, linearly extending towards
a randomly sampled point will quickly cause the trajectory to leave the manifold, and make little
progress in extending the tree.

4.3.1 Adaptation to Encourage Contacts

This section describes the policyRRT algorithm, which uses a policy to guide the path extension
to follow the contact manifold and frequently attempts to extend towards the goal.

Nonlinear extensions in an RRT were introduced as steering functions to solve kinodynamic
path planning problems to enforce dynamic feasibility [39]. Given two points x, y ∈ X , a
steering function returns a points z ∈ X where y is closer to z than x, according to some
metric [32]. Steering functions have been used to guide dynamical system and systems with
constraints such as a Dubins vehicle [33], where a metric can be easily defined. The policy used
in PolicyRRT accepts two points x, y ∈ X and returns a z ∈ X , without having to explicitly
define a metric. In this work the policy returns z such that the cost of z is less than the cost of x.
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Figure 4.7: Illustration of valid configuration space for an arm potentially supported by contacts
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Whereas the standard RRT often extends towards a randomly sampled point and occasionally
extends towards the goal, PolicyRRT always extends first towards a random point, and then con-
tinues the extension towards the goal. While either approach eventually finds a feasible path if
available, intuitively a “good” policy just needs help escaping trapped configurations, where the
robot has not reached the goal and the policy does not give a productive action. PolicyRRT more
highly weights exploration guided by the policy over exploration guided by randomly sampled
points. However, a policy may guide the path to a trapped configuration from a wide basin, re-
sulting in over exploration of this trapped region. To prevent over-exploration of a trapped region,
the extension terminates if the path enters a previously explored region, where the extension is
closer to an existing path than the start position.

As motivation for this approach, in many environments it is relatively easy to compute a re-
active policy that often makes forwards progress towards a goal while avoiding collision with
obstacles, but such policies are prone to getting stuck in trapped regions. A potential field is a
popular example with these characteristics [35]. PolicyRRT provides a method to escape these
trapped regions when necessary, while still devoting a lot of computation to following the pro-
vided policy towards the goal.

The PolicyRRT algorithm

Given:

X ∈ Rd : d-dimensional configuration space (4.11)
Xobs ⊂ X : obstacles in the configuration space (4.12)
Xfree = X \Xobs : free space (4.13)
xstart ∈ Xfree : starting configuration (4.14)
Xgoal ⊂ Xfree : set of goal configurations (4.15)
policy : X ×X → TX Map from an initial and goal state to an action (4.16)

The algorithm aims to find a path in Xfree from xstart to xgoal ∈ Xgoal.

Algorithm 3 T = (V,E)← policyRRT(xstart)
1: T ← InitTree(xstart)
2: while GoalNotReached(T,Xgoal) do
3: xrand ∈ X ← Sample()
4: xnearest ← Nearest(T, xrand)
5: T ← followPolicy(xnearest, xrand, T , extensionLimit)
6: if ExtensionSuccessful then
7: T ← followPolicy(xnew, xgoal ∈ Xgoal, T,∞)
8: end if
9: end while

The policy used in this algorithm should incorperate knowledge of the value of regions of
configuration space to guide the extension function. For the long arm planning with contact
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Algorithm 4 T = (V,E)← followPolicy(xbegin, xend, T , iterLimit)

1: Tnew ← InitTree(xbegin)
2: xprev ← xbegin
3: xnew ← policy(xprev, xend)
4: i← 0
5: while MovingTowardsGoal(xnew, Tnew) and Nearest(T, xnew) == xbegin and i < iterLimit

do
6: Tnew ← AddNode(xnew, xprev, Tnew)
7: xprev ← xnew
8: xnew ← policy(xprev, xend)
9: i← i+ 1

10: end while
11: T ← AddTreeToTree(Tnew, T, xbegin)

Linear 
Extension Goal

Policy
Extension

Figure 4.8: Illustration of Policy RRT extension on the contact manifold
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0m 0.5m 1m 1.3m
Optimization without contacts: planned 6.91 (0.81) 7.12 (0.74) 5.87 (0.89) 7.74 (1.14)
Optimization without contacts: actual 4.47 (0.58) 4.34 (0.65) * *
Optimization with contacts: planned 0.01 (0.00) 0.01 (0.00) 0.05 (0.00) 0.03 (0.00)
Optimization with contacts: actual 2.40 (0.46) 2.10 (0.61) 2.46 (0.56) 2.03 (0.55)
RRT without contacts: planned 4.12 (0.91) 4.87 (0.54) † †
RRT without contacts: actual 5.53 (0.48) 4.81 (0.58) * *

Table 4.1: Joint torques for a long 11-DOF robotic arm following trajectories generated by dif-
ferent planners to a goal point at specified horizontal distances from the robot base. Values are
reported as the max (avg) torques over all links over all time steps in newton-meters. In some
cases there was a failure to plan (†) or execute (*) a trajectory.

problem discussed in this chapter, the policy must direct the trajectory to maintain contact when
necessary so the extension will be productive, but must allow the arm to break current and make
new contacts for sufficiently exploration. Fortunately, the gradient of the cost function use in the
previous section for trajectory optimization (Eq. 4.5) has exactly these properties. Figure 4.8
illustrates both the linear extension and this policy extension towards a randomly sampled goal
configuration. Leaving the contact manifold around these configurations causes large torques as
the contact forces are removed, however because of the augmentation done in section 4.2, the
gradient remains smooth so the policy pushes the arm back toward the support configurations.
Thus the linear extension leaves the contact manifold, and the policy extension remains on the
contact manifold.

4.4 Experiments

4.4.1 Comparison to non-contact plans
Experiments were preformed to demonstrate the benefits of planning with contact. Three algo-
rithms were used to generate plans: the naive trajectory optimization that is not able to discover
contacts, the smooth contact trajectory optimization as described in section 4.2, and a generic
RRT. Plans were generated for an approximately 1.5 meter long 11-DOF arm in a world with a
flat floor. This world was intentionally kept simple enough that simple initialization was suffi-
cient. Each joint had a maximum torque limit of 5 Nm. The different goal positions included
moving the end effector directly above, 0.5, 1, and 1.3 meters from the base link, reaching 0.5m
above the floor. Figure 4.9 visualizes the simulated arm in this environment. Joint torques were
calculated for these plans in simulation, and these plans were then executed on the physical
robot with joint torques recorded. While significant effort has been invested into characterizing
and improving the torque measurement on these robots, the accuracy is at best within 1 Nm.

Table 4.1 displays the maximum and average torques experienced by the links. Both in
simulation and on the physical robot it is clear allowing contacts can significantly reduce the
joint torque. The joints can support the arm when cantilevered out 0m and 0.5m, and both
optimization without contacts and the RRT find paths that are feasible on the robot, yet the joint
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Figure 4.9: Final state of the “optimization with contacts” plan for the snake-like arm reaching
far from the base, supported by the environment

torques are significantly reduced when supporting contacts are found. The joints are unable to
support the arm when cantilevered 1m and 1.3m from the base, causing the RRT to never find
a feasible path. Because the implementation of the optimization uses soft limits on joint torque,
even without contacts a path is found in simulation but this trajectory fails to execute properly
on the physical robot.

By using contacts the trajectory optimization using an augmented dynamics model is able to
plan paths for each of these goal points. Contacts nearly eliminate joint torques in simulation.
As when cantilevered the joint nearest the base experience a far greater torque that other joints,
the maximum torque is much higher than the average torque. In practice the joints torques
remain decently large due to friction in the joints and other losses, as well as inaccuracies in the
environment and robot model, causing contacts to occur at slightly different joint angles than
expected. However, because the robot uses compliant actuators it is acceptable for contact to
occur slightly earlier or later than expected.

4.4.2 Planning in an Airplane Wing
Trajectories were generated for a 16-DOF snake robot arm in a model of a wing section by
combining the approaches shown above. The initial configuration and goal position for the end
effector were chosen manually and contained goal positions at the corners of the available volume
so that the arm must maintain contact for support.

First, the policyRRT of section 4.3 was used to generate a trajectory a for the arm to a goal
position while avoiding collisions between the robot and the wing, however ignoring the torque
limits of the joints. This trajectory was used as an initialization for the trajectory optimization
approach of section 4.2
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Figure 4.10: Simulated (left) and actual (right) snake arm robots executing motions planned in a
model of an airplane wing section
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Chapter 5

Conclusion and Future Work

This thesis has explored the challenges and benefits of contacts in two robotics problems. Con-
tacts can provide accurate sensory information and aid in robot motion, but the local nature of
contact forces adds difficulties. Specifically considered were a localization problem using a touch
probe, and a planning problem using contacts for support.

In localization, touch probing yields accurate measurements about the location of the surface
of a part. However, only a thin manifold of configurations are consisent with the measurement,
which presents challenges when using this measurement to update the belief of the object. Chap-
ter 3 first reviewed work done in collaboration with Shiyuan Chen [52] on designing a particle
filter capable of updating using contact measurement. It then extends this particle filter to parts
with internal degrees of freedom, where the goal is to localize a specific section defined by da-
tums. This chapter describes how to use the particles to define an information gain metric that
can be calculated efficiently, and this metric is used to select informative probing actions during
experiments.

In motion planning, contact forces can reduce joint torques in a cantilevered robotic arm.
However, utilizing contacts involves discovering and traversing a thin manifold through config-
uration space, which presents difficulties for common methods of planning. Chapter 4 describes
approaches for trajectory optimization and samples based planners for handling the effects of
contacts. The heart of the approach is a dynamics model that can provide unrealistically opti-
mistic contact forces at a distance, and thereby providing useful gradient information to a cost
function. The degree to which forces at a distance can be used is controllable, enabling the en-
forcement of realistic final trajectories. However, an unfortunate characteristic of this method is
that all constraints are soft, thus tuning of hyperparameters can be needed to achieve acceptable
solutions.

There is a plethora of future directions for this work. Perhaps most obviously, these two
approaches can be combined on the same robot. The same contacts used for planning can also
be used for localization, augmenting the planning cost function further to encourage informative
contact locations.

This thesis demonstrated the localization approach on only a single physical part, and only
a limited set in simulation. The datum based particle filter can be applied to a wide variety of
environments consisting of objects with bayesian linked poses. It’s power is the ability to focus
on only the information gathering actions that aid a task, ignoring uncertainty when accept-
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able. Through collaborators we have identified a practical application in need of the approach
described involving a robot in a manufacturing setting.

Obvious extensions exist to the planning methods describes. The sample based planner de-
scribed will yield only feasible trajectories, not optimal trajectories, but the methods of RRT*
can be used to produce better trajectories for initializing the optimization. In addition, when the
trajectory optimization fails the current solution is a random restart, however this new optimiza-
tion may result in convergence to the same local minima. The same approaches employed in
section 4.3 can be used to avoid repeated exploration of the same region. Finally, the dynamics
model and cost function used were constructed specifically for contacts, but the methods used
may be extended to other challenges in robotics.
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