
Vision-Based Navigation and Deep-Learning
Explanation for Autonomy

Sandeep Konam

CMU-RI-TR-17-27

May 2017

The Robotics Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Manuela Veloso, Co-chair

Stephanie Rosenthal, Co-chair
Sebastian Scherer

Danny Zhu

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Robotics.

Copyright c© 2017 Sandeep Konam

Keywords: Unmanned aerial vehicles, Autonomy, Vision, Navigation, Deep-learning, Inter-
pretability

Abstract

In this thesis, we investigate vision-based techniques to support robot mobile
autonomy in human environments, including also understanding the important im-
age features with respect to a classification task. Given this wide goal of transpar-
ent vision-based autonomy, the work proceeds along three main fronts. Our first
algorithm enables a UAV to visually localize and navigate with respect to CoBot, a
ground mobile robot, in order to perform visual search tasks. Our approach leverages
the robust localization and navigation capabilities of CoBot while allowing the UAV
to search for the object of interest in locations that CoBot cannot access. Second, to
enable safe UAV navigation using its monocular camera, we contribute a deep learn-
ing based perception system to avoid obstacles in real-time. We demonstrate that
using our system, UAVs can navigate safely in various challenging environments.
Finally, we address our goal towards justification of vision-based decisions. We in-
vestigate an explanation technique to understand the predictions of a deep learning
based image classifier. We contribute the Automatic Patch Pattern Labeling for Ex-
planation (APPLE) algorithm for analyzing a deep network to find neurons that are
‘important’ to the network classification outcome, and for automatically labeling the
patches of the input image that activate these important neurons. We investigate sev-
eral measures of importance for neurons and demonstrate that our technique can be
used to gain insight into how a network decomposes an image to make its classi-
fication. The performance of each of these contributions is demonstrated through
experimental results.

iv

Acknowledgments

Firstly, I express my sincere gratitude to my advisors Prof. Manuela Veloso and
Dr. Stephanie Rosenthal for the continuous encouragement, guidance, and contribu-
tion of ideas for the development of this research. I thank my other thesis committee
members Sebastian Scherer and Danny Zhu for being helpful and providing feed-
back on my work.

I’m thankful to Shichao Yang and Ian Quah for collaborating on critical aspects
of this work. I thank Rick Goldstein for constructing the UAV landing base required
for a part of this work. I thank Raulcezar Alves and Srikanth Malla for helping me
record algorithm demonstration videos.

I thank Sai Prabhakar for all the insightful discussions. I am grateful to the mem-
bers of the CORAL group for their input on my research as well as the presentation
of my work. I would like to thank the rest of the RI community for many great
memories.

Finally, I thank my family members and friends for supporting my academic
endeavors, I could not have done it without them.

vi

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions of the thesis . 1
1.3 Outline of the thesis . 2

2 UAV and CoBot coordination for indoor object search tasks 3
2.1 Related Work . 3
2.2 Multi-Robot Coordination for Object Search Tasks 4

2.2.1 CoBot Capabilities . 4
2.2.2 ARDrone Capabilities . 4
2.2.3 Multi-Robot Coordination Task . 4

2.3 Vision-Based Moving Target Navigation . 5
2.3.1 Image Coordinate System . 5
2.3.2 Imagining Beyond the Image Frame . 7
2.3.3 Moving Target Navigation Algorithms 7
2.3.4 Forward Search and hover above marker 7
2.3.5 Forward Search, Returning Home, Landing 7
2.3.6 Coordination between CoBot and UAV to perform visual search 8

2.4 Experiments . 9
2.4.1 Navigation to marker in vision frame 9
2.4.2 Forward Search and hover above marker 9
2.4.3 Forward Search, Returning Home, Landing 9
2.4.4 Coordination between CoBot and UAV to perform visual search task . . . 11

2.5 Future work . 12

3 Obstacle avoidance for UAVs using deep learning 13
3.1 Related Work . 13
3.2 Visual Perception . 14

3.2.1 Dataset . 14
3.2.2 Intermediate Perception - depth and surface normal 15
3.2.3 Trajectory prediction . 16

3.3 Experiments . 17
3.3.1 Training and testing . 17
3.3.2 NYUv2 dataset Evaluation . 17

vii

3.3.3 Other Public Indoor dataset Evaluation 19
3.3.4 Quadrotor simulation flight . 19
3.3.5 Real quadrotor flight . 22

3.4 Future work . 22

4 Automatic Patch Pattern Labeling for Explanation (APPLE) 25
4.1 Related Work . 25
4.2 Approach . 26

4.2.1 High importance Neurons . 26
4.2.2 High Importance Patches . 27
4.2.3 Patch classifier . 28
4.2.4 Putting it all together . 28

4.3 Experiments . 28
4.3.1 CNN Classifier . 29
4.3.2 Patch Classifier . 29
4.3.3 Demonstration of APPLE . 29
4.3.4 Evaluation of Important Patches . 30
4.3.5 How does APPLE apply to UAVs? . 34

4.4 Future work . 35

5 Conclusion 37

Bibliography 39

viii

List of Figures

2.1 CoBot carrying ARDrone. 5

2.2 (a) Pink marker as seen through bottom camera. (b) The black rectangle repre-
sents the image captured by bottom camera of drone. One of the colored mark-
ers (pink marker) is in the field of view where as the other (red marker) can
be reached through forward search.(c) Sample Coordinates corresponding to the
four primary directions and center of the drone marked on a 640× 360 image. . . 6

2.3 (a) Through error minimization, UAV has reached center of the marker and hov-
ers above it.(b) UAV landing on CoBot after performing forward search and de-
tecting the marker.(c) UAV navigating forward searching for the marker. Above
three parts include sequential captures from the bottom camera of UAV. 8

2.4 Plots indicating standard deviation and mean of the observed data from experi-
ments for different tasks . 10

2.5 Approximate sketch of the path traversed by drone in two scenarios: (a) shows
unaffected navigation during forward and backward motion, (b) shows the effect
of drift on the course of navigation. 11

2.6 Coordination between CoBot and UAV to perform visual search task. (a) Drone
taking off from the CoBot, (b)-(c) Drone performing forward search for target
marker, (d) Drone hovering above marker after reaching it, (e) Drone performing
backward search for CoBot, (f) Drone landing above CoBot. 12

3.1 Method Overview. Instead of directly predicting path from RGB image, we pro-
pose intermediate perception: first predict depth and surface normal, which are
closely related to 3D obstacles, then predict the path from the depth and normal.
Both steps utilize CNNs. 14

3.2 Generating ground truth path label. Using the provided depth image, a 3D point
cloud map is built. Then the best path in red is selected based on the Euclidean
obstacle cost and path smoothness cost. 15

3.3 Proposed model architecture to predict path from depth and surface normal. It
has two branches at the beginning to receive two input information. The predic-
tion result is a label within five classes. For predicting depth and normal images,
we use the model of [7]. 17

ix

3.4 Example of path prediction on NYUv2 dataset. The input is only RGB image.
Our method and method using only RGB images for prediction are shown in the
last two columns in red color. From left to right: RGB image, predicted depth
image, predicted surface normal, and predicted paths. In the top image, two
predictions are similar. In the bottom images, our method performs better. 18

3.5 Some prediction examples in Ram-lab dataset images. 20
3.6 Some scenarios of the dynamic simulation. White area represents obstacles and

red curve is the quadrotor path. 21
3.7 Some prediction examples in gazebo simulations. 21
3.8 Top view of path prediction in gazebo simulations. The red arrow represents the

robot pose, the blue line is the predicted trajectory. The white areas in the image
represents the obstacles. 22

3.9 (a) Real flight scenes including curved corridor, front obstacles and corridor fol-
lowing (b) Eight prediction examples from quadrotor’s view on the fly. For each
image, the path image below it shows the predicted path. More results could be
found in the supplementary video. 23

4.1 Pipeline of our APPLE algorithm : a) ranking neurons as per measures described
in Section 3.1, b) identifying image patches corresponding to the top 5 neurons
from (a), c) our patch classifier classifies the image patches from (b), only top-5
classifications are shown here. 26

4.2 Sample training data for the Patch classifier. 30
4.3 (a): Input image. (b): High Importance Patches selected by APPLE algorithm

using Activation Matrix Sum measure. 31
4.4 APPLE sorts the labeled patches by confidence to present to a human in order

to explain the CNN’s image classification. Two example images are shown with
their important patches selected using Activation Matrix Sum measure. 32

4.5 Comparing weakly supervised localization between a) APPLE and b) CAM. In
APPLE, red boxes indicate layers 3 and 4, green indicates layers 5 - 7 and blue
indicates layers 8 and 9. On the CAM images, the heatmap visualizes its impor-
tant pixels. 33

4.6 APPLE sorts the labeled patches by confidence to present to a human in order
to explain the CNNs image classification and corresponding action (important
patches are selected using Weight Matrix Sum measure) 34

4.7 Weakly supervised localization of APPLE (red boxes indicate layers 3 and 4,
green indicates layers 5 - 7 and blue indicates layers 8 and 9.) 35

x

List of Tables

3.1 Trajectory label distribution on NYUv2 dataset. 16
3.2 Comparison of path prediction on NYUv2 dataset. 18
3.3 Confusion matrix for paths prediction on NYUv2. 19
3.4 Comparison of path prediction on Ram-lab datasets. 20

4.1 Evaluation of important patches . 32

xi

xii

Chapter 1

Introduction

1.1 Motivation
The ability to sense the surrounding environment is a fundamental requirement for any au-
tonomous system. Sensors may be divided into two classes: internal state sensors, such as
accelerometers or gyroscopes, which provide internal information about the robot’s movements,
and external state sensors, such as lasers, infrared sensors, sonars, and visual sensors, which pro-
vide external information about the environment [16]. Compared to sensors such as lasers [1],
stereo cameras [28], and RGB-D depth cameras [11], a monocular camera is small, low weight,
low-cost, and relatively less power-consuming. Therefore, in this thesis, we focus on vision-
based techniques to support robot mobile autonomy. Specifically, we contribute two vision-based
algorithms to enable UAVs to perform a search task and to avoid obstacles in real-time.

Recently, there has been a wide-spread adoption of various deep-neural network architectures
for vision-based robotic applications like unmanned aerial vehicle (UAV) navigation because of
the empirical success these architectures have seen in various image classification tasks. How-
ever, deep learning models are often thought of as ‘black boxes’ in reference to the difficulties of
tracing a prediction back to important features to understand how an output was arrived at. When
the robots operate in human environments, their lack of interpretability is a major problem for
human users to understand the deep-learning-based robot’s actions. To this end, we contribute a
technique for explaining the deep-learning algorithms to humans in their environments.

1.2 Contributions of the thesis
In this thesis, we investigate vision-based techniques to support robot mobile autonomy in human
environments, including also understanding the important image features responsible for image
classification. Given this wide goal of transparent vision-based autonomy, the work includes
three main contributions:

1. We propose a visual navigation technique that enables the Parrot ARDrone 2.0 to localize
with respect to a CoBot [34], a ground service robot, to perform search tasks. CoBots
autonomously localize and navigate in our office environment, while effectively avoiding
obstacles using a modest variety of sensing devices, including a vision camera, a Kinect

1

depth-camera, and a small Hokuyo LIDAR [3]. However, our CoBots do not have the
capability to navigate small spaces to view the objects on desks and other tall surfaces, and
as a result, they fail to efficiently search for objects of interest without human assistance.
Our approach leverages the robust localization and navigation capabilities of CoBot and
the ARDrone’s capability to maneuver easily through indoor environments and search for
object of interest.

2. We propose a deep-learning-based perception system for UAVs to avoid obstacles in real-
time. We first propose a new method to get ground truth labels from RGB-D images
automatically without human demonstrations. Then we propose a two-stage convolutional
neural network (CNN) for obstacle avoidance. The first stage predicts the depth and surface
normal from images, which are two important geometric properties related to 3D obstacle
avoidance. The second stage predicts a path from the depth and normal maps using another
CNN model. We demonstrate that, using our system, UAVs can navigate safely in various
challenging environments.

3. We propose an algorithm to label the features of an image that the network focuses on in
order to explain why the network made its prediction. We accomplish this by analyzing
the neurons that are most important to the output classification of an image as well as
the patterns that activate those neurons. Our proposed approach, Automatic Patch Pattern
Labeling for Explanation (APPLE), first automatically analyzes the signal propagation
through each layer of the network in order to find neurons that contribute highly to the
signal in subsequent layers. Then, it deconvolves the important neurons at each layer to
determine the parts or patches of the image that these neurons use as their input. Finally,
our algorithm automatically labels the image patches using a separately-trained classifier
and ranks the neurons based on confidence.

1.3 Outline of the thesis
This thesis is organized as follows. Chapter 2 introduces CoBot collaboration with the off-the-
shelf Parrot ARDrone 2.0 unmanned aerial vehicle (UAV) to perform service-based object search
tasks. In Chapter 3, we propose a CNN-based navigation system with intermediate perception
to predict trajectory. In Chapter 4, we propose APPLE (Automatic Patch Pattern Labeling for
Explanation), an algorithm to label the features of an image that the network focuses on in or-
der to explain why the network made its prediction. Finally in Chapter 5, we summarize the
contributions of this thesis, and the capabilities of the developed algorithms.

2

Chapter 2

UAV and CoBot coordination for indoor
object search tasks

In this chapter, we propose a vision-based moving target approach for the navigation of ARDrone
in which the drone uses a camera-based coordinate system to track the direction the robot and
object has moved, find and hover above objects, and reverse those trajectories to return to its
starting location under uncertainty. This approach requires little computation and yet allows
the drone to perform its search task from any location in any environment. In Section 2.4, we
demonstrate that our algorithm efficiently finds objects in our environment during search tasks
and can return to its starting location after it is finished searching.

2.1 Related Work

Most of the current visual-servoing techniques are computationally expensive and precision is
often traded with real-time computation on UAVs. The ARDrone was previously used for vi-
sual SLAM based navigation [8], autonomous navigation of hallways and stairs [2] and reactive
avoidance in natural environments [26]. Inferring 3D structure from multiple 2D images is chal-
lenging because aerial vehicles are not equipped with reliable odometry and building a 3D model
is computationally very expensive. [2] instead compute perspective cues to infer about the 3D en-
vironment. Unfortunately, most indoor environments don’t possess distinct corner-type features
to provide the desired perspective cues. Inspired by the accuracy of visual tracking methods, we
designed vision-based moving target navigation algorithm for drones that does not rely on any
environment features and is computationally minimal. In our approach, if an object is visible in
the robot’s visible range, the robot aims to minimize the distance between itself and the center
of the object. If no object is visible, the algorithm generates way-points considered equivalent
to virtual markers outside of its visible range, using which the robot navigates to it in a similar
way. Using the knowledge of the robot’s current speed and travel time, the robot navigates in any
arbitrary search pattern by computing where virtual markers should be placed.

3

2.2 Multi-Robot Coordination for Object Search Tasks
Our CoBot service robots have been deployed in our environment for many years performing
tasks such as delivering messages, accompanying people to meetings, and transporting objects
to offices [34]. However, our CoBots do not have capability to navigate confined space such as
offices, to view the objects in them, and as a result they require human assistance to find required
objects in search tasks. We propose a multi-robot coordination in which a second platform - the
Parrot ARDrone - can perform the object search task for CoBot, while at the same time relying
on CoBot for its localization and navigation. We describe the robot’s capabilities and the joint
task before focusing on the remaining challenge of drone localization and navigation.

2.2.1 CoBot Capabilities
CoBot is a four-wheeled omni-directional robot, equipped with a short-range laser range-finder
sensor and a depth camera for sensing (Figure 2.1). An on-board tablet provides significant
computation for the robot to localize and navigate autonomously, as well as a method of com-
munication with humans in the environment. The CoBot robots can perform multiple classes of
tasks, as requested by users through a website [35], in person through speech [17], or through
the robot’s touch screen. All tasks can be represented as pick-up and delivery tasks of objects
or people. Because CoBot is not able to navigate in confined space safely, it lacks the ability to
visually search for objects to pick up and drop off, instead relying on humans.

2.2.2 ARDrone Capabilities
Parrot ARDrone 2.0 has a 3-axis accelerometer, 3-axis gyroscope, pressure sensor, ultrasonic
sensors, front camera and a bottom/vertical camera. It relies on WiFi to transfer all of its sensor
data onto a larger computational platform. It sends its video feed for simple object detection
within the local camera frame (e.g., color thresholding for colored marker detection). Velocity
commands are sent back to the drone for vision-based navigation.

2.2.3 Multi-Robot Coordination Task
Considering the capabilities of CoBot and ARDrone mentioned previously, we notice that the
ARDrone can perform object search tasks with small computational loads but without reliable
localization while CoBot can accurately localize and navigate in its safe regions. We propose
coordination between them to effectively search for an object of interest in an indoor environ-
ment. In particular, CoBot carries the drone to a region of interest to search and then the drone
can search locally by tracking its relative motion after taking off from CoBot. After it finishes
its search, it can reverse the trajectory or perform another search to land on CoBot and move to
another location.

For the search task to be performed efficiently, the drone should be able to navigate in its
local coordinate space. Lack of reliable camera-based localization algorithms for the resource-
constrained ARDrone forced us to opt for visual-servoing techniques. While performing the
search task, the image provided by the bottom camera of the drone can only provide information

4

Figure 2.1: CoBot carrying ARDrone.

about presence or absence of the marker being searched for, but doesn’t provide any cues that
facilitate search. We contribute our vision-based moving target navigation algorithm to overcome
the challenges of localizing and navigating without any visual cues.

2.3 Vision-Based Moving Target Navigation
In moving target navigation algorithms, a robot continuously aims to minimize the distance be-
tween its current location and another target point in its coordinate space. Maintaining the target
in the same place over time allows the robot to navigate directly to it (i.e., for hovering over an
object of interest). By moving the target point in a trajectory at a constant velocity, the robot
follows the same trajectory. We use this moving target navigation algorithm in order for the
ARDrone to search the environment and track a marker when it finds one, noting that the chal-
lenge of this algorithm is determining the local coordinate space to move the point in. We next
describe our coordinate space for the moving target algorithm.

2.3.1 Image Coordinate System
We use ARDrone’s bottom camera’s coordinate frame as the local frame of reference. The
ARDrone’s image is represented as pixels in its bottom camera time (640 × 360 in this work).
When a marker is found in an image (Figure 2.2a), the computational platform sends velocity
commands proportional to the distance from the center of the robot (image) to the center of the

5

(a) (b)

(c)

Figure 2.2: (a) Pink marker as seen through bottom camera. (b) The black rectangle represents
the image captured by bottom camera of drone. One of the colored markers (pink marker) is
in the field of view where as the other (red marker) can be reached through forward search.(c)
Sample Coordinates corresponding to the four primary directions and center of the drone marked
on a 640× 360 image.

target marker:
errorx = (targetx − currentx) (2.1)

errory = (targety − currenty) (2.2)

velx = k · errory (2.3)

vely = k · errorx (2.4)

In the above equations, errorx refers to the difference in x-coordinates of the UAV’s current
position (currentx) and that of virtual marker’s center (targetx). Similar notation applies to
errory. velx refers to the linear velocity in x-direction and vely refers to the linear velocity in
y-direction. k is empirically tuned to be 0.0005.

Figure 2.2c demonstrates markers in the 4 cardinal directions of the robot’s image frame.
Since the marker exists in the image coordinate system, the error between the center of marker
and the position of UAV tends to reduce as the UAV approaches the marker. Since the velocity
is directly proportional to the error, the UAV starts hovering once the error becomes zero.

6

2.3.2 Imagining Beyond the Image Frame
When the target marker is not in the image frame, we would like the robot to search for it
using moving target navigation. By referring to pixel locations outside of the image frame (Fig-
ure 2.2b), the robot imagines where the target should be and navigates towards it. Imagined
coordinates could be based on knowledge of direction in which object went out of view or gen-
erated corresponding to a trajectory. In the current work, we generate coordinates representing
imagined markers based on the required trajectory robot has to follow. However since it is an
imagined marker at a constant distance from the current position of the robot, the error remains
constant and the robot maintains a constant velocity using the equations 2.1-2.4. For instance,
if we want the robot to perform search operation in a square path, we generate coordinates cor-
responding to imaginary markers at the four corners of a square. By creating trajectories of
imagined markers outside (or even inside) of the image area, the robot navigates using those
coordinates and eventually detects object of interest.

2.3.3 Moving Target Navigation Algorithms
In order to demonstrate the applicability of the moving target algorithm, we designed several
search trajectories as finite state machines in addition to hovering behavior over a marker in the
vision frame. We describe each in turn. Then, we will show results for experiments for each
algorithm.

Navigation to marker in vision frame

Navigation to a marker detected in the field of view of the UAV relies entirely on the image
coordinate system. After the marker is detected, its center becomes the target coordinate for the
UAV. The UAV navigates towards the center of the marker with velocity proportional to the error
between its current position and the target coordinate.

2.3.4 Forward Search and hover above marker
As depicted in Figure 2.2c, (320,80) refers to the center of imagined marker corresponding to
forward direction. As the UAV navigates forward, the video feed from the bottom camera is
used to search for the marker. Since the marker is distinctively colored from the background,
a thresholding algorithm suffices to let the UAV know if it sees the marker in its field of view.
Once the marker is detected, UAV navigates towards the marker to hover over it.

2.3.5 Forward Search, Returning Home, Landing
Forward search is performed as mentioned previously. After detecting the marker, the UAV starts
navigating backward to the home (place where it started search from) by reversing the trajectory
of imagined target points. Note that in this case, reversing the trajectory is equivalent to the
forward search problem where home is another distinctively colored marker. After detecting
the marker corresponding to home, drone navigates to the center of marker using the image

7

(a) (b)

(c)

Figure 2.3: (a) Through error minimization, UAV has reached center of the marker and hovers
above it.(b) UAV landing on CoBot after performing forward search and detecting the marker.(c)
UAV navigating forward searching for the marker. Above three parts include sequential captures
from the bottom camera of UAV.

coordinate system. It lands on the home marker after centering itself using error-minimization
between the center of marker and its own position.

2.3.6 Coordination between CoBot and UAV to perform visual search

In this task, CoBot carries the UAV down the hallway to the destined search area. The UAV
performs forward search, returns home, and lands on CoBot. As shown in Figure 2.3b, the blue
marker represents the CoBot. The ARDrone performs two search operations: one for the search
object (pink marker) and other for the CoBot (blue marker).

8

2.4 Experiments

We evaluated the performance of our proposed vision-based moving target navigation algorithm
on ARDrone 2.0. through a series of experiments presented in this section. ARDrone has 1GHz
ARMv7 Processor rev 2 (v7l) with 1Gbit DDR2 RAM and a VGA downward camera of 360p
resolution at 30fps. Images captured are of 640x360 resolution. It is controlled via Wi-Fi through
a laptop with Intel Core i7-6700HQ CPU and 16 GB RAM.

Each of the experiments presented in this section correspond to the tasks detailed in Section 4.
We have performed each experiment 20 times to test the consistency of the proposed algorithm.
Mean and standard deviation of the values corresponding to time taken for each iteration is
calculated for each of the experiments and is depicted in the charts. Results suggest that the
proposed algorithm is reliable for search tasks.

2.4.1 Navigation to marker in vision frame

In this experiment, drone navigates to the center of the marker corresponding to the platform
from where it takes off. Though drone takes off from the same place in all experiments, due to
the unavoidable drift associated with the drone while taking off, pixel distance between the center
of marker and the position of drone (center of the image) changes as represented on the x-axis
of plot shown in the Figure 2.4a. Due to the precision of timestamp being 1ms, it is possible that
0.9ms is considered as 0ms. 14 out of 20 times, drone takes 1 ms and 6 out of 20 times, it takes
0 ms to reach the center of marker. As depicted in the Figure 2.4a, mean is 0.7ms and standard
deviation is 0.4702ms.

2.4.2 Forward Search and hover above marker

In this experiment, a marker is placed 2.0 meters in front of the drone. The drone performs
forward search and hovers above the marker once it reaches within a threshold of 50 units of
pixel distance from the center of marker. Each experiment is performed 20 times. Results show
standard deviation of 0.8208ms with a mean of 9.40ms as depicted in Figure 2.4b.

2.4.3 Forward Search, Returning Home, Landing

In this experiment, drone performs forward search and returns back to the home after detecting
the marker which is placed 2.0 meters in front of the drone. Over 20 experiments, results show
a standard deviation of 3.5522ms and mean of 16.2500ms as depicted in the Figure 2.4c. For 17
times, time reported is similar with a standard deviation of 1.1663, but there are two cases where
the time taken is 25 ms and one case where it is 22 ms, including which increased standard
deviation to 3.5522. Through the data log, it is observed that in those three cases, the drone
drifted after detecting the marker and required additional time to return to the home. Figure 2.5a
shows approximate sketch of the path followed by the drone in cases where similar time was
consumed, where Figure 2.5b shows path that looks more widened near the marker due to the
drift of the drone.

9

(a) Task1: Navigation to marker in vision frame. (b) Task2: Forward Search and hover above marker.

(c) Task3: Forward Search, Returning Home, Land-
ing.

Figure 2.4: Plots indicating standard deviation and mean of the observed data from experiments
for different tasks

10

Figure 2.5: Approximate sketch of the path traversed by drone in two scenarios: (a) shows
unaffected navigation during forward and backward motion, (b) shows the effect of drift on the
course of navigation.

2.4.4 Coordination between CoBot and UAV to perform visual search task

We bring together all the above building blocks and accomplish the visual search task by es-
tablishing coordination between CoBot and UAV. As illustrated in Figure 2.6, CoBot carries the
drone using its localization and navigation capabilities to the desired search area. The drone
takes off from the CoBot as shown in Figure 2.6a and starts navigating forward as shown in
Figure 2.6b. As it navigates forward, the drone simultaneously searches for the pink marker as
shown in Figure 2.6c. Once it locates the marker in its field of view, it navigates to the center
of marker through error minimization. Figure 2.6d shows the drone hovering above the marker.
After reaching the center of marker, drone starts navigating backwards to the CoBot as shown in
Figure 2.6e. As it navigates backwards, it keeps searching for the blue marker indicative of the
CoBot. Once the blue marker is detected, the drone lands on the CoBot as shown in Figure 2.6f.

To summarize, our proposed vision-based moving target navigation algorithm utilizes visual
markers for location feedback, allowing it to recover from drift problems frequently encountered
by UAVs that do not use absolute positioning. In particular, we utilize the drift as part of the target
search navigation and utilize the symmetry in the robot to simply playback the path assuming
that the drift will be similar on the way back to CoBot. Additionally, we note that the CoBot
and UAV multi-robot collaborative solution actually reduces overall drift compared to the UAV
navigating alone since CoBot localizes well and carries UAV to known search locations. We
conclude that the UAV’s collaboration with CoBot can accomplish search tasks that neither can
do alone, while still maintaining accurate localization.

11

Figure 2.6: Coordination between CoBot and UAV to perform visual search task. (a) Drone
taking off from the CoBot, (b)-(c) Drone performing forward search for target marker, (d) Drone
hovering above marker after reaching it, (e) Drone performing backward search for CoBot, (f)
Drone landing above CoBot.

2.5 Future work
Future work includes incorporating computer vision capabilities to avoid obstacles while still
maintaining approximate trajectories in indoor environments. By implementing more efficient
search strategies and also safely navigating around obstacles and people in the environment, the
robot teams can indicate to humans where found objects are. Such work could also be extended
further to use the robots to query about availability of specific objects or people in the environ-
ment.

12

Chapter 3

Obstacle avoidance for UAVs using deep
learning

In this chapter, we propose a method to predict trajectories from images instead of the commonly
used steering command (angular velocity). An overview of the proposed perception method is
presented in Figure 3.1. Details of the proposed method, including the dataset creation and CNN
architecture are presented in Section 3.2. In Section 3.3, we present experiments on several
public datasets, dynamic simulations, and real flights and demonstrate that our method is safer
than CNN trajectory prediction on raw RGB images.

3.1 Related Work

Monocular-image-based obstacle avoidance systems could be divided into two categories. The
first category is to use monocular cues or motion parallax to analyze the object position and size
using low-level features such as image saliency SURF features [22] and optical flow [31]. These
methods are usually suitable for simple tasks such as centering in a corridor without many obsta-
cles. The second category is to use learning algorithms to directly predict 3D obstacle position
or motion commands especially using CNNs. 3D scene layout understanding [14] [37] could
be an efficient way of representing 3D maps but it is usually limited to Manhattan environments
or corridor with clear boundaries [38] which might not be satisfied in all environments. CNN
depth estimation has also been used to represent 3D obstacles [21]. Some works already apply
CNNs to autonomous vehicles. Chen et al. [4] propose a ’deep driving’ system to predict some
features to generate steering commands (angular velocity) using a feedback controller. Tai et al
[33] apply CNNs to ground robot navigation but their input is a depth image. Giusti [12] et al.
apply it to MAV autonomous trail following. One common problem of the above methods is
that they all use human demonstration to collect ground truth datasets which have some draw-
backs. Firstly, it is difficult to get a large-scale and diverse collection of training data. Secondly,
their data usually is biased to certain scenarios where demonstrations happen and also biased
by human understanding. Finally, they only predict the instantaneous steering command which
doesn’t contain information of where to go in the future so it requires the learning algorithm to
give steering commands very frequently otherwise it might hit obstacles using the old angular

13

Figure 3.1: Method Overview. Instead of directly predicting path from RGB image, we propose
intermediate perception: first predict depth and surface normal, which are closely related to 3D
obstacles, then predict the path from the depth and normal. Both steps utilize CNNs.

velocity. It is also difficult to evaluate whether robots hit obstacles or not as it depends on how
long the steering command lasts. We first propose an automatic image labelling method, then uti-
lize CNN to predict a rough 3D model. This model might be noisy, inaccurate, and even invalid
in reality so we cannot use a standard motion planner [15] [41] to generate trajectories. Instead,
we utilize the predicted 3D model to predict the trajectory in another CNN model. Results show
that this two-stage model performs better than directly predicting from RGB images.

3.2 Visual Perception

3.2.1 Dataset

We use the NYUv2 RGB-D dataset, which contains many diverse indoor scenes. For trajectory
labelling, in theory, robots could execute numerous continuous 3D trajectories, which will be
a difficult high-dimensional regression problem. To simplify the problem, we change it into a
classification problem by discretizing the continuous trajectory space into five categories: left
turn, left forward, straight forward, right forward, right turn, shown in the right of Figure 3.1.
Then for each image, the best one is selected as the ground truth label. These five trajectories
are generated by the maximum dispersion theory of Green et al [13]. Each path is around 2.5m
long. We avoid the ambiguity of manual labelling and design a cost function to automatically
select the best path. We first project the provided depth image into 3D point cloud then build a
3D Euclidean distance map. The cost function is commonly used in optimization-based motion

14

Figure 3.2: Generating ground truth path label. Using the provided depth image, a 3D point
cloud map is built. Then the best path in red is selected based on the Euclidean obstacle cost and
path smoothness cost.

planners [41] [11]. An example of the 3D point cloud and selected label is shown in Figure 3.2.
In more detail, the cost function of a trajectory ξ is computed by:

J(ξ) = fobst(ξ) + wfsmooth(ξ) (3.1)

where w is a weighting parameter. fobst(ξ) is the obstacle cost function[41] penalizing closeness
to obstacles:

fobst(ξ) =

∫ 1

0

cobs(ξ(t))‖
d

dt
ξ(t)‖dt (3.2)

where cobs(ξ(t)) = ‖max(0, dmax − d(ξ(t))‖2. dmax is the maximum distance upon which
obstacle cost is available. For NY U dataset, we set dmax = 3.5m. d(ξ(t)) is the distance to
obstacles from the distance map. fsmooth(ξ) measures the smoothness of the path and penalizes
the high derivatives:

fsmooth(ξ) =
1

2

∫ 1

0

‖ d
dt
ξ(t)‖2dt (3.3)

The final ground truth label distribution for NYUv2 is shown in Table 3.1. We can see that
five categories are nearly equally distributed after selection and fair for the latter evaluation and
comparison of different methods.

3.2.2 Intermediate Perception - depth and surface normal
Unlike existing CNN-based navigation methods [12] [33], which predict the command directly
from RGB images, we first predict depth and surface normal. There are many 3D geometry

15

Table 3.1: Trajectory label distribution on NYUv2 dataset.

Class ID Distribution

Left turn 20.70%
Left forward 17.08%

Straight forward 22.15%
Right forward 18.01%

Right turn 22.08%

understanding methods that could help obstacle avoidance and we choose depth estimation due
to its generality for various environments.

There has been a lot of work in depth and normal estimation from a single image [7] [36]. We
utilize the CNN model from Eigen [7], which is a multi-scale fully convolutional network. It first
predicts a coarse global output based on the entire image area, then refines it using finer-scale
local networks. The cost functions for depth training are defined as follows: suppose d is the log
difference between predicted and ground depth, then depth loss is:

Ldepth =
1

n

∑
i

d2i −
1

2n2

(∑
i

di

)2

+
1

n

∑
i

Od2i

where Odi is the gradient magnitude of d. If the ground truth and predicted normal vector are v
and v∗, then the dot product between vectors is used to define the normal loss function:

Lnormal = −
1

n

∑
i

vi · v∗i

3.2.3 Trajectory prediction

We design another CNN network shown in Figure 3.3, to utilize the predicted depth and normal
to get the final path classification. It is a modification of standard Alexnet [18] with two inputs.
For symmetry, we replicate the depth image (one channel) into three channels. Then depth and
normal images learn convolution filters separately and are fused at the fourth layer. By doing
this, the final prediction could merge two sources of information. For training, we minimize the
standard classification cross-entropy loss:

L(C,C∗) = − 1

n

∑
i

C∗
i log(Ci) (3.4)

where Ci = ezi/
∑

c e
zi,c is the softmax class probability given the CNN convolution output z.

16

Figure 3.3: Proposed model architecture to predict path from depth and surface normal. It has
two branches at the beginning to receive two input information. The prediction result is a label
within five classes. For predicting depth and normal images, we use the model of [7].

3.3 Experiments

3.3.1 Training and testing

In the training phase, we use the dataset created in Section 3.2.1 to train our two-stage CNN
separately. In the first stage, the ground truth surface normal is computed using the method of
[29], which estimates surface normals by fitting local least-squares planes in the point cloud. In
the second stage, we use the ground truth depth and surface normal as inputs to train CNN for
path classification. We also augment the training data by flipping images horizontally. Note that
for surface normal flipping, we need to reverse the horizontal normal component.

In the testing phase, we only use the raw RGB image as inputs of our two-stage CNN.

3.3.2 NYUv2 dataset Evaluation

The baseline for comparison is to directly train Alexnet CNN model to predict path label from
raw RGB images, which has been adopted in many other CNN navigation works [4] [12][33]. We
use the same settings of parameters for CNN weight initialization and training for comparison.

Qualitative Results

A qualitative comparison between our method and the baseline method is shown in Figure 3.4.
We can see that our method generates safer trajectories most of the time.

Quantitative Results

The result of the two methods is presented in Table 3.2. The Accuracy column represents the
standard classification accuracy. To make the evaluation more meaningful, during the dataset
creation in Section 3.2.1, we also record the second best path and check whether the predicted
path lies in the top two best paths shown in Top-2 accuracy column. From the table, our method

17

Figure 3.4: Example of path prediction on NYUv2 dataset. The input is only RGB image. Our
method and method using only RGB images for prediction are shown in the last two columns in
red color. From left to right: RGB image, predicted depth image, predicted surface normal, and
predicted paths. In the top image, two predictions are similar. In the bottom images, our method
performs better.

with intermediate perception performs much better compared to direct perception from RGB
image, with an accuracy increase of 20%.

We also report the percentage of predicted paths hitting the 3D obstacles shown in the Safe
prediction column, which is an important metric related to robot’s safety. 92.08% of the predicted
paths using the proposed method are safe. If we only consider obstacles within a certain distance
(eg. 2m) of the robots, the safe prediction ratio increases to 95.55%, whereas using random
prediction, the safe prediction ratio is 62.38%. Note that since images are usually taken at some
distance from obstacles, random prediction will not necessarily generate unsafe trajectories all
the time.

Results of our staged CNN model with only depth prediction can be seen in Table 3.2. It

Table 3.2: Comparison of path prediction on NYUv2 dataset.

Method Accuracy Top-2 accuracy Safe prediction

Two-stage (Ours) 64.07% 82.11% 92.08%

Two-stage
60.34% 78.09% 90.68%

only depth (Ours)

CNN on RGB 39.20% 60.19% 78.73%
Random 20.00% 40.00% 62.38%

18

Table 3.3: Confusion matrix for paths prediction on NYUv2.

Predicted values

Class Left Left+ Straight Right+ Right

Left 0.65 0.11 0.11 0.03 0.10
Left+ 0.14 0.64 0.12 0.04 0.06

Straight 0.07 0.14 0.60 0.10 0.08
Right+ 0.07 0.05 0.21 0.56 0.11
Right 0.09 0.02 0.06 0.10 0.73

performs slightly worse compared to combining depth and surface normal. The confusion matrix
of our method is shown in Table 3.3. We can see that most of the time, the prediction is correct
and only a few times, the prediction will generate totally opposite direction. The reason why our
network performs better is that we add ground truth depth information in the first stage’s CNN
model training which will guide the network to learn 3D scene information related to obstacle
avoidance. However, the baseline method might not be able to learn this 3D information just
from a single image without ground truth depth instruction.

3.3.3 Other Public Indoor dataset Evaluation
Recently, Tai et al[33] proposed the Ram-lab RGB-D corridor dataset for CNN autonomous
navigation. We didn’t directly compare with their method as they predict motion command from
true depth image instead of RGB image. Besides, their dataset labeling comes from human
demonstration, which is different from ours. The provided image labels are not well distributed.
So we generate a new path label for their dataset using the same method and parameters in
Section 3.2.1. Depth image is pre-processed by the cross-bilateral filter of Paris [23] to fill the
missing regions in order to project to 3D space and compute surface normals. Note that we
directly applied the trained model from NYUv2 on this dataset without turning any parameters.
Some prediction examples are shown in Figure 3.5. A metric comparison on all the images is
presented in Table 3.4.

We can find that our method still outperforms the baseline methods in terms of classification
accuracy and Safe prediction ratio. However, the improvement is not as large as the NYUv2
dataset mainly because Ram-lab dataset contains only corridor images with similar scene struc-
ture and appearance.

3.3.4 Quadrotor simulation flight
We also evaluate our network for continuous robot flight in simulations shown in Figure 3.6. Our
CNN model predicts a trajectory in real-time, then the robot will follow the trajectory until a new
predicted trajectory comes in. Yaw heading of quadrotor is set as the tangent direction of the
trajectory. We use the ardrone quadrotor dynamic simulator developed by Engel et al. [9] in the
default gazebo willowgarage world model without texturing it. A simple PID controller is used

19

Figure 3.5: Some prediction examples in Ram-lab dataset images.

Table 3.4: Comparison of path prediction on Ram-lab datasets.

Method Accuracy Top-2 accuracy Safe prediction

Two-stage (Ours) 50.05% 73.21% 91.10%
CNN on RGB 42.68% 65.67% 87.92%

Random 20.00% 40.00% 72.37%

for trajectory tracking. The final performance is reflected both by the CNN prediction error and
also by the uncertainty in dynamic modelling and trajectory tracking. In the simulation, there
are various kinds of door and wall configurations to test the robustness of our system. Some of
the prediction examples are shown in Figure 3.7 and the top-view trajectory prediction is shown
in Figure 3.8. We can see that even though the scene is quite different from NYUv2 dataset, our
CNN model still works well and the quadrotor is able to travel long distances and go through
very narrow doors.

The ground truth pose is provided by gazebo. Our mean obstacle distance is 0.98m. The
narrowest door is only 0.78m wide while quadrotor is 0.52m wide. The average prediction time
of our whole system is 38.5ms on a GeForce GTX 980 Ti GPU, so it is able to run in real time
over 25Hz.

We need to note that our CNN model can only be used for local obstacle avoidance, so the
quadrotor can easily come to a dead end if there is no high level instruction shown in the top
scene of Figure 3.6. Moreover, we currently only use five paths for classification, which might
not satisfy the real world requirements. For example, if there is sharp turning, U-turn trajectory
or stop motion to select, the robot flight could perform better. These techniques have been used
in some actual flight system [11].

20

Figure 3.6: Some scenarios of the dynamic simulation. White area represents obstacles and red
curve is the quadrotor path.

Figure 3.7: Some prediction examples in gazebo simulations.

21

Figure 3.8: Top view of path prediction in gazebo simulations. The red arrow represents the
robot pose, the blue line is the predicted trajectory. The white areas in the image represents the
obstacles.

3.3.5 Real quadrotor flight
We also test our algorithm on real quadrobot flight. The platform is a parrot Bebop quadrotor,
shown in Figure 3.9a. It can send the forward-facing camera image via WiFi to our host laptop,
which predicts the trajectory and sends back velocity command to the drone. The laptop is
equipped with a GeForce GTX 960M GPU for CNN prediction which takes about 0.143s per
frame. There is also a image transmission delay of about 0.2s. We still use the trained model
from NYUv2 dataset. Due to unstable and sometimes jumping state estimation from the bebop
drone, we cannot use the position feedback in the trajectory tracking, which deteriorates the
whole performance. We test our vehicle in three indoor environments: straight corridor, turning,
and front obstacles, as shown in Figure 3.9a. Some images and predictions taken from real flights
are shown in Figure 3.9b.

3.4 Future work
Future work includes integrating the proposed obstacle avoidance system with high-level motion
planning, accurate state estimation and also adding more trajectories into it for example U-turn,
to better avoid obstacles. Integrating prediction from previous frames should also increase the
performance.

22

(a)

(b)

Figure 3.9: (a) Real flight scenes including curved corridor, front obstacles and corridor follow-
ing (b) Eight prediction examples from quadrotor’s view on the fly. For each image, the path
image below it shows the predicted path. More results could be found in the supplementary
video.

23

24

Chapter 4

Automatic Patch Pattern Labeling for
Explanation (APPLE)

In this chapter, we propose an algorithm to label the features of an image that the network focuses
on in order to explain why the network made its prediction. Our goal is to explain the output of
a CNN image classifier by automatically evaluating the neurons and their corresponding patches
of the image that contribute the most to the classification. For example, when classifying images
of polar bears, neurons that detect patches containing the eyes, nose or paws of the animal might
contribute significantly to the classification. We would like to automatically find the neurons
that are important (i.e., neurons that contribute significantly to the classification), and label the
features in the image that they correspond to. In order to do this, we propose our Automatic
Patch Pattern Labeling for Explanation (APPLE) algorithm to:

1. find high importance neurons within the CNN,

2. deconvolve the network to determine the patch of the image that each important neuron
looks at, and

3. automatically label those patches using a secondary classifier to determine object features
that the patch contains.

4.1 Related Work
Prior research pertaining to understanding a CNN’s predictions can be divided into two cate-
gories: weakly supervised localization and network structure analysis. In weakly supervised
localization, the objective is to highlight the object features (pixels) within an image. Prominent
works include Class Activation Mapping (CAM) [40], Grad-CAM [27] and Local Interpretable
Model-agnostic Explanations (LIME) [25]. While these techniques use different measures for
determining which pixels in the image are most important for classification, they do not ana-
lyze how the pixel features are propagated through the network to arrive at a prediction. We
build on prior work that aims to understand how information propagates through a network (e.g.,
[10, 20, 32, 39]). Although most of the network structural analyses, including [39], provide
insights into a CNN’s classification at the neuron-level, they require human intervention to man-

25

Figure 4.1: Pipeline of our APPLE algorithm : a) ranking neurons as per measures described
in Section 3.1, b) identifying image patches corresponding to the top 5 neurons from (a), c) our
patch classifier classifies the image patches from (b), only top-5 classifications are shown here.

ually analyze the activations or the important image patches to interpret how a network made a
prediction. This manual process does not scale as the network gets bigger or as the number of
images to analyze increases. Our Automatic Patch Pattern Labeling for Explanation (APPLE)
algorithm is built on top of Fergus & Zeiler [39], but does not require any manual probing to
understand the image patches that activate individual neurons, and we eliminate the need to look
at all the neurons. In particular, we focus only on analyzing neurons that are important to the
network. By assessing the image patches corresponding to important neurons, APPLE simul-
taneously localizes the object within the image while also automatically labeling those patches
with object feature descriptions.

4.2 Approach

4.2.1 High importance Neurons
Each neuron (x, y) in layer l in a deep network takes as input a set of signal matrices zl−1

i,j from
neurons at indices (i, j) in the previous layer and propogates a new signal matrix zlx,y to the next
layer using the following equation:

zlx,y =
∑
i,j

wl
i,jφ(z

l−1
i,j) + blx,y (4.1)

where
• zlx,y is the activation signal matrix of the neuron at index (x, y) in layer l
• wl

i,j is the weight of the signal from neuron (i, j) in layer l − 1 to (x, y) in l

26

• φ(z) is the activation function applied to the activation output of the neurons from the
previous layer, and

• blx,y is a bias function.
The propagation of information through neuron (x, y) is related to 1) its final activation z

and 2) the weights w that subsequent neurons place on the output signal of that neuron. Neurons
that have high activation signal may contribute highly to the activation of subsequent neurons
and the classification prediction. Similarly, neurons whose activations are multiplied with high
weight in subsequent neurons may also contribute highly to the classification. In addition to high
overall values of weights and activations, high variance within a matrix could also signify that
the neuron is detecting patterns with intensity changes (e.g., edges of objects)

We propose four measures of importance based on the weights and activations of each neuron
(x, y) in layer l:
• Activation Matrix Sum: The sum of all values in the output activation signal matrix z:∑

row,col

zlx,y[row][col], (4.2)

• Activation Matrix Variance: The variance of all values in the output activation signal
matrix z:

V arrow,col z
l
x,y[row][col], (4.3)

• Weight Matrix Sum: The sum of all values in the weight matrix wl+1:∑
row,col

wl+1
x,y [row][col], (4.4)

• Weight Matrix Variance: The variance of all values in the weight matrix wl+1:

V arrow,col w
l+1
x,y [row][col] (4.5)

The neurons in each layer are ranked from highest to lowest values for each measure (Fig-
ure 4.1a). The highest ranked neurons in each layer are those that are most important.

Note that since the CNN weights remain same for all images, it is possible for some neurons
to be highly ranked with respect to our weight measures yet have no activation for a particular
image. When ranking neurons for weight-based importance measures in a test image, we only
consider those neurons that have activation zlx,y > 0.

4.2.2 High Importance Patches
Given the ranked neurons, we select the top N neurons per layer (i.e., we use the top 5 neurons).
For each of the top N neurons, we are interested in identifying the image patches that they
convolve (Figure 4.1b). We determine the image patches by deconvolving the network as in
Zeiler and Fergus [39]. Although different layers use different sized patches, these patches are
all identified as of high importance.

27

4.2.3 Patch classifier

In order to label the object features in each high importance patch, we construct and train a
secondary classifier. Given a set of object features as classifier labels (e.g., eyes, nose, ear, fur,
and paws for polar bears), we manually crop image patches as training data for each of these
labels. We also include a None label which represents our background scene and parts of the
object that may be difficult to distinguish.

Once the patch classifier is trained, it can be run on any patches that are identified by the
CNN image classifier as important in order to determine the likely labels for those important
image patches. We rank the likelihood of each label on each patch (Figure 4.1c) to determine
the most likely label. Compared to [39] which requires manual probing to understand patches
that activate neurons, our patch classifier automatically determines the labels that can be used to
explain what important areas of the image the network focused on.

4.2.4 Putting it all together

Given an image and a CNN model, our APPLE algorithm forward propagates the image to deter-
mine its classification. Then, it automatically analyzes the CNN to find the top N most important
neurons and constructs a list of image patch regions to label. APPLE runs the patch classifier on
the image patches to determine the most likely labels. Currently, we construct one patch classi-
fier per CNN classification (e.g., a patch classifier of polar bear features for images classified as
polar bears) though patches could be labeled using more generic classifiers if possible. Labeled
patches can then be further sorted based on the maximum confidence. The important patches
are a visual representation of the explanation of how the network determined the image’s classi-
fication. The labels on the patches represent a semantic representation of the same explanation
without requiring humans to interpret the image.

Next, we demonstrate the use of our APPLE algorithm on an object recognition task.

4.3 Experiments

In order to demonstrate the ability of our APPLE algorithm to find important neurons and cor-
responding image patches and then automatically label them, we used the pre-trained VGG-16
classifier trained on animals to find important features of polar bears in test images - eyes, ears,
fur, nose, and paw. Polar bear images are particularly challenging as the background of the im-
ages is often snowy and contains similar colors as the polar bears themselves. The ability of an
algorithm to explain why the CNN classified the object as a polar bear may help humans under-
stand how to improve training or recover from errors. We describe our experimental setup and
our results that test APPLE’s ability to find important patches and label them. Additionally, we
compare APPLE’s important patches to CAM for object localization within the image.

28

4.3.1 CNN Classifier
The neural network architecture chosen for this investigation was the VGG-16 architecture [30]
with pre-trained weights as provided [5]. The VGG-16 architecture consists of 13 convolution
layers followed by 3 dense layers, with max pooling after the 2nd, 4th, 7th, 10th and 13th layer.
The pre-trained weights used were not further tuned to the input images that we analyzed.

We chose VGG-16 because it is a deep network with enough intermediate layers to find im-
portant patches. However, only image patches for neurons between layers 3 and 9 were evaluated
in the analysis below. The image patches in the first few layers (1 and 2) were too small to train a
patch classifier for. Furthermore, results from Ranzato et al.[24] already show that the first layers
learn stroke-detectors and Gabor-like filters. Similarly, the image patches corresponding to the
last few layers (10 and above) focus on a majority of the image and thus they contain too many
of the object features in each patch to provide any useful insight.

4.3.2 Patch Classifier
In order to train our patch classifier, we listed distinguishing features of polar bears - ears, eyes,
nose, fur, and paws - and manually cropped those important polar bear features from images in
the dataset. These polar bear images were chosen from the Imagenet dataset from the ILSVRC12
challenge. For the None class we collected background patches. Each class had around 80
images, totalling the training data size to be 480. Figure 4.2 contains sample patches from our
classifier dataset. Other methods could be used in the future to automatically generate the list
of features for each object (e.g., using web search) as well as automatically crop features from
images (e.g., using crowd-sourcing).

We used a multi-class Support Vector Classifier (AdaBoostSVM [19]) with c=0.771, and γ =
0.096, with an rbf kernel, determined by running K-fold cross validation on the patch data. The
classifier obtained an average test set accuracy of 80% when the data was split into 80% training-
20% test. SVMs were chosen for the task because of their ability to handle non-linear data: an
RBF kernel was used as described in [19]. As the patch classifier accuracy is not the focus of the
contribution of this work, we present our findings using this classifier but note that it is possible
to train a more accurate classifier for better results.

4.3.3 Demonstration of APPLE
We ran our experiments and demonstrations of APPLE on a laptop with 15.5 GiB RAM and 4GB
GeForce GTX 960M with Intel Core i7-6700HQ CPU @ 2.60GHz x 8. Given an input image of
a polar bear image (Figure 4.3a), the pre-trained VGG-16 network, and the AdaBoostSVM patch
classifier, APPLE forward propagates the image to ensure that it is correctly classified as a polar
bear. If it is classified as a polar bear, APPLE collects the neurons’ activations obtained from the
forward propagation, as well as the pre-trained VGG-16 neuron weights in order to find the five
high importance neurons per layer. Neurons that have high weight but are not active on the input
image are discarded from the top 5 lists for Weight Matrix Sum and Variance.

Deconvolutions are then performed on the important neurons to determine their correspond-
ing image patches. Figure 4.3b shows the 35 image patches selected by the Activation Matrix

29

Figure 4.2: Sample training data for the Patch classifier.

Sum measure (top 5 neurons from the seven layers - layers 3-9 - of interest). APPLE then labels
the image patches using the patch classifier to determine the polar bear features (eyes, nose, ears,
paw, fur) that they capture. For example, most of the image patches in the first two rows of the
figure contain the polar bear’s nose. Our algorithm finally sorts the labels by confidence and can
display them to a human to explain the classification (Figure 4.4). The most confidently labeled
image patches selected for Figure 4.4(left) are all labeled as the nose, which makes sense given
the distinctive color of the nose against the background of the white bear and snow. Similarly,
the most important patches for the image on the right also contain the bear’s nose.

4.3.4 Evaluation of Important Patches
Next, we evaluated APPLE’s ability to select important neurons and corresponding image patches.
Our experiments were conducted on 10 images containing polar bears with varying backgrounds
like snow, rocks and water. We selected new images by searching for polar bears on the Inter-
net because the small number of polar bear images in Imagenet made it likely that we would
select training images. Additionally, because our goal is to demonstrate the ability of APPLE
to find important patches in any image, we chose to manually search for images of polar bears
in a variety of environments, poses, and conditions. The selection process involved criteria such
as pose, number of classes visible in the image, lighting, and image resolution. By varying the
different settings we could determine how different conditions influence the results of both our
high importance neuron ranking method, as well as our patch classifier.

Patch Localization

We first evaluated APPLE’s ability to find image patches that were localized on the object of
interest that the CNN is classifying (i.e., polar bears in our experiments). Patch localization is
measured as the ratio of number of patches containing pixels of the object (polar bear) to the
total number of patches.

30

Figure 4.3: (a): Input image. (b): High Importance Patches selected by APPLE algorithm using
Activation Matrix Sum measure.

In order to compute this ratio, we manually evaluated each image patch by comparing the
patch against the original input image. In total, for each bear image and each evaluation measure,
35 important patches (top 5 patches across 7 layers) were evaluated as to whether they contained
portions of the bear (using our input image as reference). Figure 4.3b shows 35 high importance
patches picked by our algorithm under the Activation Matrix Sum measure. Each of these patches
contains pixels belonging to polar bear, and hence they are all deemed as correct patches.

Table 4.1 shows the precision of each of our importance evaluation measures on the test
images. All the metrics perform well, with Weight Matrix Sum performing slightly better than the
rest. Since all the metrics chosen impact the information flow across the layers, it is not surprising
to note that they show precision greater than 0.9. In 8 out of 40 experiments (4 metrics across 10
images) that we ran, the precision value was 1, suggesting that if the background of the image
is distinct from the patches, APPLE algorithm could identify only the patches corresponding to
the class under consideration. We specifically chose a challenging image classification task in
which polar bears are not often distinct from their background to stress APPLE’s ability to find
the polar bear patches. Our results demonstrate that any suggested measure could be used for the
purpose of extracting neurons and thereby important patches, for the purpose of understanding
the reasoning behind classification.

Patch Label Precision

While the focus of our evaluation is not the patch classifier, we did evaluate its precision at
labeling the image patches. Patch label precision is measured as the ratio of correctly classified

31

Figure 4.4: APPLE sorts the labeled patches by confidence to present to a human in order to
explain the CNN’s image classification. Two example images are shown with their important
patches selected using Activation Matrix Sum measure.

Table 4.1: Evaluation of important patches

Evaluation Measure Patch
Localization

Label
Precision

Weight Sum 0.94 0.571
Weight Variance 0.91 0.551
Activation Sum 0.92 0.626
Activation Variance 0.91 0.608

patches to the total number of patches. A patch classification is considered correct if the top
label output by the patch classifier matches our manually labeled ground-truth. Table 4.1 shows
the precision of the AdaBoost SVM on the important image patches. The Activation Matrix
Sum performs better than the other measures of accuracy. In general, the metrics involving
the activations perform better than metrics involving the weights. However, precision is less
than 0.65 in all the cases, due to the choice of patch classifier and the quality of training data
provided. For example, we only obtained 80 patches per label and the low-resolution of the
images led to high confusion between eyes and nose as well as fur and background (None). The
precision for patches belonging to the background None is less than 0.1 in all the cases. Despite
the challenges in building a patch classifier, our results demonstrate the patches identified as
important by APPLE can be labeled accurately to help a human understand the CNN information
propagation.

Comparison to Weakly Supervised Localization

Finally, we evaluated our important image patches compared to Class Activation Maps (CAM)
for weakly supervised localization. We outlined APPLE’s important patches using the Weight

32

Figure 4.5: Comparing weakly supervised localization between a) APPLE and b) CAM. In AP-
PLE, red boxes indicate layers 3 and 4, green indicates layers 5 - 7 and blue indicates layers 8
and 9. On the CAM images, the heatmap visualizes its important pixels.

Matrix Sum measure on top of the original image to compare with CAM’s heatmap output. Fig-
ure 4.5a illustrates the localization abilities of our APPLE algorithm (red boxes indicate patches
belonging to layers 3 and 4, green indicates layers 5 - 7 and blue indicates layers 8 and 9).
Figure 4.5b shows CAM’s output on the same images.

Because our image patches contain background in addition to polar bear pixels, measures for
comparing the overlapping regions bias our results lower than reality. By inspection, our results
for important patches from layers 3-7 roughly cover the same areas as CAM. Although we ignore
patches from layers higher than 9, the patches for 8 and 9 (shown in blue) still cover large parts
of the image. Layers 5-7 seem to capture important parts of the image containing the polar bear
without as much environment background in the patch.

33

Figure 4.6: APPLE sorts the labeled patches by confidence to present to a human in order to
explain the CNNs image classification and corresponding action (important patches are selected
using Weight Matrix Sum measure)

4.3.5 How does APPLE apply to UAVs?

As demonstrated in the above sections, APPLE works well for polar bear images. Consider
a modified version of deep-learning-based obstacle avoidance system described in Chapter 3,
where the drone navigates forward if there is no person detected in the scene and stops otherwise.
It is important for the user to understand if the drone stopped due to the presence of a person or if
the system picked cues from other parts of the scene. APPLE could be extremely helpful in such
scenarios. We trained a person vs non-person classifier using VGG-16 network on the INRIA
dataset [6]. While training, all the images were resized to 68x128, and 20% of the images were
used for validation. In order to train our patch classifier, we listed five distinguishing features
of human beings - head, torso, hand, leg, and foot - and manually cropped those features from
images in the INRIA dataset [6]. For the none class, we collected background patches. Each
class had around 120 images, totalling the training data size to be 720. Figure 4.6 demonstrates
APPLE applied to person vs non-person classifier. Figure 4.6 shows the input image classified
as ‘Person’ with corresponding action as ‘Stop’. Output of APPLE that contains top-5 patches
selected using Weight Matrix Sum measure and their corresponding classifications performed by
patch classifier can also be seen. Figure 4.7 shows weakly supervised localization of APPLE,
which demonstrates that the image is classified as ‘Stop’ or ‘Person’ due to right reasons i.e.
bounding boxes are centered around persons in the image.

34

Figure 4.7: Weakly supervised localization of APPLE (red boxes indicate layers 3 and 4, green
indicates layers 5 - 7 and blue indicates layers 8 and 9.)

4.4 Future work
Future work could include improving patch classifier performance and testing our approach on
other CNN architectures. Extending our work to processing camera feed in real-time would have
numerous practical applications. Additional metrics like drop-in-classification accuracy for per-
turbed images, would help in better evaluation of the proposed measures of neuron importance.

35

36

Chapter 5

Conclusion

In this thesis, we contributed two vision-based algorithms to enable UAVs to perform search task
and to avoid obstacles in real-time, and a technique for explaining the deep-learning algorithms
to humans in their environments.

In chapter 2, we proposed and presented a coordination between CoBot and a drone lever-
aging the robust localization and navigation capabilities of CoBot with ARDrones capability to
maneuver easily through indoor environments and search for an object of interest. As to en-
able reliable navigation of drone to perform search task, we proposed a vision-based moving
target navigation algorithm. Observed results affirm that the proposed algorithm could be used
effectively for the service search tasks.

In chapter 3, we proposed a CNN based navigation system that was shown to be navigating
safely in various challenging environments. We proposed a method to get ground truth labels
from RGB-D images automatically without human demonstrations. We proposed a two-stage
CNN with intermediate perception. The first stage predicts the depth and surface normal from
images, which are two important geometric properties related to 3D obstacle avoidance. The
second step predicts a path from the depth and normal maps using another CNN model. Results
on the NYUv2 dataset and other public datasets showed that our system performs better than
directly predicting path from RGB image. We also applied our CNN model to simulation and ac-
tual flight without retraining which is different from existing methods where training and testing
data usually comes from the same environments.

In chapter 4, we contributed our algorithm Automatic Patch Pattern Labeling for Explanation
(APPLE) to analyze the neuron-level information propagation and help humans understand the
regions of interest. We contributed four different measures of neuron importance, such as sum
and variance across the activation matrix and weight matrix of neurons. We demonstrated that in
an object recognition task, our algorithm is able to use the measures to identify neurons within
the CNN that focus on important features of the recognized object (i.e., body parts of animals). In
particular, we demonstrated that all of APPLEs importance measures find regions of the images
that contain the object of interest. We then used a patch classifier to label the features of the
object. Beyond simply highlighting important pixels for visualization purposes, automatic image
patch labels provided by our patch classifier can be used to explain the object recognition with-
out requiring a human to decipher the image or manually probe the reasoning behind a prediction.

37

38

Bibliography

[1] Abraham Bachrach, Ruijie He, and Nicholas Roy. Autonomous flight in unknown indoor
environments. International Journal of Micro Air Vehicles, 1(4):217–228, 2009. 1.1

[2] Cooper Bills, Joyce Chen, and Ashutosh Saxena. Autonomous mav flight in indoor envi-
ronments using single image perspective cues. In Proceedings of ICRA 2011, pages 5776–
5783. IEEE, 2011. 2.1

[3] J. Biswas and M. Veloso. Wifi localization and navigation for autonomous indoor mobile
robots. In Proceedings of ICRA 2010, pages 4379–4384, May 2010. doi: 10.1109/ROBOT.
2010.5509842. 1

[4] Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianxiong Xiao. Deepdriving: Learning
affordance for direct perception in autonomous driving. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pages 2722–2730, 2015. 3.1, 3.3.2

[5] François Chollet. Keras. https://github.com/fchollet/keras, 2015. 4.3.1

[6] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection.
In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society
Conference on, volume 1, pages 886–893. IEEE, 2005. 4.3.5

[7] Fergus R Eigen D. Predicting depth, surface normals and semantic labels with a common
multi-scale convolutional architecture. Proceedings of the IEEE International Conference
on Computer Vision, pages 2650–2658, 2015. (document), 3.2.2, 3.3

[8] Jakob Engel, Jürgen Sturm, and Daniel Cremers. Camera-based navigation of a low-cost
quadrocopter. In Proceedings of IROS 2012, pages 2815–2821. IEEE, 2012. 2.1

[9] Jakob Engel, Jürgen Sturm, and Daniel Cremers. Scale-aware navigation of a low-cost
quadrocopter with a monocular camera. Robotics and Autonomous Systems, 62(11):1646–
1656, 2014. 3.3.4

[10] Dumitru Erhan, Yoshua Bengio, Aaron Courville, and Pascal Vincent. Visualizing higher-
layer features of a deep network. 2009. 4.1

[11] Zheng Fang, Shichao Yang, Sezal Jain, Geetesh Dubey, Silvio Maeta, Stephan Roth, Sebas-
tian Scherer, Yu Zhang, and Stephen Nuske. Robust autonomous flight in constrained and
visually degraded environments. In Field and Service Robotics, pages 411–425. Springer,
2016. 1.1, 3.2.1, 3.3.4

[12] Alessandro Giusti, Jerome Guzzi, Dan Ciresan, Fang-Lin He, Juan Pablo Rodriguez, Flavio
Fontana, Matthias Faessler, Christian Forster, Jurgen Schmidhuber, Gianni Di Caro, et al.

39

https://github.com/fchollet/keras

A machine learning approach to visual perception of forest trails for mobile robots. IEEE
Robotics and Automation Letter, 2016. 3.1, 3.2.2, 3.3.2

[13] Colin Green and Alonzo Kelly. Toward optimal sampling in the space of paths. In 13th
International Symposium of Robotics Research, 2007. 3.2.1

[14] Varsha Hedau, Derek Hoiem, and David Forsyth. Recovering the spatial layout of cluttered
rooms. In Computer vision, 2009 IEEE 12th international conference on, pages 1849–1856.
IEEE, 2009. 3.1

[15] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal motion plan-
ning. The International Journal of Robotics Research, 30(7):846–894, 2011. 3.1

[16] Matt Knudson and Kagan Tumer. Adaptive navigation for autonomous robots. Robotics
and Autonomous Systems, 59(6):410–420, 2011. 1.1

[17] T. Kollar, V. Perera, D. Nardi, and M. Veloso. Learning environmental knowledge from
task-based human-robot dialog. In ICRA 2013, pages 4304–4309, May 2013. doi: 10.
1109/ICRA.2013.6631186. 2.2.1

[18] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing sys-
tems (NIPS), pages 1097–1105, 2012. 3.2.3

[19] Xuchun Li, Lei Wang, and Eric Sung. Adaboost with svm-based component classifiers.
Engineering Applications of Artificial Intelligence, 21(5):785–795, 2008. 4.3.2

[20] Aravindh Mahendran and Andrea Vedaldi. Understanding deep image representations by
inverting them. In 2015 IEEE conference on computer vision and pattern recognition
(CVPR), pages 5188–5196. IEEE, 2015. 4.1

[21] Michele Mancini, Gabriele Costante, Paolo Valigi, and Thomas A Ciarfuglia. Fast robust
monocular depth estimation for obstacle detection with fully convolutional networks. In
IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2016. 3.1

[22] Tomoyuki Mori and Sebastian Scherer. First results in detecting and avoiding frontal ob-
stacles from a monocular camera for micro unmanned aerial vehicles. In Robotics and Au-
tomation (ICRA), 2013 IEEE International Conference on, pages 1750–1757. IEEE, 2013.
3.1

[23] Sylvain Paris and Frédo Durand. A fast approximation of the bilateral filter using a sig-
nal processing approach. In European conference on computer vision, pages 568–580.
Springer, 2006. 3.3.3

[24] Marc’Aurelio Ranzato, Christopher Poultney, Sumit Chopra, and Yann LeCun. Efficient
learning of sparse representations with an energy-based model. In Proceedings of the
19th International Conference on Neural Information Processing Systems, NIPS’06, pages
1137–1144, Cambridge, MA, USA, 2006. MIT Press. URL http://dl.acm.org/
citation.cfm?id=2976456.2976599. 4.3.1

[25] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. ”why should I trust you?”:
Explaining the predictions of any classifier. CoRR, abs/1602.04938, 2016. URL http:
//arxiv.org/abs/1602.04938. 4.1

40

http://dl.acm.org/citation.cfm?id=2976456.2976599
http://dl.acm.org/citation.cfm?id=2976456.2976599
http://arxiv.org/abs/1602.04938
http://arxiv.org/abs/1602.04938

[26] Susan Ross, Narek Melik-Barkhudarov, Kumar Shaurya Shankar, Andreas Wendel, De-
babrata Dey, J Andrew Bagnell, and Martial Hebert. Learning monocular reactive uav
control in cluttered natural environments. In Proceedings of ICRA 2013, pages 1765–1772.
IEEE, 2013. 2.1

[27] Ramprasaath R. Selvaraju, Abhishek Das, Ramakrishna Vedantam, Michael Cogswell,
Devi Parikh, and Dhruv Batra. Grad-cam: Why did you say that? visual explanations
from deep networks via gradient-based localization. CoRR, abs/1610.02391, 2016. URL
http://arxiv.org/abs/1610.02391. 4.1

[28] Shaojie Shen, Yash Mulgaonkar, Nathan Michael, and Vijay Kumar. Vision-based state
estimation for autonomous rotorcraft mavs in complex environments. In Robotics and Au-
tomation (ICRA), 2013 IEEE International Conference on, pages 1758–1764. IEEE, 2013.
1.1

[29] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor segmentation
and support inference from rgbd images. In European Conference on Computer Vision,
pages 746–760. Springer, 2012. 3.3.1

[30] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image
recognition. CoRR, abs/1409.1556, 2014. 4.3.1

[31] Kahlouche Souhila and Achour Karim. Optical flow based robot obstacle avoidance. Inter-
national Journal of Advanced Robotic Systems, 4(1):13–16, 2007. 3.1

[32] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. Striv-
ing for simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806, 2014. 4.1

[33] Lei Tai, Shaohua Li, and Ming Liu. A deep-network solution towards model-less obsta-
cle avoidance. In IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2016. 3.1, 3.2.2, 3.3.2, 3.3.3

[34] M. Veloso, J. Biswas, B. Coltin, S. Rosenthal, T. Kollar, C. Mericli, M. Samadi, S. Brando,
and R. Ventura. Cobots: Collaborative robots servicing multi-floor buildings. In Proceed-
ings of IROS 2012, pages 5446–5447, Oct 2012. doi: 10.1109/IROS.2012.6386300. 1,
2.2

[35] Rodrigo Ventura, Brian Coltin, and Manuela Veloso. Web-based remote assistance to over-
come robot perceptual limitations. In AAAI-13, Workshop on Intelligent Robot Systems.,
2013. 2.2.1

[36] Xiaolong Wang, David Fouhey, and Abhinav Gupta. Designing deep networks for surface
normal estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 539–547, 2015. 3.2.2

[37] Shichao Yang, Daniel Maturana, and Sebastian Scherer. Real-time 3D scene layout from
a single image using convolutional neural networks. In Robotics and automation (ICRA),
IEEE international conference on, pages 2183 – 2189. IEEE, 2016. 3.1

[38] Shichao Yang, Yu Song, Michael Kaess, and Sebastian Scherer. Pop-up SLAM: a semantic
monocular plane slam for low-texture environments. In Intelligent Robots and Systems
(IROS), 2016 IEEE international conference on. IEEE, 2016. 3.1

41

http://arxiv.org/abs/1610.02391

[39] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks.
In European Conference on Computer Vision, pages 818–833. Springer, 2014. 4.1, 4.2.2,
4.2.3

[40] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning
deep features for discriminative localization. arXiv preprint arXiv:1512.04150, 2015. 4.1

[41] Matt Zucker, Nathan Ratliff, Anca D Dragan, Mihail Pivtoraiko, Matthew Klingensmith,
Christopher M Dellin, J Andrew Bagnell, and Siddhartha S Srinivasa. Chomp: Covari-
ant hamiltonian optimization for motion planning. The International Journal of Robotics
Research, 32(9-10):1164–1193, 2013. 3.1, 3.2.1, 3.2.1

42

	1 Introduction
	1.1 Motivation
	1.2 Contributions of the thesis
	1.3 Outline of the thesis

	2 UAV and CoBot coordination for indoor object search tasks
	2.1 Related Work
	2.2 Multi-Robot Coordination for Object Search Tasks
	2.2.1 CoBot Capabilities
	2.2.2 ARDrone Capabilities
	2.2.3 Multi-Robot Coordination Task

	2.3 Vision-Based Moving Target Navigation
	2.3.1 Image Coordinate System
	2.3.2 Imagining Beyond the Image Frame
	2.3.3 Moving Target Navigation Algorithms
	2.3.4 Forward Search and hover above marker
	2.3.5 Forward Search, Returning Home, Landing
	2.3.6 Coordination between CoBot and UAV to perform visual search

	2.4 Experiments
	2.4.1 Navigation to marker in vision frame
	2.4.2 Forward Search and hover above marker
	2.4.3 Forward Search, Returning Home, Landing
	2.4.4 Coordination between CoBot and UAV to perform visual search task

	2.5 Future work

	3 Obstacle avoidance for UAVs using deep learning
	3.1 Related Work
	3.2 Visual Perception
	3.2.1 Dataset
	3.2.2 Intermediate Perception - depth and surface normal
	3.2.3 Trajectory prediction

	3.3 Experiments
	3.3.1 Training and testing
	3.3.2 NYUv2 dataset Evaluation
	3.3.3 Other Public Indoor dataset Evaluation
	3.3.4 Quadrotor simulation flight
	3.3.5 Real quadrotor flight

	3.4 Future work

	4 Automatic Patch Pattern Labeling for Explanation (APPLE)
	4.1 Related Work
	4.2 Approach
	4.2.1 High importance Neurons
	4.2.2 High Importance Patches
	4.2.3 Patch classifier
	4.2.4 Putting it all together

	4.3 Experiments
	4.3.1 CNN Classifier
	4.3.2 Patch Classifier
	4.3.3 Demonstration of APPLE
	4.3.4 Evaluation of Important Patches
	4.3.5 How does APPLE apply to UAVs?

	4.4 Future work

	5 Conclusion
	Bibliography

