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Abstract

Rapid autonomous exploration of challenging, GPS-denied environments such as

underground mines provides essential information to search and rescue as well as de-

fense operations. We pursue a distributed perception strategy for a team of robots

to develop a consistent distributed map of these communication-constrained environ-

ments that in addition exhibit perceptual aliasing due to repetitive structure. Since

each robot operates with respect to a local reference frame, robots estimate relative

transforms to other robots’ reference frames using observed environment correspon-

dences in order to construct a consistent distributed map. Perceptual aliasing, or the

incorrect association of observations from different areas in the environment, compli-

cates the estimation of relative transforms between robots. In this work, we extend

a robust distributed mapping formulation to operate using 3D sensors under hard-

ware network limitations for operation in the communication constrained, repetitive

structure of an underground mine.

Real-world communication constraints limit a robot from sharing large numbers

of observations at high fidelity. Näıvely simplifying sensor information leads to loss

of unique features and an increase in perceptual aliasing. Towards sharing the most

relevant subset of information, we develop a scan utility function based on information

theoretic measures to assess a scan’s ability to reduce map uncertainty and feature-

based place recognition approaches to assess a scan’s potential for containing shared

observations between robots. Using the utility function to rank scans, we formulate an

offer-response-request framework, Communication Constrained Information Routing

(CCIR), that ensures operation under stringent bandwidth restrictions. In simulation



results, CCIR decreases the required network usage for distributed mapping to 20.7%

of a fixed-rate down-selection approach.

Given the ability to share rich 3D information over constrained networks, we

pursue full 3D mapping via extensions to existing approaches including robustification

techniques. The robust measures we introduce allow operation in the targeted mine

environment even given substantial perceptual aliasing with outliers accounting for

98.1% of all detections. Furthermore, the developed CCIR framework allows robots to

develop relative transforms while respecting network bandwidth constraints. Similar

performance when operating using a fixed-rate down-selection approach over the same

mine environment requires 7.69 times more data transmission.

Additionally, to enable operation in environments that exhibit perceptual aliasing

that exceeds the performance characteristics of the developed CCIR framework, this

thesis details first results for an approach that moves away from feature-based tech-

niques and introduces a methodology utilizing Hierarchical Gaussian Mixture Models.

Through regeneration of the point cloud from the HGMM model and Generalized It-

erative Closest Point algorithms, we show that we are able to detect multi-robot loop

closures accurately with an outlier rate 34% of that of feature-based methods.
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Chapter 1

Introduction

Autonomous agents are becoming increasingly useful at performing surveillance tasks

or retrieving information in challenging and hazardous environments such as under-

ground tunnels or disaster areas. In many cases, these environments are unknown a

priori and maps must be generated on-line in order for robots to operate and inter-

act with their surroundings. While a single agent is capable of performing mapping

operations, hardware issues such as battery capacity and speed restrictions limit its

performance. On the other hand, a multi-robot strategy is able to explore more

quickly or cover larger areas through effective coordination and sharing in order to

build a global model. Furthermore, multi-robot teams are robust to individual robot

failures. However, the benefits of a multi-robot system are undercut by the increased

computational and algorithmic complexity of having to communicate and coordinate

amongst the individual agents. A team of robots requires a shared map and global

state information to avoid choosing redundant paths in the context of exploration or

for planning coordinated motion. Robots are able to develop a consistent represen-

tation of the environment by transmitting local observations and utilizing the shared

information from other robots to estimate the global state. Ambiguities in local-
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Figure 1.1: The blue and red robots (triangles) are at different locations in the build-
ing yet observe the same local sensor reading (transparent crescent shape). This
ambiguity in place recognition is known as perceptual aliasing.

ization due to repetitive nature and minimal texture further complicate distributed

mapping. While sharing higher fidelity information could help to reduce ambiguities

in place recognition, hardware bandwidth frequently precludes robots from sharing

all available data. This thesis seeks to develop a robust framework that enables in-

telligent sharing of information and improves the robustness of distributed mapping

to generate rich consistent 3D maps in these challenging environments.

Our proposed approach builds on recent work that utilizes detected correspon-

dences between sensor scans across a pair of robots to estimate a relative transform

between each robot’s local reference frame. Since robots generate and transmit scans

with respect to their local frames of reference, relative transforms are necessary to

utilize shared scan information in distributed maps. Methods for global localization

like GPS are unavailable in some of the environments of interest in this work, such

as underground tunnels, and therefore each robot can only rely on overlapping sensor
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data between local and received scan information for relative transform calculation.

While some approaches rely on rendezvous or robots directly observing other robots,

we wish to avoid assumptions requiring the robots to operate in the same area at

the same time. Common observations between robots, regardless of at what time

sensor measurements were made, allow them to develop constraints that describe

their relative trajectories. The recognition of a common observation between robots

is termed a multi-robot loop closure, and recognized loop closures allow our team of

robots to develop a consistent distributed map. We define a distributed map as the

environmental model generated independently on each robot from local and received

sensor observations. Each robot constructs a distributed map in its own local ref-

erence frame. Therefore, a key requirement of our approach is to generate a set of

relative inter-robot transforms that enable robots to interpret measurements collected

in another robot’s local reference frame and produce a globally consistent distributed

map.

However, environments with repetitive structure complicate the task of finding

scan correspondences as scans observed from different areas can be mistakenly as-

sociated, an issue known as perceptual aliasing (Fig. 1.1). When robots associate

sensor observations from different areas of the map, they can generate incorrect rela-

tive transform estimates and cause the distributed map to become inconsistent. The

joint mapping foundation that we build upon is robust to some number of outlier

scan correspondences and enables operation in indoor and feature-rich environments.

Environments such as the mine shown in Fig. 1.2 require additional methodologies

due to an increased level of perceptual aliasing. Distinctions between observations

taken at significantly different areas in the mine only become apparent when using

a high fidelity perceptual model. Therefore, one method of handling the minimally

textured environment involves sharing higher resolution information between robots.
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Figure 1.2: A 3D map of an underground mine. Note the repetitive structure of the
columns. Each column is roughly 10m in width.

However, without existing communication infrastructure, robots must use constrained

wireless ad-hoc networks that restrict the sharing of all locally collected sensor infor-

mation. Therefore, we pursue a strategy to intelligently down-select the information

to be shared based on its utility to the developed environmental model. The utility

is designed to minimize redundancy in the communicated information while ensuring

reliable relative transform calculation. By leveraging the distributed mapping frame-

work developed in [5] and local scan evaluation calculations, the developed framework,

called Communication Constrained Information Routing (CCIR) (Sec. 3.2), limits the

sharing of sensor observations to respect hardware limitations while preserving the

quality of the generated map.

The effectiveness of the communication protocol and scan correspondence detec-

tion are highly dependent on the quality of features detected in the environment.

Features allow for efficient description of a scan and can be used to quickly evalu-

ate potential overlap in sensor readings. While 2D features are effective for ground

robots or in environments with minimal 3D texture, 3D features are necessary in

cluttered environments when robots potentially operate at different heights. Chapter
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4 introduces the 3D features used for the mine environment pictured in Fig. 1.2. Due

to sparsity in the sensor observations as seen in Sec. 4.1, 3D features are inherently

noisier and require additional methods to reduce outlier correspondences. Chapter 4

introduces robust measures as described in Sec 4.2 and Sec 4.3 to reduce the implica-

tions of outlier correspondences in the mine environment and enable operation given

an outlier ratio of 98.1%.

In some cases, however, the outlier ratio is higher than 99.8 % and feature-based

approaches are unable to reliably detect loop closures at an accuracy sufficient for

relative transform calculation or for CCIR to operate effectively. Towards enabling

reliable detection in these scenarios, we explore an alternative map representation

strategy based on Hierarchical Gaussian Mixture Models (HGMM) as discussed in

Section 6.1. By utilizing a bottom-up Expectation Maximization (EM) approach and

simplifying the model construction based on divergence measures, robots are able to

develop high fidelity representations of the environment with substantially less mem-

ory footprint. Resampling from the HGMM allows us to recreate the original point

cloud at a sufficiently high fidelity for effective scan registration with a significantly

higher precision than sending quantized versions of the same point cloud. Section 6.2

demonstrates that this loop-closure detection scheme has the potential to produce an

order of magnitude of fewer false matches when compared to feature-based approaches

for a real-world mine data set.
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1.1 Previous Work

1.1.1 Distributed Mapping

The ability of robots to localize with respect to each other and develop a consistent

representation of the environment is necessary for effective multi-robot coordination

and cooperation in GPS-denied environments. Early works involved with distributed

mapping assumed given initial transforms and focused their approach on distributed

localization. Pose estimates during online operation are inherently noisy and re-

quire an optimization technique to obtain accurate estimates. Towards obtaining

an accurate estimate of the global state, initial works began by modifying Extended

Kalman Filters [18] or particle filters [10] applied to the distributed setting. However,

filter-based approaches do not handle loop closure constraints and cannot robustly

determine relative transforms when they are initially unknown. As robot localiza-

tion drifts over time due to error accumulation, identifying the return to a previously

explored location is essential to obtain the most likely estimate of a robot’s trajec-

tory. Full-SLAM and Pose-SLAM are recent pose-graph approaches used to account

for odometry drift over time by considering all known constraints in an optimization

function based on the residuals at each pose. While Full-SLAM optimizes for the

landmarks in the environment as well as the poses of the robot, Pose-SLAM only

estimates the poses of the robot and is used here to be generic to sensor type and

operate in environments without clear landmarks. The approach presented by Kim

et al. [15] looks at using multiple relative pose graphs with anchor points to extend

the pose-graph to the multi-robot case. This approach however estimates relative

transforms from direct observations and is not robust to outlier correspondences and

is therefore not applicable to the repetitive structure target environments consid-

ered here. To avoid assumptions on a robot’s ability to perceive another robot, the
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proposed approach generates inter-robot constraints indirectly from matching sen-

sor observations. An overview of the distributed mapping work we build upon [5] is

presented in Chapter 2.

1.1.2 Network Constrained Systems

In this work, we seek to establish a distributed mapping framework that scales to

the available communication capabilities by sharing only measurements relevant to

the calculation of relative transformations between robots and construction of the

distributed map. As described earlier, the available network hardware bandwidth

precludes robots from sharing all local sensor information. To operate within band-

width limits, robots perform additional computation to reduce the redundancy in

transmitted information and share only what is essential. An initial approach seeks

to simplify each scan in order to compress the message. Martins et al. [20] present

a comparison of compression techniques applied to multi-robot mapping scenarios.

However, simplifying a sensor observation through quantization or downsampling in

this scenario significantly degrades the multi-robot loop closure detection since per-

ceptual aliasing becomes more of a concern as seen in Fig. 1.3.

One alternative approach to down-sampling is data fusion. Data fusion attempts

to reduce shared information without losing perceptual detail by compressing only

redundant information. Local maps such as voxel grids already accumulate several

measurements and reduce redundancy in storage as points from multiple scans that

reside in the same voxel are all represented by that one voxel. Nettleton et al. [22]

employ information-theoretic approaches to send subsections of a map between robots

and show favorable performance when trajectories have minimal drift and robots have

sufficient communication bandwidth. However, in the case of drift in odometry, the
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Figure 1.3: A slice of a 3D Velodyne-16 scan from full resolution through progressive
down-sampling. Simplifying the scan by down-sampling reduces the texture and
uniqueness of the scan.

local submaps will be noisy and lead to incorrect associations as submaps of the

same area for two systems will be notably different. Furthermore, while sharing

fused measurements can deal with intermittent communication [9] or can be used to

reduce transmission frequency to a constant rate [19], constant rate communication

does not make optimal use of the available network capacity and cannot respond to

dynamic network topologies. Even when local odometry is sufficiently accurate, the

sensors considered in this work (specifically 3D Lidar and depth cameras) produce

dense measurements that are difficult to transmit. One large observation must be

made into smaller packets when transmitted between systems and in scenarios where

packet loss occurs frequently, large messages are easily corrupted. Another method for

compression given environments with known objects is to use object based models [3].

By transmitting labels rather than the raw sensor data, they show that the required
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communication is reduced by six orders of magnitude. However, this approach is not

amenable in our environments, such as underground tunnels, since the environment

does not contain objects that can be learned a priori.

Since measurements cannot be heavily quantized or fused, we pursue a strategy

that shares a well-chosen subset of all observations. Näıve approaches such as constant

rate down-sampling [19] exhibit the same inefficiencies as compression approaches by

discarding potentially useful information. Generating accurate relative transforms

requires a sufficient number of correct scan correspondences; not directly account-

ing for potential correspondences decreases the likelihood that a sufficient number of

matches needed for the relative transform calculation will be found. In the context

of exploration, sensor observations reduce uncertainty of the map and so the degree

to which a scan reduces the uncertainty can be used as a measure for scan value. We

can see from Fig 1.4 that the value of scans can behave irregularly thereby making

fixed-rate down-selection a poor choice. Furthermore, we assume that robots operate

in a bounded environment with overlapping paths that result in redundant sensor

information similar to the work of Kretzschmar et al [16]. In this work, the authors

compress a single robot’s pose-graph by pruning scans that insufficiently reduce un-

certainty in the map. This approach is readily extended to the multi-robot scenario

where overlapping coverage is far more prevalent. In the context of multiple robots,

the mutual information of the scan with respect to a robot’s local version of the global

map can be used to determine which scans are sent across the network or incorpo-

rated into each robot’s representation of the global map. Paull et al. employ a similar

pose-graph pruning approach for multiple Autonomous Underwater Vehicles (AUVs)

operating under severely constrained communications [25]. However, the local evalu-

ation of a scan alone does not consider the effect the scan will have on other robots

or the current network utilization.
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One potential extension for intelligently determining the selection of information

to share that takes into consideration the full communications network is to con-

struct a network flow optimization problem where the sources are the sensors and

the sinks are the receiving robots [14]. Link costs combine the available bandwidth

and estimated utility of a scan. While this approach provides the optimal flow of

information given an accurate scan utility function, optimizations across distributed

networks suffer from slow convergence times due to latency and changing topologies.

We therefore approximate the distributed optimization of information flow through

an offer-response-request framework detailed in Section 3.2. In addition, we extend

the scan utility function to include the implication of the scan on the relative trans-

form calculation. While our framework does not solve the full network flow problem,

it ensures that the network is not over-saturated and allows for real-time performance

on existing network hardware by reducing the communication frequency. While this

approach works for a wide range of depth sensors, 3D Lidar and depth sensors are

utilized in this effort to illustrate the applicability of the methodology.

1.1.3 Alternative Environmental Models

The reliability of the communication approach and the distributed mapping backend

require efficient and robust scan correspondence detection. As is shown in Chapter 4,

feature-based approaches have fundamental limitations that restrict their functional-

ity in minimally textured, repetitive environments such as our target mine environ-

ment. We therefore pursue alternative strategies for map information representation

to enable accurate loop closure detection. While it is possible to store map infor-

mation in a more efficient format than a standard voxel grid using methods such as

an Octree, the compression level is minimal and the discretization does not always
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Figure 1.4: The entropy of each scan is irregular as the robot operates through the
environment.

allow minute details to be captured. An extension called NDT-MAP [7] that places

a Gaussian in each cell can be used to add detail to the map at the cost of addi-

tional data storage. While each cell is represented by a continuous form, each voxel

is still considered independent from other voxels which is not always an accurate

assumption. Removing the per-voxel restriction of each Gaussian, we can instead

apply an HGMM model [28] that scales to the fidelity required in the environment

using information-theoretic approaches. The HGMM model provides a way to com-

press scan information by two orders of magnitude while preserving the representative

power required to identify unique locations within the environment.

1.2 Thesis Problem

This thesis seeks to enable multi-robot mapping in environments with high perceptual

aliasing while operating over constrained wireless networks. In order to accomplish
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this task, we

• develop an information-theoretic system to control the transmission of sensor

observations to meet bandwidth requirements and minimize the uncertainty in

the localization of the robots and the generated global map, and

• develop a system capable of efficiently and reliably detecting the unique features

in the environment in order to precisely associate sensor observations and reduce

the effect of outlier scan correspondences.

1.3 Contribution and Outline

Chapter 2 provides a background on the underlying distributed mapping framework.

We begin by discussing the problem formulation and the methodology used to allow

robust distributed mapping. The näıve extension extracts 2D slices from the 3D scans

and allows for initial results which we present in this chapter.

To extend the mapping framework to fully support 3D data, the increased data-

rate of the sensors must be addressed. Näıve down-selection or down-sampling leads

to severely degraded performance. Chapter 3 presents an intelligent approach to

limit scan sharing based on information theory along with a comparison to näıve

down-selection. Section 3.2.1 describes the development of a measurement utility

function through the combination of loop closure potential (Sect. 3.2.2) and novel

map information (Sect. 3.2.3). This utility function is used in Section 3.2.4 to evaluate

local scans and determine if and how they should be communicated to other robots.

Furthermore, the extension of the distributed mapping front end to 3D relies on

new feature and scan-registration algorithms described in Sect. 4.1. In order to reli-

ably map and localize in areas with high perceptual aliasing, additional methodologies
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are introduced in Sects. 4.2 and 4.3 to improve robustness. Employing these addi-

tions, CCIR is applied to the mine environment in Sect. 4.4. and while the overall

communication required for reliable mapping is significantly reduced, it is still not

supported by current hardware. We conclude in Chapter 5 with the current capabil-

ities of the system and provide initial results of an HGMM mapping framework that

mitigates the perceptual aliasing seen in the underground tunnel environment while

using significantly less bandwidth.
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Chapter 2

Distributed Mapping Background

Distributed mapping seeks to develop a shared environmental model through the

communication of local sensor observations by each robot. In order to utilize remote

measurements, a local robot requires the location at which the remote measurement

was taken. Since robots express their measurements in their local frame, a relative

transform between robots is necessary to calculate the remote sensor location in the

local frame. We assume that relative transforms are not given a priori and must be

estimated online through shared measurements between each pair of robots. A brief

introduction to the problem structure is provided in Section 2.1. Section 2.2 details

how robots maintain a history of local observations in order to detect overlapping sen-

sor measurements from received messages and construct potential data associations.

Due to perceptual aliasing, sensor observations from different areas of the map may be

incorrectly associated leading to outlier relative transform estimates. Thus, to accu-

rately construct the true relative transform estimate, multiple consistent associations

must be formed along the robots trajectory. We utilize an Expectation Maximization

(EM) approach as described in Section 2.1.1 to efficiently and accurately determine

the true relative transform.
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In Simultaneous Localization and Mapping (SLAM) problems, it is common to

separate the problem into two distinct components: a front-end that utilizes differ-

ent sensor modalities to generate pose constraints (odometry and loop closures) and

a back-end that incorporates these constraints to generate the optimized trajectory.

This chapter describes the dimension-agnostic back-end (Sect. 2.1.1) developed by

Dong et al. [5] and provides a straightforward extension to their front-end by trans-

forming 3D scans into 2D scans (Sect. 2.2). Section 2.3 provides baseline results where

the full 3D trajectory is estimated and a 2D map is built.

2.1 Problem Formulation

We introduce the multi-robot trajectory estimation as a Pose-SLAM problem and

provide a brief overview. A more detailed discussion can be found in [5]. Pose-SLAM

seeks to estimate the optimal history of poses of a robot given the constraints gener-

ated by sensor observations. Consecutive poses for a single robot are constrained by a

combination of odometry (generated from wheel encoders or an IMU) and scan align-

ment between the consecutive scans (Iterative Closest Point (ICP)). Non-consecutive

poses, including those of two different robots, can be constrained only through scan

alignment. The joint probability distribution over the potential poses of the robots

is parameterized as a factor-graph where the variables are poses and the factors are

pose constraints. Therefore, for a robot r, the likelihood of a trajectory Xr given its

observations Zr is proportional to a prior on the initial pose and the product of each

constraint uri,j between pose i and j is expressed as:

P (Xr | Zr) ∝ p(xr0)
n∏
i,j

p(uri,j | xri , xrj), (2.1)
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where xri ∈ Xr is the pose of the robot in its local frame at time ti and p(xr0) is a

prior on the initial position. Given this factorization, the estimated trajectory X̂r is

the input trajectory Xr that maximizes Equation 2.1:

X̂r = argmax
Xr

p(Xr|Zr). (2.2)

The estimation of the trajectory likelihood is extended to multiple robots by

including multi-robot data correspondences F as additional factors in the graph.

Since each multi-robot factor involves only two robots, without loss of generality the

remaining analysis considers only the interaction between two robots r1 and r2. Each

multi-robot correspondence is a transform represented as ur1,r2k,l ∈ F for robot r1 at

time tk and robot r2 at time tl and is computed from sensor observations zr1k ∈ Zr1

and zr2l ∈ Zr2 . The transform induces a constraint on the poses of each robot. Using

the factor-graph formulation, the likelihood of the full trajectory X given all sensor

measurements Z is proportional to the likelihood of each of the individual factor

graphs multiplied by constraints of the multi-robot factors:

P (X | Z) ∝ P (Xr1 | Zr1) · P (Xr2 | Zr22) ·
∏

u
r1,r2
k,l ∈F

P (ur1,r2k,l | x
r1
k , x

r2
l ). (2.3)

In practice, multi robot correspondences are not always accurate and a false multi-

robot factor would cause large errors in trajectory estimates. To determine the true

inlier correspondences, an EM approach is formulated in the next section.
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Figure 2.1: A potential relative transform between world frame’s (T̂ r2
r1

) is estimated
by a scan correspondence (yellow) between robot r1 at position xr1k (blue) and robot
r2 at position xr2l (purple).

2.1.1 Expectation Maximization Formulation for

Relative Transform Estimation

In order to determine which constraints in F are true correspondences, an Expectation

Maximization (EM) is used as follows. Note that each multi-robot pose constraint

ur1,r2k,l leads to an estimate of the relative transform between xr10 and xr20 . The relative

transform can be computed by composing the scan registration pose constraint and

the pose of robot r1 and then expressing this composition in the frame of robot r2 as

seen in Fig. 2.1.

The estimated transform between r1 and r2’s world frame, T̂ r2
r1

, can be expressed

as :

T̂ r2
r1

=
(
xr1k ⊕ u

r1,r2
k,l

)
	 xr2l , (2.4)
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where ⊕ is the compose operator and the notation a	 b for any two poses a, b is used

to express b in the local frame of a [17]. In future sections, since only two robots are

considered, the superscript and subscript will be omitted for the relative transform

T̂ r2
r1

.

The key assumption here is that inlier relative transform estimates will cluster

whereas outliers will be distributed randomly as shown in Fig. 2.2. Expectation

Maximization will be used to identify clustered measurements and determine the

most likely transform. In order to characterize whether a scan is an inlier or outlier, a

set of latent binary variables j ∈ J are introduced to correspond with each multi-robot

factor such that j = 1 if the related multi-robot factor is an inlier and 0 otherwise. In

order to determine the binary variables J , the expectation maximization concurrently

estimates a relative transform T̂ and determines the set of inlier scan matches. Given

a set of inlier scan matches, a relative transform may be estimated by taking the

average of the relative transforms estimated by each scan match. Further, when given

a relative transform, one can select only those scan correspondences that provide a

similar estimate. The most likely overall relative transform T̂ is therefore the scan

correspondence that has the highest probability across all potential inlier sets given

the current set of observations and the estimated trajectory:

T̂ = arg max
T

∑
J

p(T, J | X̂, Z). (2.5)

EM is an iterative approach that outputs an estimated transform T̂ in every

iteration. The two steps of each iteration of the EM optimization are written as:

1. E step: Calculate the lower bound on the probability of a transform T given

estimated trajectory X̂ and observations Z by iterating over the set of potential
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classifications J :

Q(T | T̂ t) =
∑
J

p(J |T̂ t, X̂, Z) log
[
p(T, J | X̂, Z)

]
. (2.6)

2. M step: The transform that maximizes the lower bound on the probability

of that transform given the previous transform estimate:

T̂ t+1 = arg max
T

Q(T | T̂ t). (2.7)

Figure 2.2: Each line represents a 2D relative transform where the position of the
arrow represents the delta translation and the heading represents the delta yaw. The
relative transforms estimated by inlier scan matches are clustered (black circle) while
outlier scan matches are randomly distributed.

The expectation step can be solved assuming that the binary variables indicating

the inliers are statistically independent [5]. A fixed transform T̂ t provides a distribu-

tion over J . The expectation over this distribution provides a likelihood value that is

used to find T̂ t+1. EM performs a clustering on the relative transform estimates with
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the assumption that true inlier scan matches lead to a consistent relative transform

between a pair of robot’s local frames. As the EM algorithm is sensitive to initializa-

tion, simpler clustering methods such as k-means are used to provide starting points.

Once the relative transforms have been clustered by k-means, they are used as initial

estimates in the EM and refined to obtain a final relative transform between each

pair of robots.

2.2 System Details and Näıve 3D Extension

The EM formulation presented above makes no assumptions on how constraints were

generated and is readily extended to 3D. We now discuss the extension of the front-end

from the 2D approach [5] to a 3D approach that generates 3D scan correspondence

constraints with panoramic sensors like the Velodyne-16 Puck. The goal of the front-

end is to generate multi-robot loop closures by attempting to match received remote

scans with local scans.

The näıve extension includes a pre-processing step that creates a horizontal 2D

slice from a 3D scan. The slice is obtained by first pruning all points above and below

a certain z value and simply setting the z value of all remaining points to 0. This

aligned 2D scan can then simply be processed as described in [5]. We provide a brief

overview of the loop closure detection process here.

The 2D scan is decomposed into features using Fast Laser Interest Region Trans-

form’s (FLIRT’s) curvature detector and beta grid descriptors [31]. The extracted

descriptors from the local scans are stored in a kd-tree for efficient nearest-neighbor

search in the future. Since the data is high-dimensional, FLANN [21] is utilized to

store the kd-tree.

When a remote scan is received, it is decomposed into FLIRT descriptors and
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each descriptor is queried against the kd-tree to extract the closest K descriptors and

their associated local scan indicies. The returned local scan indexes are placed into a

histogram where each bin counts the number of features shared with the query scan.

An example of a histogram can be seen in Fig. 2.3.

Figure 2.3: The histogram of matched features over scans identifies potential scan
matches [5]. The query scan (blue) matches closely with the local scan (red) at the
histogram peak index indicated by the pink arrow.

The histogram peaks are chosen as potential matches as they share a large number

of features with the remote scan. A Random Sample Consensus (RANSAC) based

feature association process is used to align the chosen local scan and the query scan

and filter matches with insufficient consistent feature correspondences. ICP is then

run to generate a refined transform T 2D
l,k and fitness score e based on residual error.

If the error from ICP is below a given threshold (e < λth), the calculated transform

is used to generate a multi-robot constraint. The registration of 2D scans provides
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an x, y translation and yaw rotation. To obtain the full 3D transform from the scan

registration, we assume the missing degrees of freedom (roll, pitch, and height) are

initially consistent across all robots and use the roll, pitch, and height from the relative

transform between their local poses. Let T ′r1k and T ′r2l be the transforms incorporating

only the roll, pitch, and height components of the local poses of robot r1 at time k

and r2 at time l respectively. If the 2D scan registration provides a transform T 2d
l,k ,

the full 3D relative pose constraint is:

ur1,r2k,l =
(
T ′r1k

)−1 · T 2d
l,k · T

′r2
l . (2.8)

The roll, pitch, and height can be measured independently for each scan so no

significant drift occurs in these components.

2.3 Results

We present here preliminary results generated by taking 2D slices of 3D scans and

using FLIRT features and descriptors. In this experiment, three aerial robots map

a virtual building with a simulated Velodyne-16 sensor. We inject Gaussian noise

into the state provided by the simulator to provide a better replication of real-world

data. The full map of the environment generated from the three robots can be seen

in Fig. 2.4.

At initialization, the robots are unaware of the starting position of the other

robots. While the relative transform calculation is correctly estimated, the level of

data usage even for 2D scans surpass our given 150 KB/s limit. Furthermore, this

environment has distinct features and minimal perceptual aliasing. The 2.5D envi-

ronment is not amenable to 3D features, however many real world environments with
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Figure 2.4: The estimated trajectory of the 3 robots (red, green, blue) with the joint
map built by the green robot. This run assumes full communication amongst the
agents.

clutter require the use of 3D data and features. In the next chapter we introduce a

communication strategy that allows us to share 3D data at high resolution while oper-

ating over bandwidth constrained networks. Furthermore, we complete the extension

to full 3D in Chapter 4.
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Chapter 3

Communication Constrained

Information Routing

Multi-robot systems potentially offer substantial performance gains as compared to

single robot systems in cooperative tasks such as exploration. However, in order to

realize increased performance, team members must co-ordinate their decision mak-

ing processes. For effective coordination, robots must share local information and

process the shared data to estimate a global state. In our target scenarios of operat-

ing in communication constrained environments, individual robots share local sensor

observations and state information to allow each robot to estimate the global map.

We employ an ad-hoc mesh network utilizing the BATMAN protocol [23] in order to

operate in unexplored environments without existing communication infrastructure.

This chapter addresses operating within the bandwidth limitations of ad-hoc commu-

nication networks that inhibit robots from sharing all local sensor observations.

Näıve information sharing formulations in applications with information-rich sen-

sors, such as RGB-D sensors, quickly saturate available network capacity [12] which

impacts coordination across team members [14]. While RGB-D sensors and similar
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3D sensors produce depth data around 10-100MB/s, the observed network capacity of

ad-hoc mesh networks under realistic situations is typically only around 0.1-1MB/s.

Network capacity is additionally highly influenced by the distance between the robots

and by the environment in which they operate [30]. In this chapter we present an

approach that enables decentralized coordination through a distributed information

sharing framework. Our approach adapts message passing to available bandwidth ca-

pacity in dynamically changing network topologies and prioritizes sharing information

according to predicted utility at the recipient.

Relative transforms between robot reference frames are necessary for robots to

be able to accumulate shared measurements into their local maps. We therefore

develop a novel evaluation of scan utility by observing the expected impact of a

scan’s information on the calculation of relative transforms between robots using the

distributed mapping formulation described in Chapter 2. Robots extract lightweight

features of local scans and transmit these features to neighboring robots. A robot

is able to compare any received features against the features of scans in its own

scan database to rank local scans by the number of shared features since scans that

share a significant number of features are likely to have overlapping observations.

The generation of a relative transform between robots relies on identifying these

corresponding observations between the robots, otherwise known as multi-robot loop

closures. Our proposed scan utility function is the first to consider the likelihood of a

scan to generate multi-robot loop closures which encourages sharing scans that enable

relative transform calculations. Robots use an offer-request paradigm to communicate

ranking metrics, allowing a pair of robots to determine the maximum number of most-

informative scans they are able to transmit between them, allowing them to share

the most relevant measurements within network bandwidth limits.

While other approaches in the literature have used the information gain of a local
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scan with respect to the corresponding robot’s local map to estimate scan utility, our

proposed approach, Communication Constrained Information Routing (CCIR), is the

first approach to use virtual sensor readings to estimate the effect of a scan on another

robot’s local map prior to receiving the full scan. This “virtual” sensor is what al-

lows robots to estimate the utility of measurements taken by neighboring robots and

therefore negotiate optimal information flow. We proceed by discussing our method-

ology and provide extensive simulation results to compare our approach to fixed-rate

down-selection. To validate the simulation results, we perform field experiments with

two ground robots communicating over an ad-hoc network. While an approach of

näıvely down-selecting sensor scans in order to remain within communication limits

would miss key scans required to generate multi-robot loop closures, actively selecting

scans based on their expected utility allows the robots to consistently generate rela-

tive transforms between each other and develop rich 3D maps while communicating

across a severely constrained network.

3.1 Overview

To explain our approach for efficient distributed information gathering, we consider

one side of the interaction between two robots i and j. We outline the six prin-

cipal components governing measurements sharing from robot j to robot i below.

The numbered steps directly correlate to the numbered arrows in the block diagram

illustrated in Fig. 3.1.

1. First, robot i extracts features from its local observations and transmits these

features to robot j.

2. Second, robot j compares the received features against its own local database
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of scan features to estimate the likelihood of robot i’s scan sharing observations

with any scan in robot j’s local database.

3. Third, robot j additionally evaluates its set of local scans to determine the

information each scan contributes to robot j’s map.

4. Fourth, robot j uses a combination of the loop closure potential (generated with

information calculated in step 2) and information gain with respect to robot j’s

map (as determined in step 3) to rank its set of local scans by estimated utility

to robot i . Using this ranked list of local scans, robot j shares with robot i

information about at most N of robot j’s highest ranking scans through an offer

comprising each scan’s location and number of shared features.

5. Fifth, robot i sorts the received scan offers from robot j using the expected

impact of robot j’s scan on robot i’s own local map and potential for loop

closure. Robot i then requests at most the N highest ranked scans from robot

j, where N depends on the available capacity of the network connection between

robot i and j.

6. Sixth, robot j sends scans requested by robot i to robot i.

In the following sections, we first explain the ranking function used to esti-

mate scan utility using the loop closure potential and expected map information

(Sect. 3.2.1). Sect. 3.2.2 further explains components 1 and 2 and Sect. 3.2.3 pro-

vides additional detail on components 3 and 5. Furthermore, Sect. 3.2.4 explains

the offer-request framework used in components 4,5, and 6 to determine information

routing.
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3.2 Communication Constrained Information

Routing

To most efficiently use available communication and computation resources, we match

network utilization to the available network capacity. In variable network topologies,

convergence to the optimal network routing is not feasible in real-time. To overcome

this limitation, robots repeatedly adjust the number of offered, requested, and sent

measurements under the offer-request paradigm as explained in Sect. 3.2.4. While this

results in redundant offers and requests, the size of the offer and request messages are

sufficiently small that the corresponding overhead is negligible. While this does not

solve the global information routing problem, it minimizes the inter-robot negotiation

required to establish information flow that bottlenecked Kassir et al’s approach [14].

The inter-robot information flow is outlined in Figure 3.1.

3.2.1 Measurement Evaluation

In order for a robot j to determine a subset of measurements to offer to robot i, robot j

considers the following two competing scenarios. First, robot j’s observations that sig-

nificantly overlap with robot i’s observations have little value in terms of lowering the

uncertainty of the map; however, these shared observations are extremely useful for

determining loop closures and consequently for estimating the relative transform [5]

between the communicating robots. Conversely, robot j’s measurements that do not

overlap with robot i’s local measurements are useful for robot i to learn about the

environment [13], but have little value for generating loop closures. Therefore we use

a weighted cost function over these two measures to determine the communication

value of a scan.
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Figure 3.1: The diagram describes the one-sided relationship between a requesting
robot i and provider robot j in the offer-response-request framework. Each robot is
both a requester and provider and so will have all four sub-systems shown above.
The gray box represents the distributed mapping component while the purple box
represents the measurement accumulator. Sect. 3.1 contains a description of the
information communicated in each numbered arrow.

The utility for a scan St′
j from robot j at time t′, to robot i at time t is defined as:

U(St′

j ) = λm · F (St′

j ) + (1− λm) · I(St′

j ), (3.1)

where F (St′
j ) is the utility derived from the potential multi-robot loop closures as

defined in Section 3.2.2 and I(St′
j ) is the utility derived from the map uncertainty

reduction achieved by the measurement as discussed in Section 3.2.3. We define λm

as a parameter controlling the inherent trade off between generating loop closure and

map information gain. A larger λm results in more overlapping scans and thus leads

to lower uncertainty about the state whereas a smaller λm leads to more independent
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sensor readings and a lower uncertainty about the environment. We set λm to reliably

generate relative transforms between robots and prioritize for unique sensor readings.

This value will be dependent on the overlap of the robot trajectories, the environment

they operate in, and the desired bound on state uncertainty.

The following sections discuss the individual components of Equation 3.1 in more

detail.

3.2.2 Evaluating Loop Closure Potential

Loop closures between two robots are key components in generating a relative trans-

form between the robots frames. Therefore, when two robots share scans that have

a high likelihood of generating loop closures, the robots increase their probability

of estimating their relative transform. This section describes how robots evaluate

likelihood of detecting loop closures and use this likelihood as part of the ranking

function.

When robot i locally generates a new measurement St
i at time t, it builds and sends

a feature message to robot j (Arrow 1 in Fig. 3.1) containing the features f t
i = f(St

i )

extracted from scan St
i . Each robot maintains a Kd-tree of locally generated measure-

ments, where each measurement is stored according to its feature vector extracted

using FLIRT’s beta grid descriptor [31]. When a feature message is received at robot

j, robot j queries its local Kd-tree to generate a list of scans with features similar to

those in f t
i (Arrow 2 in Fig. 3.1). Robot j’s scans which share similar features are

ranked by the number of feature correspondences ck and placed into a set:

{Stk
j | number of shared features between f tk

j andf t
i > ck,min},

ordered by increasing ck where ck,min is a parameter describing the required minimum
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correspondence count. The number of correspondences is a strong indicator of the

similarity between two measurements and, therefore, the likelihood of a scan match.

In addition to improving the reliability of a relative transform calculation, an

increased number of loop closures also reduces a robot’s state uncertainty as each loop

closure generates additional constraints in the pose graph. We use the product of the

eigenvalues of robot j’s marginal covariance matrix [4] at time t′, ut
′
j , as a measure of

robot j’s state uncertainty. As the uncertainty of the pose estimate increases, robots

weight scans which are useful for generating loop closures higher. Prior to generating

a relative transform, the uncertainty value is set to some max value to encourage

additional detection of loop closures.

Combining ck (a scan’s feature correspondence count) with ut
′
j (a measure of robot

j’s pose uncertainty), the utility function is defined as:

F (Stk
j ) =

cku
t′
j

η
, (3.2)

where η is a normalization constant. As an implementation note, since the utility

function must be evaluated over all scans, the loop closure utility for measurements

not selected from the local kd-tree is set to zero.

3.2.3 Evaluating Map Information Potential

Robots share measurements in order to reduce the uncertainty in each robot’s map.

However, the information content in a measurement relative to a given map depends

on the set of measurements used to build that map, meaning a given measurement

carries a different amount of information for each robot. We approximate the infor-

mation content of robot j’s local measurement with respect to robot i by considering

both the measurement’s local impact to robot j’s map and the expected impact to
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robot i’s map. The sending robot j evaluates a measurement by first considering the

measurement relative to its own local measurement set in order to prune measure-

ments from its database which have low information content or are redundant. When

robot i receives an offer containing the position of robot j’s local measurement, robot

i considers the measurement’s expected impact by using a simulated sensor reading

at that location.

We first detail robot j’s local evaluation of map information. Ideally, robot j would

seek to identify the N measurement subset of its set of all measurements that would

achieve the maximum combined entropy reduction for robot i. This is a variant of the

Knapsack Problem with non-constant object costs, which has been shown to be NP-

hard. We therefore formulate an approximate approach by considering a sequential

greedy ranking of the measurements. This has been shown to be within a factor of

two of optimal [16]. At each step in the sequential algorithm, robot j selects and

adds to its sorted list Zi
j the measurement St

j that maximizes MI(B̂j;S
t
j), the Mutual

Information (MI) between the measurement and robot j’s global environment belief

B̂j. The belief B̂j = f(Zi
j ∪ Y i

j ) is a function of the set of measurements comprising

the sorted list Zi
j and the set of measurements Y i

j known by robot j to have been

received by robot i. Robot j learns that robot i has received the measurement when

robot i responds to robot j with confirmation of receipt.

Before a robot can integrate measurements received from other robots, a relative

transform between the robots’ reference frames must be established. To discourage

sharing scans that do not contain shared features before a relative transform is built

between robots i and j, a binary weighting factor RelTransformBuilt(i, j) which has

value 1 if the relative pose is built and some small positive constant k > 0 otherwise

is applied to the mutual information calculation. We select a non-zero constant to

ensure robots utilize available capacity when there are no measurements with shared
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features but there are measurements with high information content. The modified

information function follows as:

I(St′

j ) = MI(B̂j;St′

j ) · RelTransformBuilt(i, j). (3.3)

The measurement set Zi
j is updated according to the rule:

Zi+
j = Zi−

j ∪ argmax
St′
j

U(St′

j ), (3.4)

Furthermore, robot i evaluates map information for an offered measurement St′
j using

the shared pose of robot j at time t′, ptj. Since robot i does not yet have scan

St′
j , robot i approximates scan St′

j ’s utility through a simulated measurement and

application of Cauchy-Schwarz Quadratic Mutual Information (CSQMI) [2] between

its local map and the simulated measurement. Note that robot i is only able to

generate a simulated sensor measurement at robot j’s position at time t′ if robot i

already knows the relative transform between robots i and j. If the relative transform

is unknown, the map information of St′
j is set to a small constant k > 0 as before.

3.2.4 Offer-request Paradigm

Depending on available network capacity between robots i and j, robot j determines

the number of scans (at most N) that are of potential value to robot i. Using the

update rule for the measurement set (Eq. 3.4), robot j will continue sorting measure-

ments until set Zi
j has cardinality N , |Zi

j| = N , or there are no more measurements

to consider. Given the set of robots Cj that robot j can currently communicate with,

robot j periodically constructs an offer with information about measurements Zi
j for
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each i ∈ Cj; the maximum size of each measurement set Zi
j is

N =
TotalBandwidth

(AverageScanSize · |Cj|)
.

Robot j sends robot i information about each scan in the sorted set Zi
j including the

scan’s local position and the number of shared features between the scan’s features

and features received from robot i. The system diagram (Fig. 3.1) depicts the offer

message as the arrow labeled four.

Robots respond to received offers at a fixed rate and therefore will often need to

respond to offers from multiple robots at a single time. As a result, available network

capacity may make it infeasible for robot i to request all offered measurements: M =⋃
j∈Oi

Zi
k, where Oi is the set of robots that have sent robot i an offer. Robot i uses

the CSQMI rewards (described previously in Sect. 3.2.3) in conjunction with robot

i’s own pose uncertainty to evaluate the offered scans and sequentially sort the set

of offered measurements M into a set of requests Rj
i where |Rj

i | ≤ N . The requested

measurements correspond to message five in the system diagram (Fig. 3.1). Robot

j collects requests from its neighboring robots Cj and responds with the requested

scans (message six in Fig. 3.1).

3.3 Results

The described framework reduces the network burden while preserving the quality of

the distributed map as compared to approaches that down-select messages at fixed

intervals. The construction of relative transforms between robots impacts the ability

of robots to incorporate foreign measurements into their local map representation,

significantly impacting the rate of entropy reduction across the distributed map. We
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therefore quantify the performance of our approach in terms of the uncertainty re-

duced in the distributed map on each robot and the calculation of the relative trans-

forms between robots.

3.3.1 Implementation Details and Complexity Analysis

This section describes several implementation details and analyzes the run-time com-

plexity of the proposed approach. Robots utilize an occupancy grid map to represent

their environment. When a robot receives a new scan, the robot performs ray-casting

to determine which 3D cells in the occupancy grid are affected by the sensor reading.

In each of these cells, a constant time operation is performed to calculate the change

in uncertainty of that cell based on a sensor model. Let P be the points in the scan, R,

the cell size, and C, the number of cells affected by the scan. Note that C is inversely

proportional to R since larger cells imply a fewer number of cells for a given area.

On compute constrained systems, the value of R can be increased to decrease the

number of cells and therefore minimize the required computation. Since the sorting

process iterates over the full list of size L of a robot’s local scans until it has selected

N scans, the sorting process calculates scan value O(NL) times. In order to rank its

set of scans that have not been shared yet based on map information utility, a robot

initializes a temporary map containing scans that the robot estimates are known to

all other robots on the team. This allows the sorting algorithm to evaluate the N

best scans to transmit with respect to the local robot’s estimate of the team’s total

knowledge. To evaluate a scan, the sorting algorithm calculates the change in entropy

using the sensor model for each cell affected by the sensor. After each iteration over

the full list of scans, the sorting algorithm adds the measurement with the largest

change in entropy to the temporary map. Sorting is on the order of O
(
NLĈ

)
where
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Ĉ is the average number of cells in a scan. An initial thresholding based on scan in-

formation can be used to remove scans from the sorting list. In practice, a resolution

of 0.1 meters achieved real-time performance on the ground robot seen in Fig. 3.8.

3.3.2 Comparison with Fixed-Rate Down-selection

We evaluate our approach in a large un-cluttered 2.5D building and cave as well as

a cluttered room environment. In all experiments, robots follow preset trajectories

so that the competing approaches can be directly compared. Using hardware experi-

ments, we set the network bandwidth to 150 KB/s to ensure under-saturation of the

network.

(a) (b) (c)

Figure 3.2: The different environments used for simulation, including the 2.5D extru-
sions of (a) a building and (b) a cave where Velodyne-16 scans are simulated as well
as a 3D environment with (c) clutter.

While it is possible to down-sample scans at a rate that limits saturation, the

performance is poor both in the ability to generate relative transforms and map

completeness as seen in Figure 3.3. To characterize the operation of CCIR, we select

the minimal fixed-rate down-selection rate that results in the successful estimation of

relative transforms between robots and a distributed map with a final volume within

10% of the distributed map constructed with CCIR. This allows us to describe the

network savings when using CCIR as compared to a similarly performing fixed-rate
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Figure 3.3: (a) 3D map generated by using CCIR, (b) the map volumes over time,
and (c) the network utilizations of three robots using CCIR and fixed-rate down-
selection. Selecting a fixed-rate down-sample amenable to the bandwidth supported
significantly degrades the completeness of the generated map. The final volume for
the näıve approach is 36% of the volume of the map generated using CCIR.
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down-selection approach.

3.3.3 Simulation Results

The simulation experiments include a variable number of robots operating with sim-

ulated 3D depth cameras and 2D Lidar scanners communicating over an artificial

network. The artificial network logged the data transmitted but did not impose any

latency or bandwidth limitations. As our approach is agnostic to the type of depth

sensors, we additionally provide tests with simulated Velodyne-16 scans. A subset of

3D Velodyne scans are compressed to 2D as explained in Sect. 2.3 to allow FLIRT

features to be used for scan correspondence detection. Furthermore, we validate the

simulation results with two ground robots, pictured in Fig. 3.8. In each environment

tested, our proposed approach, CCIR, outperforms the fixed-rate down-selection ap-

proach by sharing less data while reliably estimating relative transforms and reducing

uncertainty in the map at an equivalent rate. Figure 3.4 shows the comparison of

CCIR and the fixed rate approach using the building environment. The entropy

reduction over time remains similar through the run while the required data trans-

mission is 169% higher for fixed-rate approaches. Two tests with three robots each

were conducted in the cluttered environment. As can be seen from Fig. 3.5, CCIR

respects the set bandwidth while constructing a map similar to a fixed rate approach

that utilized 292% and 381% of the bandwidth limit respectively for each experiment.

The clutter causes more irregularity in scan utility as compared to simpler environ-

ments and so the bandwidth required by a fixed-rate approach is higher than in the

prior experiment.

We also observed the effect of varying the number of robots in the system. While
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(a) (b)

Figure 3.4: The entropy reduced over time (a) for each approach is comparable while
the cumulative network utilization (b) for CCIR is 59% of the that of fixed-rate down-
selection. The dark line represents the average while the shaded region represents
three standard deviations.

(a) (b) (c)

(d) (e) (f)

Figure 3.5: Results from two different runs of three different trajectories through the
more complicated environment. The figure contains two distributed maps (a), (d)
as well as the mean and variance in reduction of entropy over time (b), (e) and the
network utilization (c), (f). The colored arrows represent locations where scans are
taken. Red represents local 2D scans, yellow is local 3D scans, dark blue is remote
2D scans, and cyan arrows are foreign 3D scans.

our approach is useful for smaller teams of around 3 robots, we see that it provides

even more improvement as team size increases, as illustrated using a team of 6 robots
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(a) (b)

(c) (d)

Figure 3.6: Comparison of CCIR and fixed-rate down-selection with six robots in
cluttered environment. The figure includes (a) the entropy reduction over time and
(b) the network usage as well as (c),(d) the generated maps.

as shown in Fig. 3.6.

We show the scalability of our approach over 3, 6, and 9 robots operating in

the 2.5D cave environment. The 150 KB/s limit required by the mesh network was

maintained until 9 robots operated concurrently. Due to the configuration and overlap

in their trajectories, the team of 9 robots initially required a higher bandwidth in order

to generate relative transforms between their world frames. However, this assumed

every pair of robots maintained communication throughout the experiment. If robots
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(a) (b)

Figure 3.7: (a) The entropy reduction over time for a team of 9 robots operating
with a Velodyne is comparatively the same between the two approaches while the
network utilization (b) for CCIR is 39.5% of the network utilization of fixed-rate down-
selection. The required bandwidth was increased to 200 KB/s to allow convergence
of the relative transform calculation.

Table 3.1: Comparison of CCIR and fixed-rate down-selection over various numbers
of robots.

CCIR Fixed-Rate
3 Robots 150 KB/s 260 KB/s
6 Robots 150 KB/s 440 KB/s
9 Robots 200 KB/s 495 KB/s

communicate with a subset of the robots, then the network limitation of 150 KB/s

still holds. Figure 3.7 presents results from 9 robots tested using a simulated Velodyne

sensor. Table 3.1 shows the required bandwidths over the various runs.

3.3.4 Field Experiments

We additionally performed experiments on hardware platforms to validate the results

seen in simulation. The ground robot is pictured in Fig 3.8. It is equipped with a

Gigabyte Brix computer a mobile i7 processor and 16 GB RAM, a Bullet 1 Watt

network interface, a Hokyu U30MLX lidar scanner and Orbecc Astra camera. One of

the major shortcomings of Kassir et al.’s [14] approach is the lack of real-time testing
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Figure 3.8: The robot used for hardware tests is equipped with a bullet wireless
transmitter, a Hokuyo 2D Lidar, an Orbecc Astra RGB-D camera and a core i7
Gigabyte Brix for compute.

on systems with large latency, which is a significant factor affecting the performance of

this approach. For our hardware experiments, the latency of the system was between

50-100ms for a single message between two robots; however, robots need only an offer

and response to share a scan rather than a distributed optimization, thus, the latency

did not severely impact mapping performance of the team of robots.

In Figure 3.9, two robots have constructed a 3D map while communicating over a

mesh network. To calculate the required network usage for a fixed-rate down-selection

approach, the collected depth and Lidar data was post-processed using the simulation

setup described in Sect. 3.3.3. Even with the latency observed between systems, CCIR

is able to perform similarly to simulation on real-hardware, thereby validating the

prior simulation experiments. By remaining below the prescribed bandwidth limit,
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(a) (b)

Figure 3.9: (a) Map constructed from two ground robots using 2D Lidar and depth
camera. (b) Network usage stays below set bandwidth requirements while fixed-rate
down-selection requires additional bandwidth to construct an equivalent map.

the robots have minimized network usage and thereby allowed more bandwidth for

coordination and shortened delays between shared information.

3.4 Chapter Summary

In this chapter, we provided an overview of a distributed information gathering strat-

egy that was amenable to severely constrained communication networks. When deal-

ing with high-data sensors such as depth cameras or 3D Lidars, not all sensor scans

can be shared. Fixed-rate down-selection leads to a significant loss of information

in these scenarios, and we show an intelligent strategy for determining the routing

of scans based on a novel utility measurement which dramatically out performs the

fixed-rate down-selection baseline. We develop this utility measurement by observing

the impact of a scan on the global state and distributed map and use the resulting

utility measure to selectively offer and request scans that have high predicted impact.

Our results show that our approach of CCIR enables a team of mobile robots shar-

ing scans over a bandwidth-limited wireless mesh network to construct detailed and

43



accurate maps of the environment.
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Chapter 4

Extending the Distributed

Mapping Framework to 3D

This chapter outlines the extension of the distributed mapping process to 3D sensors

and the methods to deal with the resulting perceptual aliasing in repetitive envi-

ronments that occurs due to inherent problems with 3D feature detection. In this

chapter, we make use of a quadrotor equipped with a Velodyne-16 LIDAR scanner.

While the Velodyne sensor produces 300,000 points per second, points further than a

few meters from the sensor are extremely sparse and require special attention. Itera-

tive Closest Point (ICP) algorithms that utilize the point-to-point error minimizer do

not produce accurate scan registrations with these scans since exact point to point

correspondences are unlikely [26]. Sect. 4.1 provides an overview of the 3D features

we employ for scan recognition and the modifications we make to allow for them to

work on a sparse Velodyne-16 sensor in order to allow us to efficiently and robustly

match scans. Sections 4.2 and 4.3 detail robustification techniques to help deal with

higher levels of outlier scan correspondences. Using these methods, we attempt to run

CCIR in our target mine environment and show that the algorithm fails due to high
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levels of perceptual aliasing. We conclude with post-processed results from hardware

experiments involving two quadrotors operating in an underground mine.

4.1 3D Features

Features and their corresponding descriptors provide a succinct overview of the struc-

ture of a scan and are used for determining potential scan matches. The goal of feature

selection is then to collect unique parts of a scan and provide reproduce-able descrip-

tors from scans taken from locations close to the current scan but which are distinct

from the descriptors of scans taken elsewhere. While work by Serafin et al. [27] looks

at detecting features from sparse point clouds using planes and lines, environments

such as mines (Fig. 1.2) are not amenable for such simplifications. One of the current

state-of-the-art approaches for describing range measurements is Normal Aligned Ra-

dial Features (NARF) [29]. Acting directly on the range image, NARF finds areas

that are both stable and have depth variance. Due to the lack of clutter in the target

mine environment, depth disparities are restricted to pillar corners. As pillar corners

are extremely repetitive, NARF performs poorly.

We have found that ISS Keypoints [32] in conjunction with Spin Images [11] as

descriptors provide a reasonable characterization of scans in our repetitive, under-

ground mine environment. These approaches, however, were not developed for sparse

point clouds because keypoint and descriptor calculation rely on point normal calcu-

lations. Normals are vectors that describe the surface captured by a point cloud by

providing the direction of the surface tangent (Fig. 4.1). In addition, normal vectors

are estimated for each point by fitting a 3D Gaussian over the point and it’s neigh-

boring points within a fixed radius and extracting the eigenvector corresponding to

the smallest eigenvalue. Intuitively this is the direction that is the most “flat” and
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this is therefore assumed to be the surface vector at that point.

Figure 4.1: A normal for a point is the tangent vector of the surface at the point.
The blue circle denotes the support of the normal, i.e. the points it uses to estimate
the Gaussian which it uses for point-normal calculation.

Normal vectors are often used because they are view-invariant and so descriptors

based on normals will also be view-invariant. However, normals rely heavily on the

density of points and the radius which defines their neighbors. Velodyne scans exag-

gerate this issue since scan density varies with respect to a point’s distance from the

sensor. In Fig 4.1 we illustrate how a given radius leads to degenerate normal vectors.

We handle sparse Velodyne point clouds in the non-cluttered environments of

man made tunnels and mines by taking advantage of the enclosed nature of these

environments. Excluding points on the ground and ceiling, the limited vertical range

of the Velodyne coupled with the uncluttered tunnel environment allows us to make

the assumption that accurate normal estimates will have z components close to 0

as seen in Fig. 4.2. By filtering out all normals and their corresponding points that

have |z| > 0.5, we can show improved point correspondence detection (matching of
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(a) (b)

(c) (d)

Figure 4.2: The unfiltered pointcloud side view (a) and top view (b). After removing
normals that have a normalized z-value not within ±0.5, we obtain a set of sensible
normals, shown in side view (c) and top view (d)

features from a scan with features of another scan) as depicted in Fig 4.3.

Feature detection is also dependent on scan resolution. CCIR minimizes the need

for scan data reduction through down-sampling by sharing fewer scans. However,

the size of a Velodyne scan (350Kb) is still significantly larger than the standard

message packets (64Kb) used for communication. We wish to avoid splitting a single

scan between too many different packets as the lossy nature of the communication

could lead to frequently dropped packets and scan corruption. Therefore, we down-

sample the scan using a voxel grid filter with a cell size of 0.1m to reduce the scan

size while not significantly degrading the calculation of features (Fig. 4.4). Robots

now transmit the reduced scan (150KB) with three standard packets rather than six

packets, thereby increasing data transmission reliability. Loss of unique features and

descriptors due to the downsampling and repetitiveness of certain features increase

incidents of perceptual aliasing as scans become less distinctive. The histogram ap-

proach used in Chapter 2 to detect correspondences results in many false detections
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(a)

(b)

Figure 4.3: We show the feature correspondences between two scans with (a) and
without (b) normals that are degenerated due to sparsity of the points. Yellow lines
connect points with similar descriptors. While the scan size is reduced significantly,
there are no more outlier matches.

(a) (b) (c)

Figure 4.4: Subfigures depict recognized features (green) in the same environment
with successive downsampling: the full scan (a) along with voxel grid down-sampled
scans using voxel sizes of 0.1 (b) and 0.2 (c). Downsampling reduces the ability of
feature detectors to reliably detect interest points if the filter size is large.

in these situations as seen in Fig. 4.5. Therefore, we introduce robust methods to
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Figure 4.5: Histogram of shared features over a robot’s scan data base for a query
scan (blue). The black bar represents the number of shared features between the
query scan (blue) and the scan at the index given by x. The green bars represent
scans that are within 3m and are considered ground truth matches. Note how similar
false matches look.

mitigate aliasing effects in the following two sections (Sects. 4.2 and 4.3).

4.2 Fast-Appearance Based Matching

To improve the accuracy of correspondence detection, we utilize FAB-Map [23] instead

of the histogram approach described in Chapter 2. The key idea of FAB-Map is

to learn the co-dependence of scan features so as to make a more informed match

detection. Using a Chow-Liu Tree, the approach attempts to approximate the full

joint distribution over the probability of feature occurrence using pairwise conditional

probabilities. Rather than assuming each feature occurs evenly and independently,

FAB-Map learns the distribution through a training phase. More details on the
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approach can be found in [23].

Table 4.1 compares the Histogram and FAB-Map approaches for both 2D and 3D

features in the mine environment. 3D features allow robots to generate a greater

number of true positive estimates since they enable robots operating at different

heights to more reliably find correspondences across heights. The FAB-Map approach

does consistently better over the Histogram approach, reducing the outlier ratio from

99.1% to 98.1%.

Table 4.1: Comparison of FAB Matching and Histogram approach over three mine
data sets.

True Positives False Positives
2D FLIRT Histogram 2 980
2D FLIRT FAB-Map 3 621
3D Spin Histogram 8 876
3D Spin FAB-Map 10 534

However, the number of outliers compared to inliers is significant and requires

additional improvements to the optimization back-end to allow operation over longer

durations. Therefore, we introduce switchable constraints and describe the imple-

mentation in Sect 4.3.

4.3 Switchable Factors

We add detected local loop closures and multi-robot loop closures after the deter-

mination of the relative transforms between robot reference frames as switchable

constraints as in [1]. The approach described in [1] modifies the between-factor con-

straint to include a switch variable that acts as a weight on the factor between the

poses it connects. The value of the switch variable is continuous between 0 and 1 and

determines the likelihood that the constraint represents an inlier match. When the
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value is close to 1, the constraint is used in the optimization; when the value is close

to 0, the constraint is effectively ignored in the optimization. A visualization of the

factor and switch variable can be seen in Fig 4.6, reproduced from [1].

Figure 4.6: The pose graph pictured, reproduced from [1], contains switch variable
s2,i and switch factor (yellow) that can robustly determine inliers and outliers.

The use of switch variables allows the back-end optimization to determine the true

set of loop closures. While Dong et al. [5] present an incremental EM algorithm that

decides if each new detected loop is an outlier or not, the algorithm is computation-

ally expensive and prone to false detections over time. Conversely, using switchable

constraints as described in [1] is fast, allows the system to modify what it believes

to be the inlier set over time, naturally taking into account the uncertainty of the

trajectory.

In Figure 4.7, we see the effect of adapting the switch variables prior factor and

note how this affects the final pose graph optimization. Without a prior factor forcing

the switch variable to a value of 1, the switch value would simply default to 0. Thus

the strength of the prior factor determines how much to trust the loop closures given

to the optimization. More details of this approach can be found in [1].
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(a) (b) (c)

Figure 4.7: A low prior strength (a) causes all loop closures to be ignored while a
high strength prior (c) causes the false positives to be considered as well. A prior
tuned for this environment provides an optimized map (b).

4.4 Results: Mine Environment

Using the modifications described in Sects. 4.2 and 4.3, we evaluate the distributed

mapping formulation using CCIR in highly repetitive environments. To characterize

the effect of the intelligent sharing without having to strongly consider the overlap in

trajectory information, we developed an experiment involving running one collected

data set using two virtual robots that output the saved data at different times. In this

experiment, one robot’s scan and odometry data is collected for an eight minute run.

The run is split into two overlapping sections and run independently so as to appear

to be two independent robots. The overlap in trajectories enabled our approach to

estimate relative transforms and the results can be seen in Fig. 4.8.

Evaluating a separate experiment where two different robots initially shared 30

seconds of their trajectory, we are again able to show not only the detection of the

relative transform between the robot reference frames but also significant network

savings due to CCIR. The required level of down-selection to reliably determine a rel-

ative transform is significantly higher due to the fact that perceptual aliasing creates

a number of false matches. In both experiments, the estimated relative transforms
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(a)

(b) (c)

Figure 4.8: The generated map (a), the entropy levels over time (b), and the resulting
network usage (c) from a two-robot trial in the mine environment.

for the fixed-rate down-selection and CCIR approaches are within 0.1m of the true

relative transform.

4.5 Chapter Summary

Establishing robust operation in 3D environments requires timely and efficient pro-

cessing of 3D sensor data. Features and descriptors provide sparse representations

of 3D sensor information and enable loop closure detections through modification of

FAB-Map. Currently established 3D feature keypoint detectors and descriptors work
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(a)

(b) (c)

Figure 4.9: The map generated from the fixed-rate down-selection approach (a) and
CCIR (b). The two maps are nearly identical; CCIR is able to generate a relative
transform using 13.6% of the bandwidth used by fixed-rate down-selection (c).

well for dense data but must be adapted by filtering out degenerate normals to be used

reliably for correspondence detection in sparse 3D pointclouds such as those generated

by the Velodyne. In addition to affecting keypoint detection, the sparsity of the points

affects scan registration. Traditional ICP methods that minimize point-to-point er-

rors do poorly when dealing with sparse data. Improving the reliability of feature

detection and scan registration improves robot performance significantly, however the

requirement of sharing information over the network, even when using CCIR, limits

the system performance. We introduce FAB-Map and Switchable Constraints to gen-

erate reliable multi-robot loop closures and improve system performance, decreasing

the outlier match rate from 99.8% to 98.1%. While the robust distributed mapping

formulation has been shown to work given a high outlier rate, the structurally repeti-

tive nature of the underground mine environment breaks the fundamental assumption

that outliers are randomly distributed rather than clustered. In the experiments pro-

vided, our approach is able to reliably detect the relative transform between frames
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and generate globally consistent maps. However, there are cases where the outlier rate

exceeds the capability of our approach; towards operation in such scenarios, the Ap-

pendix section of this thesis provides promising future work that enables efficient and

accurate scan correspondence detection. Departing from the feature-based matching

paradigm, we purse a dense strategy that both decreases outlier matches and enables

compressed representation amenable to constrained communication.
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Chapter 5

Conclusion

5.1 Summary

Efficient multi-robot operation requires that the robots are able to co-localize and

develop a shared environmental model. With these capabilities, multi-robot systems

can effectively determine trajectories or actions that best benefit the team. In the

context of exploration, robots can determine optimal actions which result in the

desired degree of sensor redundancy to allow for faster exploration and minimized

measurement uncertainty. A shared environmental model that accurately accounts for

multi-robot loop closures can provide a more consistent estimate of the environment

than a single robot map. In this thesis we focus on robust distributed 3D mapping

within difficult environments that exhibit minimal texture and repetitive structure

and have no existing communication infrastructure, relying on robots to communicate

through constrained ad-hoc mesh networks. The development of the distributed map

across robots depends on the sharing of relevant information and the formation of

inter-robot relative transform estimates. Where previous work has mainly utilized

2D sensors to develop distributed maps, we extend Indelman and Dong’s distributed
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mapping framework [5] to work effectively with 3D sensors. Extending from 2D to

3D is complicated by the high data rate of the sensors and sparse nature of many

3D sensor measurements. These issues are further exacerbated when working in our

low-feature, repetitive environments subject to perceptual aliasing. Being able to

incorporate the additional information offered by 3D measurements, however, results

in more detailed and accurate maps, especially for systems which maneuver in three

dimensions such as quad-rotors. Furthermore, accurate relative transform estimates

allow shared information to be fused correctly for efficient joint trajectory generation.

With this novel distributed mapping framework, a team of robots is now able to

effectively explore using a communication constrained network despite utilizing high

data rate sensors.

In the second chapter we provide an introduction of the distributed mapping for-

mulation developed by Dong et al. [5] and propose a naive extension to allow for 3D

operation. Our work focuses on developing initial relative transforms via sharing local

sensor information. While finding relative transforms is trivial when all areas of the

environment are unique, perceptual aliasing causes incorrect data associations and

complicates the estimation of relative transforms. Using an expectation maximiza-

tion approach that assumes inlier scan correspondences lead to consistent relative

transform estimates, robots are able to reliably generate transforms between their

own and teammates’ reference frames.

To mitigate the effects of network bandwidth constraints, we develop a scan utility

and sharing framework that enables robots to send only the most useful scans to

not exceed bandwidth limitations. Our utility function balances generating loop

closures with reducing uncertainty in the map, enabling robots to reliably generate

relative transforms between themselves as well as expand the area observed by each

robot. In most environments, a fixed-rate down-selection strategy that attempts
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to maintain bandwidth is unable to generate reliable transforms. Our approach,

Communication Constrained Information Routing (CCIR), not only reliably generates

relative transforms but also develops distributed maps of equal volume to fixed-rate

strategies requiring 280% of the bandwidth limit. By enabling efficient operation that

works within network saturation limits, CCIR ensures that coordination messages are

transmitted in a timely manner and significantly reduces message dropouts due to

network over-saturation.

Extending CCIR to utilize full 3D information in our target mine environment

requires additional features and robust strategies to handle the increased levels of

perceptual aliasing. Moving from FLIRT features to ISS Key-points and Spin Im-

age histograms allows us to use 3D scans for observation correspondences. However,

the repetitive nature of the mine environment is not amenable to the feature corre-

spondence approach discussed in Chapter 2; we therefore incorporate the additional

robust methodologies of FAB-Map [23] and Switchable Constraints [1] to reduce out-

lier ratios of 99.8% to 98.1% and enable reliable operation. Furthermore, given the

rapid changes in texture observed in 3D scans given small motions relative to the

environment, robots greatly benefit from intelligent down-selection to share relevant

scans for loop closure detection. In the challenging mine environment, CCIR is able to

generate a relative transform between two robots with 13.6% of the data transmission

required by fixed-rate down-selection.

Despite the described advances of the CCIR algorithm, it is possible for the out-

lier ratio to exceed 99% under certain scenarios, showing that feature-based methods

reach a fundamental limit. Another major complication of our required tunnel envi-

ronment is that outlier correspondences are no longer scattered but appear grouped,

thereby breaking one of the fundamental assumptions of the robust EM approach for

calculating relative transforms. In order to effectively map in this environment, we
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require a model that captures the surface of the tunnel, is memory efficient enough

to transmit, and accurate enough that we can uniquely identify different areas of the

mine. To address this problem, we propose using a Gaussian Mixture Model that

learns the distribution of the environment with high fidelity and minimal memory

footprint [28]. Our initial results using this approach are presented in the Appendix

section. While we are able to learn a Gaussian Mixture Model over the 3D point

cloud, our current implementation of learning the GMM is not real-time viable and

the computational cost of ICP scales poorly to longer duration experiments or to

larger team sizes. However, our initial results show significant promise for future

work.

5.2 Future Work

As previously mentioned, we look to incorporate the HGMM mapping framework into

our distributed mapping formulation. A reliable detector of potential loop closures

based on features extracted from the HGMM itself would help eliminate much of

the work of ICP. Furthermore, developing and utilizing a registration process that

works directly on the hierarchy of mixtures themselves rather than over 3D points

has potential to be much faster as it operates over less data.

In addition to exploring the potential of the HGMM approach, another vein of re-

search addresses scaling to larger teams. The scalability of the current implementation

grows with the number of pair-wise connections. In order to allow concurrent oper-

ation of hundreds of robots, new strategies akin to artificial clustering and creation

of hierarchies must be developed so that each robot at most handles communication

with some fixed upper-bound of robots.

Finally, we are interested in pursuing a more reliable approach for scan matching
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with sparse and non-uniform data. While some work has dealt with the sparsity

of 3D points, a more general framework that does not rely on regular geometric

environmental features such as lines and planes would open our approach to operation

over a wide range of additional environments.
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Chapter 6

Appendix

6.1 HGMM Models

A Gaussian Mixture model (GMM) is a powerful tool for modeling multi-modal distri-

butions characteristic of the operating environment of an autonomous system. Given

a point cloud Z of size N with points zi ∈ Z, a robot generates a Gaussian Mix-

ture model with J components where each component is specified by parameters

θj = (πj, µj, Σj), and πj, µj, and Σj are the prior, mean, and covariance matrix

respectively for the jth component. The likelihood of an observed pointcloud to be

generated by this Gaussian Mixture Model is given as:

p(Z | θ) =
N∏
i=1

p(zi | θ) (6.1)

=
N∏
i=1

J∑
j=1

πj p(zi | θj), (6.2)
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where the probability of an observation zi given the HGMM parameters θj is given

by the normal distribution N :

p(zi | θj) = N (zi | θj), (6.3)

and the corresponding log-likelihood of the data is:

ln p(Z | θ) =
N∑
i=1

ln

J∑
j=1

πj p(zi | θj). (6.4)

Srivastava et al [28] propose a methodology to learn a Hierarchy of Gaussian

Mixtures (HGMM) as an approximation of the underlying distribution over occupied

space in the environment. They show that this representation performs favorably in

terms of memory-footprint and accuracy compared to other representations proposed

in the literature ([8], [7], [24]). The proposed methodology estimates the number

of HGMM components required for an accurate environment representation via an

iterative procedure based on an information-theoretic measure. This enables the

HGMM to provide a compressed, high-fidelity representation of the input sensor data.

We refer the reader to [28] for a detailed discussion of the methodology.

6.2 Novel Loop Closure Detection

We use an HGMM representation to enable loop-closure detection in the challenging

mine environment. Approaches that involve quantization of perceptual information

including feature-based techniques such as Communication Constrained Information

Routing (Chapter 3), suffer in environments that exhibit repetitive perceptual alias-

ing or lack of rich perceptual information. An HGMM representation avoids scan data
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quantization which enables the model to capture all the perceptual information made

available by the sensors. This makes place-matching based on the HGMM represen-

tation more robust compared to approaches that quantize measurement information.

The methodology to detect a place-match involves an incremental generation of a

map based on Hierarchical Gaussian Mixture models as outlined by [28] for incoming

sensor data. A novelty criterion based on the likelihood of the incoming data to be

represented by the existing model is used to define key-frames K in the map. The

generative capability of the GMM is leveraged when querying the map for a place-

match. Specifically, the current point-cloud Z is compared to all the key-frames in

K to check for a potential place-match. For every key-frame, the environment region

represented by that key-frame is regenerated by sampling from the corresponding

GMM. Generalized Iterative Closest Point (GICP) [26] is then applied between the

sampled point-cloud C and Z to determine a potential place-match. The ability to

store a high fidelity representation of the previously visited locations was not possible

using CCIR due to the increasingly high memory requirements. However, the minimal

memory footprint of the HGMM approach not only allows long term high quality

storage but also allows efficient transmission.

The results of the loop closure detection over several experiments are presented

in Table 6.1. The outlier rate of the HGMM-based loop closure detection method is

34% of that of feature-based methods. An example of a single robot operating on

part of Mine 1 can be visualized in Fig. 6.1.
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Table 6.1: Comparison of HGMM-based approach and FAB Matching.

TP (FAB) FP (FAB) TP (HGMM) FP (HGMM)
Indoor Building 4 20 16 0
Mine 1 6 78 71 19
Mine 2 2 140 4 1
Mine 3 2 316 5 252

(a) (b)

(c) (d)

Figure 6.1: The full map (a) contrasted with the pointcloud reconstructed by sampling
from final HGMM (b). The trajectory of the robot is shown in black and the generated
loop closures are shown in yellow. The HGMM-based approach generated fewer false
matches (d) than the feature-based approach (c).
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The current process of utilizing HGMM is currently not real-time viable due to

the complexity in generating the HGMM and, more importantly, the large number of

GICP registrations. Towards enabling faster operation, we are currently pursuing a

parallelized approach to generating HGMMs as well as a robust pointcloud and GMM

registration method as proposed by Eckart and Kelly [6].
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