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Abstract
In this paper, we investigate the planar dynamic pivoting problem, in which a

pinched object is reoriented to a desired pose through wrist swing motion and grip
force regulation. Traditional approaches based on friction compensation do not work
well for this problem, as we observe the torsional friction at the contact has large un-
certainties during pivoting. In addition, the discontinuities of friction and the lower
bound constraint on the grip force all make dynamic pivoting a challenging task
for robots. To address these problems, we propose a robust control strategy that
directly uses friction as a key input for dynamic pivoting, and show that active fric-
tion control by regulating the grip force significantly improves system stability. In
particular, we embed a Lyapunov-based control law into a quadratic programming
framework, which also ensures real-time computational speed and the existence of a
solution. The proposed algorithm has been validated on our dynamic pivoting robot
that emulates human wrist-finger configuration and motion. The object orientation
can quickly converge to the target even under considerable uncertainties from fric-
tion and object grasping position, where traditional methods fail.
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Chapter 1

Introduction

Compared with humans, robots have limited dexterity. In particular, certain tasks that are simple
for humans can be quite challenging for robots. Beyond the dexterity of human hand, one im-
portant advantage of human manipulation is the use of a richer set of force resources (extrinsic
dexterity [6]), including gravity, inertial forces, contact forces and friction. One such example is
regrasping - to shift an object from one grasp pose to another. For robots, a common solution
is to put the object on the ground or in a fixture, then move the robot hand to the desired pose
and grasp again [32]. The human hand, however, often employs a more direct approach: in-hand
regrasp through arm, wrist, and finger motions without breaking contact.

In this work, we study dynamic pivoting – a common nonprehensile regrasping manipulation.
One example is shown in Fig. 1.1: the hand holds a cellphone between two finger tips, and rotates
it to a desired angle relative to the finger by varying grip force and wrist rotation. Pivoting is a
simple way to orient objects in the hand, and is faster than pick-and-place [16]. This operation
is interesting because a human can modulate friction force and switch the contact mode between
left sliding, right sliding and sticking, which is a hybrid control strategy.

This paper investigates techniques that enable a robot to perform human-like dynamic pivot-
ing. The task is challenging for robots, because the contact brings three problems: [4, 9, 21].

The Modeling Uncertainty. On the one hand, we may not exactly know which area on the
object is grasped, due to slipping or perception error in the initial grasp. On the other hand,
precise contact friction modeling is usually not realistic [2], so we have to tolerate some degree of

Figure 1.1: Human pivots an in-hand object in the horizontal plane (top view).
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uncertainty with practical friction models. Dynamic pivoting has even more frictional uncertainty
due to noise in grip force control during fast motion. Recent work indicates that for certain
robotic applications, a very detailed friction model is unnecessary [25, 34, 35]. However, a
closed-loop strategy is preferred in these cases.

Friction discontinuity. We cannot assume a certain rotating direction, since the closed-loop
system will need to fight against the position error in both directions during pivoting. As detailed
in chapter 3.2, the stiction phenomenon introduces several different continuous modes, thereby
directly introducing discontinuities into the gain matrix of the system.

Positive lower bound constraint on grip force. We need a positive contact normal force
to maintain grasping and reduce slip. In our preliminary simulations, however, a traditional
nonlinear controller often commands large negative grip force when trying to pull the system
back from error. If we truncate the grip force to satisfy the constraint, the traditional controller
no longer works.

In this work we propose a robust control strategy for robotic dynamic pivoting that addresses
the above issues. A control law based on sliding mode control (SMC) calculates wrist torque
and grip force within each continuous friction mode. The sliding condition, which leads to Lya-
punov convergence, is imposed by a soft constraint and solved under control saturation as hard
constraints. Following a hybrid system routine, when transition to multiple modes is possible,
we add constraints to prevent undesired mode transitions when solving for a specific mode.
In particular, our algorithm:
• works with a discontinuous friction model;

• satisfies control saturation constraints including the positive lower bound;

• converges in experiments even when friction modeling are simplified and imprecise.
The paper is organized as follows. Chapter 2 describes the related work. Chapter 3 introduces
the robotic pivoting system and modeling highlights. Chapter 4 presents the control strategy
design. Chapter 5 presents the implementation and experimental results. Finally, Chapter 6 gives
the summary and directions for future work.
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Chapter 2

Related Work

2.1 Pivoting

Rao et al. [24] were the first to use the term “pivoting” for the rotation of a grasped object
relative to the contact point with fingers. Since there is no active joint at the contact, there must
be an extrinsic source of actuation that drives the object, i.e. the extrinsic dexterity [6]. One
such source is gravity [3, 16, 24, 26, 34, 35]. Brock calculated possible twists for an object in a
multi-fingered hand under gravity by maximizing the virtual work [3]. Rao et al. [24], described
how to choose a grasp so that after lifting up polyhedral objects from the ground, the object
rotates to a desired stable pose under gravity. Holladay et al. [16], extended [24] by planning
a whole trajectory for the gripper with the consideration of dynamics, and utilizing contact with
the ground to discretize the final poses. Gravity is a good source of actuation, for its perfectly
precise direction and magnitude. The disadvantage is also obvious: its direction cannot change.
We refer to those works as gravity pivoting in this paper.

Pivoting can be done by making contact with environment [5, 6]. We call them contact
pivoting. Chavan-Dafle et al. implemented open-loop contact pivoting [5], where a firm grasp
was maintained all the time during sliding. Contact pivoting is shown to be reliable in slow
motion, as the object position can be inferred from the contact position.

We use inertial force as source of actuation, and call it inertial pivoting. Like gravity, inertial
force does not rely on contact with the environment; however its direction is also controllable.
Shi et al. [25], proposed an open-loop strategy for a three-DOF planar sliding problem, where
an object grasped by a parallel gripper slides under inertial force and gravity. This strategy,
though verified in simulation, showed notable error in experiments; the reason could be the lack
of feedback, according to the authors. When the object is treated as an additional link of the
robot with frictionless joint, pivoting reduces to a passive last joint manipulator problem, where
partial feedback linearization is shown to be successful [7, 8, 20, 29, 30]. These approaches
are extended in this paper in two ways. Firstly, we add a robust control term to the feedback
linearization control law, so as to explicitly tackle the non-trivial, uncertain contact friction and
some amount of slip during pivoting. Secondly, we utilize the grip force as an additional source
of control, which brings notable stability improvement as well as new difficulties in controller
design.

3



There are very few studies using contact normal force to control friction directly, except for
vibration suppression [12]. Closely related to our work, Via et al. [34, 35] performed controlled
gravity pivoting to a spoon by controlling the grip force, and closed the loop with vision feedback.
Robust control [35], and adaptive control techniques [34] were used to ensure convergence under
friction uncertainty. They also improved the performance by adopting a more precise soft finger
model. The controller was verified on a parallel gripper, for which the grip force control was
implemented by compressing soft finger with tactile feedback. Sintov et al. [26] used optimal
control to solve the gravity pivoting control problem by linearizing the dynamics for one mode.
They also designed a strategy to swing the object up above the desired angle. The main limitation
for both work is the dependency on gravity, which makes it hard to recover from overshoot.

Pivoting is a typical example of nonprehensile manipulation (except [5]), where the object
is manipulated without a firm grasp. Analysis of nonprehensile manipulation dates back to the
1980s. A more thorough list of nonprehensile manipulation can be found in [18, 19].

2.2 Friction Modeling

Friction determines the interaction between robots and grasped objects in pivoting [3, 5, 25]. The
tribology community has extensive researches on precise friction modeling [1]. Static friction
models treat friction as a memoryless function of contact normal force, contact sliding velocity
and external force, [21]. Built upon classical Coulomb friction model, more expressive models
has been proposed to explain the complicated friction phenomenons. Viscous friction captures
the part of friction that grows linearly with the sliding velocity, which is common in contacts
involving liquid. Stribeck effect describes how Coulomb friction decreases as the contact just
begin to slip. More detailed static friction phenomena and modeling can be found in [21]. In
the robotics community, Goyal analyzed the Coulomb friction in rigid body 2D planar sliding,
described the relation between the wrench acting on the object and 3D twist of the object using
limit surface concept. Zhou et al. proposed a polynomial approximation of the limit surface [36],
and a method for fast identification from pushing experiments.

The discontinuity and lack of expressiveness of static friction models motivates dynamic
friction modeling [2, 9, 21], which provides smooth friction behavior even during friction di-
rection transitions. Dynamic friction models use one or more hidden state variables to describe
microscopic asperities in contact [2, 9]. Complicated friction models provide a more precise
description of friction phenomena. The cost is more effort and more data required for parameter
estimation. In this work, we will stick to a static model while relying on hardware design to
minimize unexpected dynamic frictional behavior.

In traditional motor control community, the general altitude towards friction is to eliminate
it [1, 4, 21]. There are lots of works concerning how to choose action so as to compensate the
effect of friction. However in pivoting, we will treat friction as one of the action itself, try to
utilize it instead of abandon it.
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2.3 Hybrid Control
Without restricting object motion to one direction, the pivoting system is a nonlinear hybrid
system with uncertainty. In hybrid control theory, comprehensive research has been done on
the stability analysis and control synthesis for piecewise-linear systems [33], however, those
methods don’t work well when the model has nonlinearities. In the field of nonlinear hybrid
control, Johnson et al. provided modeling and stability analyzing tools for dynamic locomotion
robots, which are in other words self-manipulation systems [17].

For control synthesis of nonlinear hybrid systems, nonlinear trajectory optimization tech-
niques have been used to determine the sequence of modes off-line. Two popular approaches are
Mixed-Integer Programming [10, 15], where the contact modes are explicitly added as variables
to solve, and Linear-Complimentary Problem [22, 31], where contacts are modeled by linear
complimentary constraints. Posa et al. casted the contact dynamics as polynomial constraints,
and found control law by searching for Sum-Of-Squares Lynapunov function [23]. Trajectory op-
timization methods are effective in finding a solution for hybrid control, especially when a good
initialization is available. Apart from that, Multiple-Lyapunov Functions is shown to be useful for
stability analysis and control synthesis of switched nonlinear hybrid systems, i.e. when modes
can be determined by action [11]. However, for all the method mentioned here, it is generally
hard to take modeling uncertainty into consideration. To solve the pivoting problem, in this work
we propose a control framework for handling uncertainty in nonlinear hybrid systems.
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Chapter 3

Modeling

3.1 Robot Hardware
In this section, we introduce the design for our pivoting robot. As shown in Fig. 3.1, the robot is
tailored for this task by emulating human operation.

Figure 3.1: The robot and gripper designed for dynamic pivoting.

3.1.1 Actuation system
The robot has a kinematics similar to human wrist&finger configuration. At the bottom, a motor
drives the vertical axis to accelerate the upper part of the robot assembly and provides inertial
force to the object, just like the human wrist swings the hand, we call it wrist joint motor. On top
of the rotating part, a second motor serves as the finger joint and generates grip force through a
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lever mechanism. There are two benefits in using the lever mechanism. Note that the motor is the
heaviest part of the rotating assembly. By using a lever, the second motor can be installed close
to the wrist joint axis, so as to reduce the moment of inertia felt by the wrist motor. In addition,
the lever gears down the transmission, so we can use smaller motor to provide the same amount
of grip force.

Both joints work as sources of torque. To drive the wrist joint, we choose a Maxon RE-40 DC
motor (with a 4.3:1 gearbox) operated in current control mode with 0.8Nm maximum continuous
torque output. The torsional friction in this joint is modeled and compensated as constant stiction
plus viscous friction. The grip force is produced by a current controlled Maxon RE-36 DC motor.
Through a lever mechanism, the motor can provide a maximum of 40N grip force, while staying
close to the wrist axis and contributing a small moment of inertia.

3.1.2 Sensor and feedback

Each motor is equipped with an encoder to provide position feedback. The bottom finger is
designed with a special mechanism to measure the object orientation, as detailed in Fig. 3.2
right. The fingertip is mounted on a low-friction small-inertia shaft that could rotate freely with
respect to the finger. The top of the fingertip is made from high friction rubber, thus the object
could rotate with it. On the other end of the shaft, an optical encoder measures the orientation of
the shaft, which represents the orientation of the object.

Figure 3.2: The section view of the bottom finger.

We notice that there is a significant hysteresis nonlinearity in motor stall torque of the grip
force motor; hence we install a 5kg loadcell on the lower finger to provide grip force feedback,
then close the loop with a PI plus feed-forward controller. The force feedback has a latency of
101̃5ms, which is a compound result of signal processing, transmission and mechanical damping.
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3.1.3 Design considerations in fingertip
The top finger provides frictional torque through a piece of hard fingertip. It is chosen to be
hard and thin to minimize spring-like stiction behavior [21], which is reported as troublesome
for pivoting in [34]. Large stiction makes it hard to predict when sliding will occur.

The size of the fingertip is critical. A smaller contact area will result in a more flat limit
surface [14], which makes rotation easier than slip. The fingertip should also be large enough to
provide frictional torque in order to handle the object’s momentum. It is also important to select
the right material so that a non-trivial range of friction can be provided by the grip force. In our
experiments, a 11mm-diameter round piece cut from a 0.8mm-thick Teflon sheet is used.

3.2 Two Link Model
The following assumptions are made on the pivoting robot shown in Fig. 3.1:

1. Dimensional/inertial properties of the robot and the object are known.

2. The robot wrist joint axis is parallel to gravity. The object always stays within the horizon-
tal plane during motion. Consequently, the gravity does not affect the rotation of the robot
or the object.

3. The object is initially grasped at rest, but our knowledge of the grasping position may not
be exact.

4. The object may have translational slip during motion, but will not slip off the gripper.
Denote α as the wrist joint angle. Instead of coping with a known object with uncertain position,
we model the contact as pin joint (call it pivoting joint, joint variable denoted by θ), and treat the
object as an additional link whose inertia properties have uncertainty. Denote x = [θ, α]T as the
joint state vector. The Lagrange dynamics of the whole 2-DOF system are:

M(x)ẍ + C(ẋ,x)ẋ +N(x) =

(
τf (ẋ, Nf )

τ

)
, (3.1)

where the joint torque vector consists of wrist torque τ and contact frictional torque τf . For
friction modeling we use Coulomb friction plus stiction, which is a trade-off between accurancy
and simplicity. Then the frictional torque can be related to the contact normal force Nf by [21]:

τf =


−µNfsgn(θ̇) if θ̇ 6= 0

−Fe if θ̇ = 0 and |Fe| ≤ µNf

−µNfsgn(Fe) otherwise

, (3.2)

where Fe is the external torque [21] acting on the contact. Note the normal force is subjected to
unilateral constraint:

Nf ≥ N
(low)
f > 0 (3.3)

Denote control vector as u = [Nf , τ ]T . We can express the hybrid dynamics (3.1) with a compact
form:

ẍ = F (x, ẋ) +B(x, ẋ)u. (3.4)
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We suppress the arguments x, ẋ, ẍ in what follows for conciseness. For slipping mode |θ̇| 6= 0,
we have:

F = −M−1(C +N), B = BSlipping := M−1

[
−µ sgn(θ̇) 0

0 1

]
. (3.5)

The gain matrix B is of full rank, so feedback linearization is possible. Similarly, when θ̇ = 0
and |Fe| > µNf , the dynamics are still of the form in (3.4), but with:

B = BToSlip := M−1

[
−µ sgn(Fe) 0

0 1

]
. (3.6)

During sticking, however, the system reduces to 1D. Denote mc as the momentum of inertia of
the whole assembly, the dynamics satisfies:

F = 0, B = BSticking :=

[
0 0
0 m−1

c

]
(3.7)

Here the zeros are vectors of suitable size. In practice, we replace the condition θ̇ = 0 by a range
|θ̇| < ξ, where ξ describes the noise level in angular velocity measurement.

3.3 Uncertainty Analysis
Our experiment shows that there is a considerable amount of uncertainty in friction, which is a
compound result of a simple friction model, non-perfect friction parameter estimation, and the
noise in grip force control. This uncertainty directly affects the gain matrix B in (3.4). Another
source of uncertainty is the grasping position. In our pin joint model, this uncertainty will affect
the inertia matrix M in the Lagrange dynamics (3.1), which will eventually affect both F and
B in (3.4). The influence of all other uncertainty sources, including measurement noise, can be
modeled as an uncertainty in F . Denoting by F̂ and B̂ our estimation of F and B, respectively,
we can describe the bounded uncertainty as:

F̂ = F + ∆F |∆F | ≺ δF
B = ∆BB̂ |∆B − I| ≺ δB.

(3.8)

where | · |, ≺ denote element-wise absolute value and inequality. δF � 0, δB � 0 are estimated
error bounds. With this notation, the true dynamics (3.4) can be expressed by the estimated
model with bounded uncertainty as:

ẍ = F̂ (x, ẋ)−∆F + ∆BB̂(x, ẋ)u. (3.9)

Note that if ∆B has non-zero off-diagonal component we can decompose it into diagonal and
off-diagonal terms, ∆B = ID +OD. Then, move the off-diagonal terms out of gain matrix:

ẍ = F̂ − (∆F −ODB̂u) + IDB̂u,

9



and treat the quantity inside the parentheses as the new ∆F , which is still bounded. Consequently,
we consider ∆B to be diagonal from now on:

∆B =

[
db1 0
0 db2

]
, db1, db2 > 0. (3.10)

It is not trivial to estimate an error bound on F̂ or B̂, as the error is a compound result of
multiple sources of uncertainty. Instead, we treat them as parameters and tune them according to
experimental results.
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Chapter 4

Robust Controller Design

4.1 Robust Controller Design Within a Continuous Mode
Within any certain mode, the system is continuous with uncertainties described in Section 3.3.
Before considering constraints, we can use the sliding mode control (SMC) [27] to solve the
unconstrained problem, for its ability to converge under bounded uncertainty. Denote xr(t) as
a smooth reference state trajectory, the control task is to make the tracking error x(t) − xr(t)
converge to zero. The 2-D sliding mode s = [s1, s2]

T is defined as:

s(t) = GD
˙̃x(t) + GPx̃(t) + GI

∫ t

0

x̃(τ)dτ , (4.1)

where x̃(t) = x(t)− xr(t) is the state tracking error, and GP , GI , and GD are diagonal positive
definite coefficient matrices. When the system stays on the sliding surface s = 0, equation (4.1)
indicates that x̃(t) will converge to zero exponentially. Thus the control problem for the original
system is equivalent to the problem of stabilizing s, which is only a first-order system described
by:

ṡ = GDF + G̃+GDBu, G̃ := −GDẍr +GP
˙̃x + GIx̃ (4.2)

Use the following Lyapunov function:

V =
1

2
sT s, (4.3)

And choose the controller structure to be a feedback linearization term plus a robust control term:
( the measured B̂,F̂ are described in (3.8) )

u = (GDB̂)−1(−GDF̂ − G̃−K sgn(s)), (4.4)

where K is the gain matrix: K =

[
k1 0
0 k2

]
� 0, Now we can express V̇ as:

V̇ = sT ṡ

= sT
(
−GD∆F +GD(I −∆B)F̂ + (I −∆B)G̃

)
− sT∆BKsgn(s)

(4.5)
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The function V becomes a Robust Control Lyapunov Function (RCLF) and guarantees conver-
gence if there exists u to make its derivative negative under all possible uncertainties:

V̇ < −η||s||, ∀|∆F | ≺ δF , |∆B − I| ≺ δB. (4.6)

This is called the sliding condition in sliding control literature [27], as it ensures s converges to
sliding surface exponentially. The sliding condition is satisfied if

Dlowk > Cup. (4.7)

where k = [k1, k2]
T , Dlow, Cup are lower bound and upper bound of

D =

[
|s1|db1
|s2|db2

]T
,

C = sT
(
−GD∆F +GD(I −∆B)F̂ + (I −∆B)G̃

)
+ η||s||.

(4.8)

Here we use the fact that GD,∆B are diagonal to simplify the derivation. The bound can be
obtained by linear programming over ∆F and ∆B. In traditional sliding control, we solve equa-
tion (4.7) for k, calculate controls u from (4.4). However, in pivoting we also need to consider
control saturation constraints:

N
(low)
f < Nf < N

(high)
f ,

τ (low) < τ < τ (high).
(4.9)

where the positive lower bound Nlow is causing problem. In simulation the controller often pro-
duces negative grip force, and the control would fail if we truncate grip force to satisfy saturation
constraints. Instead of direct truncation, we need to leverage wrist rotation more when grip force
can not attain a desired value, i.e. find a solution to for both (4.7) and (4.9). Unfortunately, the
two constraints together are infeasible, if we do not have a tight uncertainty bound in ∆B,∆F .
In practice we enforce (4.7) by soft constraint and solve a constrained optimization at each time
step, similar with the optimization performed in [28]. We solve for the two-dimensional gain k
by:

min
k

(Dlowk− Cup)2 + wkTk, (4.10)

with (4.9) as the only constraint. The second term is a regularization term. From (4.4), we know
u is linear in gain vector k. Hence, the saturation constraints are linear on k. Therefore, we end
up with a quadratic programming problem that can be efficiently solved by an off-the-shelf QP
solver. The overall computation time, including solving the LP and QP, is less than 1ms for each
control loop.

The optimization formulation above sacrifices robust convergence guarantee for feasibility.
However, in experiments we still obtain good convergence, indicating the worst case guarantee
is unnecessary in our case.

4.2 Control Strategy Among Different Modes
We design one controller for each mode. A such controller will not make sense if it drives the
system to any other modes. This could happen when the pivoting velocity θ̇ equals zero, as
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shown in equation (3.2). Depending on the external torque Fe, the contact dynamics can end up
in one of three possible modes:
• Rotating with θ̈ > 0, if Fe > µNf ;

• Rotating with θ̈ < 0, if Fe < −µNf ;

• Sticking, θ̈ = 0, if |Fe| < µNf .
To resolve this ambiguity, we solve each of the three modes with the condition above as addi-
tional constraints. Then we just pick the solution with optimal cost. In hybrid systems theory,
the additional condition is called guard condition [13]. Note Fe is linear in u, thus the guard
conditions are linear in k, and the problem is still quadratic programming.

The last issue is when to stop the controller. We observe in experiments that the closed-loop
system has small-amplitude oscillations around the goal. To stop the oscillation, we set the goal
region to be |θ− θgoal| < σ, and stop the controller as soon as the object stops within this region.
The overall algorithm at each control time step is described as follows:

1. If |θ̇| > ξ, solve the corresponding mode for control.

2. While |θ̇| <= ξ,

(a) If |θ − θgoal| < σ, stop the control loop and apply the maximum grip force with zero
wrist torque.

(b) Otherwise, solve the three possible modes under guard condition respectively, and
pick the one with the best cost value.
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Chapter 5

Experiments

The proposed algorithm is validated in both simulations and experiments. In experiments, the
algorithm is implemented on the hardware described in Section 3.1. The robust control loop runs
at 50Hz. The object to be rotated is an acrylic board with a protective paper cover.

5.1 System Identification and Parameter Tuning

The inertia parameters of the robot are identified offline from torque-speed profile. To measure
the friction coefficient between the object and the finger, we fix the wrist joint and apply a cer-
tain grip force on the object. Then we give the object an initial rotational velocity and record
the deceleration curve. The friction coefficient estimated are shown in Fig. 5.1. An affine rela-
tion is fitted, with a rate representing the Coulomb friction coefficient. Physical parameters and
actuation constraints are listed in table 5.1. Note all frictional coefficients are torsional.

Now we briefly explain how to tune parameters. δB can be estimated from friction measuring

data, and here we use δB =

[
0.4

0.1

]
. The performance is not sensitive to η, we pick η = 5.

Next, start with δF = 0, we firstly tune the gains GP , GI , GD as if we are tuning a normal PID
controller. When performance is peaked, go back to tune δF . Repeat the last two steps until
satisfactory performance is obtained.

Robot mass 700g Robot moment of inertia 8.9× 10−3kgm2

Object mass 44g Object moment of inertia 8.96× 10−5kgm2

Length of wrist link 0.16m Contact friction coefficient µ 4.5× 10−4m
Grip force range 4N ∼ 15N Wrist joint torque range −0.5Nm ∼ 0.5Nm

Table 5.1: Physical properties of the robot and the object.
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Figure 5.1: Measured torsional friction f under different grip forces Nf .

5.2 Simulation: Comparison with Partial Feedback Lineariza-
tion

For simulation, we integrate the pivoting dynamic system 3.4 by forward Euler with a time step
of 0.2ms, which is enough to capture the dynamics behavior of the system. To avoid numerical
instability at the nonsmooth transition point θ̇ = 0, we moniter θ̇, and set it to zero if its sign
changed within one timestep:

ẍt = F (xt, ẋt) +B(xt, ẋt)ut

ẋt+1 =

{
ẋt + dt · ẍt if sign(ẋt) = sign(ẋt + dt · ẍt)

0 else
xt+1 = xt + dt · ẋt

(5.1)

The baseline controller we are comparing in simulation is based on partial feedback lineariza-
tion (PFL), which is a typical approach in the passive manipulator literature [7, 8, 20, 29, 30]. In
this controller, pivoting joint friction is not modeled, only wrist joint torque is used as control.
The control is chosen such that the dynamics of the passive joint (i.e. the object) is linear and
stable, while the stability of the wrist joint dynamics is determined by the zero dynamics of the
system, which can be shown to be stable using center manifold theorem if we ignore friction
[30].

The task is to pivot the object to θ = 1 rad, starting from zero initial condition θ = α =
0. The reference trajectory θref in xref is generated by simulating PID response on a double
integrator, to obtain a smooth trajectory with tunable shape. (In practise, as long as the trajectory
is smooth, its shape doesn’t really matter) αref in xref is simply set to zero, as we expect the
wrist to stay close to the origin and move gently. When simulating partial feedback linearization
controller, we set the grip force to the minimal possible value (4N) to make it work the best.

We perform two simulations. In the first simulation, we set the contact friction coefficient
to zero, which change the pivoting system into a passive last link manipulator. Performance of
PFL control is evaluated with this model, as shown in Fig. 5.2. The behavior is reasonable: the
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linearized DOF (object angle θ) successfully converges to the goal, while the other DOF (wrist
joint angle α) diverge just a little bit. Without friction, only a small amount of torque is needed
to move the object.
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Figure 5.2: Simulated response of PFL controller on a passive last link manipulator problem.

However, as soon as we add friction into the model, PFL failed immediately, as shown in Fig. 5.3,
right. Here, all the parameters used in the simulator, including the friction coefficient, are ob-
tained from system identification of the actual robot. This time, the unlinearized DOF diverges
so quickly that the wrist joint end up doing fast free rotating, and the centrifugal force dominates
the object and pull it straight to θ = 0 before it arrives the goal. We actually ”cheated” for PFL
by using a slightly higher friction coefficient for friction compensation, otherwise the object will
never break stiction at all. Later we will see that the phenomenon is verified in experiments.

5.3 Experiment I: Pivoting under Grasping Position Uncer-
tainty

In real-life manipulation, the object may not be grasped exactly at the expected position. The
ability to endure grasping position uncertainty is crucial to pivoting control. Here we implement
and compare our method with two baselines: The first baseline controller is again based on
partial feedback linearization (PFL), the second baseline is a robust controller that only uses
wrist joint torque as control. It extends the PFL controller by explicitly handling friction (and
its uncertainty), while our full method extends the second baseline by actively regulating grip
force. We again set the target object rotation to be θ = 1 rad, starting from zero initial condition
θ = α = 0. We use the same reference trajectory as used in simulation. For the two baselines
that do not utilize grip force, we set grip force to the minimal possible value (4N) to cause them
the least trouble.
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Figure 5.3: Simulated response on the pivoting problem. Left column: response of our full
controller. Right column: response of PFL controller.

We perform the experiment multiple times with different initial positions offset unknown to the
controller. The results are plotted in Fig. 5.4. A success is defined as converging and stopping
in the target region [0.95, 1.05] within 4 seconds. A pass means the object motion is converging,
but not fast enough to stop within 4s. Failure means the trail diverged. Our full controller
almost converges all the time and outperforms the other two approaches. Fig. 5.5 shows a typical
response for our full controller. Note that during pivoting, the θ converges to the desired region
with a steady-state error less than 0.05rad, while the wrist joint stays close to the origin (within
about 0.25rad).
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Figure 5.4: Results of experiment I. Each dot represents the actual initial grasping position with
respect to the object (the outer solid line frame) for one pivoting trail, while the cross of dotted
lines denotes the nominal grasping position. A green solid circle denotes a success, a blue star
denotes a pass, and a red circle denotes a failure.
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Figure 5.6: The grip force control in pivoting.

The calculated grip force and the loadcell feedback are shown in Fig. 5.6, with notable tracking
error. The main source of error is the noise generated from fast motion. In our grip force control
test, the error grows immediately as the object rotates. Although the lower-level force control is
not perfect, this source of control still appears to be crucial to the overall stability.
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Figure 5.5: The reference (dashed line) and response (solid line) trajectories of object orientation
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Figure 5.7: Snapshots of consecutive pivoting experiments comparing wrist only controller (top)
and full controller (bottom). The blue, green, red and yellow lines are hand orientation, object
orientation, goal orientation and the next goal, respectively.

The ability to tolerate grasping position uncertainty becomes important in tasks where multi-
ple pivots are performed consecutively, as the slips will accumulate. Starting from a precise ini-
tial grasping position (error < 0.3mm ), the controller with grip force control is able to perform
at least four pivots stably in a row, while the controller without grip force control will diverge
before finishing the second pivot, as shown in Fig. 5.7. We omit partial feedback linearization
controller to save space, as it never works. See attached video for more details.

5.4 Experiment II: Disturbance Recovery
Our closed-loop controller is able to recover from unexpected disturbances. To illustrate this,
we run the controller with goal at the origin, and directly perturb the object through external
intervention. The controller with both wrist torque and grip force control can always recover
from disturbance and converge back to the origin, while the one without grip force control will
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diverge quickly. The results are shown in Fig. 5.8. Again we omit partial feedback linearization
controller to save space, as it diverges immediately after perturbation. See the attached video for
all three experiments.

Figure 5.8: Snapshots of pivoting under disturbance, comparing wrist only controller (top) and
full controller (bottom)

5.5 Discussion
An interesting phenomenon observed from both simulation and experiments is the small-amplitude
oscillation shown in Fig. 5.5 and Fig. 5.6. The oscillation has a pattern sometimes observed in
human pivoting. There are roughly two phases alternating: (1) when the finger is loose, the wrist
torque drag the robot backward, so that the object can effectively rotate forward; (2) the finger
grasps firmly and the wrist torque drags the robot forward so that the robot moves back towards
the origin while the object does not move backward too much.

This is partly due to the fact that the robust controller, or a human, tries to move the object
towards the goal even in the worst possible friction. This will make it hard to avoid overshoot
within one control time step. The observation suggests a faster control loop with lower latency
is likely to reduce the oscillation.
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Chapter 6

Conclusions

We have analyzed dynamic pivoting with inertial force and grip force as actuation. We model it
as a hybrid control problem with uncertainty, and build a robot by mimicking human pivoting.
We investigate different methods for solving the control problem. We propose a robust hybrid
control algorithm, and validate its performance in both simulation and multiple experiments.
The work helps us better understand how to cope with friction in manipulation tasks. It is worth
noting that a coarse grip force control can significantly improve the stability of the closed-loop
pivoting system. The experiment results also help us better understand how humans cope with
friction. We use a low control frequency (50Hz) on a highly dynamic motion. This agrees with
the human case where control frequency is also low because of slow nerve conduction velocity.
The auto-generated oscillation pattern is similar to human pivoting strategy, which may suggest
the importance of incorporating feedback information and actively recover from error.

For future work, we believe a precise, less noisy grip force controller with lower latency is
likely to improve the performance of pivoting. Also, our algorithm behaves greedily in terms of
friction mode switching. A higher level planning on the sequence of modes may bring further
performance improvement.

A more interesting question to be investigated is how to generalize the control method to
more manipulation tasks, since dynamic pivoting is one of the millions of manipulation skills
that human masters.
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