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Abstract

Recently, reinforcement learning with deep neural networks has achieved great
success in challenging continuous control problems such as 3D locomotion and
robotic manipulation. However, in real-world control problems, the actions one can
take are bounded by physical constraints, which introduces a bias when the standard
Gaussian distribution is used as the stochastic policy. In this work, we propose to use
the Beta distribution as an alternative and analyze the bias and variance of the policy
gradients of both policies. We show that the Beta policy is bias-free and provides
significantly faster convergence and higher scores over the Gaussian policy when
both are used with trust region policy optimization (TRPO) and actor critic with ex-
perience replay (ACER), the state-of-the-art on- and off-policy stochastic methods
respectively, on OpenAl Gym’s and MuJoCo’s continuous control environments.
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Chapter 1

Introduction

Over the past years, reinforcement learning with deep feature representations [16, 21] has achieved
unprecedented (or even super-human level) successes in many tasks, including playing Go [44]
and playing Atari games [14, 28, 29, 40].

In reinforcement learning tasks, the agent’s action space may be discrete, continuous, or
some combination of both. Continuous action spaces are generally more challenging [25]. A
naive approach to adapting deep reinforcement learning methods, such as deep Q-learning [28],
to continuous domains is simply discretizing the action space. However, this method has several
drawbacks. If the discretization is coarse, the resulting output will not be smooth; if it is fine, the
number of discretized actions may be intractably high. This issue is compounded in scenarios
with high degrees of freedom (e.g., robotic manipulators and humanoid robots), due to the curse

of dimensionality [3].
There has been much recent progress in model-free continuous control with reinforcement

learning. Asynchronous Advantage Actor-Critic (A3C) [30] allows neural network policies to
be trained and updated asynchronously with multiple CPU cores in parallel. Value Iteration
Networks [50], provide a differentiable module that can learn to plan. Exciting results have been
shown on highly challenging 3D locomotion and manipulation tasks [15, 40, 41], including real-
world robotics problems where the inputs is raw visual data [24, 25, 58]. Derivative-free black
box optimization like evolution strategies [39] have also been proven to be very successful in
wide variety of tasks.

Despite recent successes, most reinforcement learning algorithms still require large amounts
of training episodes and huge computational resources. This limits their applicability to richer,
more complex, and higher dimensional continuous control real-world problems.

In stochastic continuous control problems, it is standard to represent their distribution with
a Normal distribution N (11, %), and predict the mean (and sometimes the variance) of it with a
function approximator such as deep neural networks [9, 30, 61]. This is called a Gaussian Policy.

By computing the gradients of the policy with respect to i1 and o, backpropagation [38] and
mini-batch stochastic gradient descent (or ascent) can be used to train the network efficiently.

However, a little-studied issue in recent approaches is that for many applications, the action
spaces are bounded: action can only take on values within a bounded (finite) interval due to
physical constraints. Examples include the joint torque of a robot arm manipulator and the
steering angle and acceleration limits of Ackermann-steered vehicles. In these scenarios, any
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Figure 1.1: An example of continuous control with bounded action space. In most real-world
continuous control problems, the actions can only take on values within some bounded interval
(finite support). For example, the steering angle of most Ackermann-steered vehicles can only
range from —30° to +-30°.

probability distribution with infinite support like the Gaussian will unavoidably introduce an
estimation bias due to boundary effects (as in Figure 1.1), which may slow down the training
progress and make these problems even harder to solve.

In this work, we focus on continuous state-action deep reinforcement learning. We address
the shortcomings of the Gaussian distribution with a finite support distribution. Specifically, we
use the Beta distribution with shape parameters «, 5 as in (3.2) and call this the Beta policy. It
has several advantages. First, the Beta distrbution is finite-support and does not suffer from the
same boundary effects as the Gaussian does. Thus it is bias-free and converges faster, which
means a faster training process and a higher score. Second, since we only change the underlying
distribution, it is compatible with all state-of-the-art stochastic continuous control on- and off-
policy algorithms such as trust region policy optimization (TRPO) [40] and actor-critic with
experience replay (ACER) [56].

We show that the Beta policy provides substantial gains in scores and training speed over the
Gaussian policy on several continuous control environments, including two simple classical con-
trol problems in OpenAl Gym [6], three multi-joint dynamics and control problems in MuJoCo
[52], and one all-terrain-vehicle (ATV) driving simulation in an off-road environment.



Chapter 2

Background

2.1 Preliminaries

We model our continuous control reinforcement learning as a Markov decision process (MDP).
An MDP consists of a state space S, an action space .A, an initial state sg, and the corresponding
state distribution py (o), a stationary transition distribution describing the environment dynamics
p(Se+1]5¢, ar) that satisfies the Markov property, and a reward function r(s,a) : S x A — R for
every state s and action a. An agent selects actions to interact with the environment based on a
policy, which can be either deterministic or stochastic. In this paper, we focus on the latter. A
stochastic policy can be described as a probability distribution of taking an action a given a state
s parameterized by a n-dimensional vector § € R, denoted as my(a|s) : S — A.

At each timestep t, a policy distribution 7y(a|s;) is constructed from the distribution parame-
ters (e.g., from py(s), og(s) if it’s a Normal distribution). An action a, is then sampled from this
distribution to interact with the environment, i.e. a; ~ 7y(-|s;). Starting from an initial state, an
agent follows a policy to interact with the MDP to generate a trajectory of states, actions, and
rewards {so, ag, 7o, - - -, ST, ar, r7 }. The goal of an agent is to maximize the return from a state,
defined as the total discounted reward ;] = >~ ° Y7 (144, ar4), where v € (0, 1] is the discount
factor describing how much we favor current reward over those in the future.

To describe how good it is being in state s under the policy 7, a state-value function V™ (s) =
E.[rd|so = s] is defined as the expected return starting from state s, following the policy ,
interacting with environment dynamics, and repeating until the maximum number of episodes is
reached. An action-value function Q)™ (s, a), which describes the value of taking a certain action,
is defined similarly, except it is the expected return starting from state s after taking an action a
under policy 7.

The goal in reinforcement learning is to learn a policy maximizing the expected return from
the start distribution

J(mp) :/p”(s)/Wg(s,a)r(s,a)dads (2.1)
S A
= ESNP’ZGNW& [7“(5, a)] ) (2'2)

where p™(s) = > .°,7'p(s; = s) is the unnormalized discounted state visitation frequency in
the limit [48].



2.2 Stochastic Policy Gradient

Policy gradient methods are featured heavily in the state-of-the-art model-free reinforcement
learning algorithms [9, 25, 30, 56]. In these methods, training of the policy is performed by
following the gradient of the performance with respect to the parameters, Vy.J (7). This gradient
can be computed from the Policy Gradient Theorem [48] by simply changing 7 (s, a) to Q" (s, a)
in (2.2) and moving the gradient operator inside the integral:

Vg(](ﬂ'g):/S,OW(S)/AV97T9(6L|S>Q7T(S,CL)dadS

:/pﬂ(s)/m(ab)quads
S A
= ESNP”@NM [QQ] ) (23)

where 7y(als) instead of my(s,a) is used to represent a stochastic policy and g, is the policy
gradient estimator using Q7 (s, a) as the target

9q = Vologm(als)Q" (s, a) . (2.4)

However, exact computation of the double integral in (2.3) is generally intractable. Instead, we
can estimate it by sampling: given enough samples of g,, the sample mean g,, will converge to
its expectation, Vy.J(mg), by the law of large numbers

1 n
Gy = - qu Lt Elg,] = VoJ(m), asn — oco. (2.5)
i=1

Estimating the policy gradient is one of the most important issues in reinforcement learning.
We want g, in (2.4) to be bias-free so that it converges to the true policy gradient. As we will
show in the following section, this is not always true. At the same time, we also want to reduce
the sample variance, so that the gradient is less noisy and stable, as this improves the convergence
rate and speeds up the training progress. The action-value function Q7 (s, a) can be estimated
by a variety of sample-based algorithms such as Monte-Carlo (MC) or temporal-difference (TD)
learning. A lookup table is usually used to store Q™ (s, a) for each state s and action a.

2.3 Stochastic Actor-Critic

For an MDP with intractably large state space, using a lookup table is no longer practical. In-
stead, function approximation methods are more common. Deep Q-Networks (DQN) [28] use a
deep neural network parameterized by 6, to approximate the action-value function, denoted as
Qo, (s,a) = Q7(s,a). This is appealing since deep learning has been shown to be very powerful
and successful in computer vision, speech recognition and many other domains [22].
Unfortunately, direct application of DQN to continuous action spaces is difficult. First, as
mentioned earlier, if we discretize the action space, it is hampered by the curse of dimensional-
ity. Second, in the Q-learning algorithm, one needs to find the (greedy) action that maximizes
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the action-value function, i.e. @ = argmax, (Jy, (s, a). This means an additional optimization
procedure is required at every step inside the stochastic gradient descent optimization, which
makes it impractical.

The solution to this is the Actor-Critic methods [8, 31, 35, 47]. In these methods an actor
learns a policy to select actions and a critic estimates the value function, and criticizes deci-
sions made by the actor. The actor with policy 7y(a|s) and the critic with Qy, (s, a) are trained
simultaneously.

Replacing the true action-value function Q™ (s, a) by a function approximator Qy, (s, a) may
introduce bias. Nonetheless, in practice, with the help of experience replay [26] and target net-
works [28] actor-critic methods still converge to good policies, even with deep neural networks
[25, 44].

One of the best known variance reduction technique for actor-critic without introducing any
bias is to substract a baseline function B(s) from Q7 (s, a) in (2.4) [12]. A natural choice for B(s)
is V7 (s), since it is the expected action-value function Q7 (s, a), i.e. V7 (s) = E,ur, [Q7 (s, a)].
This gives us the definition of advantage function A™ (s, a) and the following stochastic policy
gradient estimates:

AT(s,0) 2 Q7(s,a) = V7(s), (2.6)
Ja = VG lOg WH(G‘S>A7T<87 a) . (27)
The advantage function A™(s,a) measures how much better than the average it is to take an

action a. With this method, the policy gradient in (2.4) is shifted in a way such that it is the
relative difference, rather than the absolute value Q™ (s, a), that determines the gradient.






Chapter 3

Infinite/Finite Support Distribution for
Stochastic Policy in Continuous Control

Using the Gaussian distribution as a stochastic policy in continous control has been well-studied
and commonly used in the reinforcement learning community since [61]. This is most likely
because the Gaussian distribution is easy to sample and has gradients that are easy to compute,
which makes it the first choice of the probability distribution.

However, we argue that this is not always a good choice. In most continuous control rein-
forcement learning applications, actions can only take on values within some finite interval due
to physical constraints, which introduces a non-negligible bias caused by boundary effects, as
we show below.

This motivates us to use a distribution that can solve this problem. Among continuous distri-
butions with finite support, the well-known Beta distribution emerges as a natural candidate, as
it is expressive yet simple, with two easily interpretable parameters.

In Bayesian statistics, the Beta distribution is often used as the conjugate prior probability
distribution for the Bernoulli and binomial distributions, describing the initial belief about the
probability of the success of each trial [4]. One loose inspiration behind our use of the Beta
function is spike-rate coding, as seen in biological neurons [10], or pulse density modulation, as
used in artificial systems; here, the Beta could be seen as modeling the probability of a neuron
firing, or a pulse being emitted, over a small time interval.

In the following, we show that the Beta policy is bias-free and a better choice than the Gaus-
sian. We compare the variance of the policy gradient of both policies and show that as with the
Gaussian policy, Natural Policy Gradient is also necessary for the Beta policy to achieve a good
performance.

3.1 Gaussian Policy

To employ a Gaussian policy, we can define the policy as

1 - 2
mo(als) = == exp (—%) , (3.1)
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Figure 3.1: An example of over estimation of rewards outside the boundary.

where the mean y = jiy(s) and the standard deviation o = oy(s) are given by a function approx-
imator parameterized by 6. To enable the use of backpropagation, we can reparameterize [15]
action a ~ my(+|s) as a = pg(s)+og(s)E, where & ~ N(0, 1). The policy gradient with respective
to 41, o can be computed explicitly as V, log mp(als) = (“;—2“) and V, log my(als) = (a;—ﬁ)Q — %
In general, for problem with higher degrees of freedom, all action dimensions are assumed to be
mutually independent.

3.2 Bias due to Boundary Effect

Modeling a finite support stochastic policy with an infinite support probability distribution may
introduce bias. By the definition of infinite support, every action « is assigned with a probability
density 7y (a|s) that is greater than 0. Nonetheless, in reality, all actions outside the finite support
have probability exactly equal to O (see Figure 1.1).

To simplify the analysis, we consider the phased update framework [20]: in each phase, we
are given n samples of ()™ (s, a) from environments under a fixed 7. In other words, we focus
mainly on the inner expectation of (2.2). Without loss of generality, let us consider an one-
dimensional action space A = [—h, h], where 2h is the width of the closed interval. For any
action space that is not symmetric around 0, we can always map it to [—h, h| by scaling and
shifting.

So far we have seen two main approaches to employ the Gaussian policy in this bounded
action scenario in the existing RL implementations:

1. Send the action to the environment without capping (truncating) it first, let the environment
cap it for us, and use the uncapped action to compute the policy gradient.

2. Cap the action to the limit, send it to the environment, and use the capped action to compute
the policy gradient.

In the first approach, by letting the environment capping the actions for us, we simply pretend

8



there are no action bounds. In other words, all actions outside the bounds just happen to have
the same effect as the actions at the limits. The policy gradient estimator in (2.4) now becomes
9y = Vologmy(als)Q7 (s, a’), where a' is the truncated action. The bias of the estimator g is

Elg,] — VoJ(mp)

_E, [/_oo o(al$) Vg log m(als) Q7 (s, a’)da} V()

o0

_E, [ /  r(als) Ve log m(als) [Q (s, —h) — Q"(s, )] da

[e.9]

+ [ ks Vo malals) (@75, ) - @7 (s.0) da} |

We can see that as long as the action space A covers the support of the policy distribution (i.e.
supp(my(als)) C Aorash — oo) the last two integrals immediately evaluate to zero. Otherwise,
there is a bias due to the boundary effect.

The boundary effect can be better illustrated by the example in Figure 3.1 where the reward
function peaks (assuming a single mode) at a good action close to the boundary. This effectively
extends the domain of reward (or value) function to previously undefined region by extrapolating,
or more precisely, the “replicated” padding, which results in artificially higher rewards outside
the bounds and therefore bias the estimated policy distribution toward the boundary. As for
multimodal reward functions, one might need to consider the use of a mixture model or other
density estimation methods since neither the Gaussian nor the Beta suffices under this scenario.
However, this is beyond the scope of our discussion.

To make things worse, as o grows, bias also increases. This makes sense intuitively, because
as o grows, more probability density falls outside the boundary. Note that this is not an unusual
case: to encourage the actor to explore the state space in the early stage of training, larger o is
needed.

In the second approach, the policy gradient estimator is even more biased because the trun-
cated action a’ is used both in the state-value function Q™ and in the gradient of log probability
Vg log g, ie. g, = Vglogmy(a'|s)Q™(s,a’). In this case, the commonly used variance reduction
techique is less useful since E, ., [Vy log mp(a’|s)V 7 (s)] no longer integrates to 0 as it should be
if a instead of @’ was used. Not only does it suffer from the same bias proble

3.3 Beta Policy

Let us now consider the Beta distribution

r
(a+B) xa—1<1 o x)ﬂ_l 7
P(a)T'(B)

where « and [ are the shape parameters and I'(-) is the Gamma function that extends factorial

to real numbers, i.e. ['(n) = (n — 1)! for positive integer n. The beta distribution has a support
x € [0, 1] (as shown in Figure 3.2) and it is often used to describe the probability of success,

flzia, ) = (3.2)
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where o — 1 and 8 — 1 can be thought of as the counts of successes and failures from the prior
knowledge respectively.

We use mp(als) = f(%; a, B) to represent the stochastic policy and call it the Beta Policy.
Since the beta distribution has finite support and no probability density falls outside the boundary,
the Beta policy is bias-free. The shape parameters & = ay(s), 5 = Py(s) are also modeled by
neural networks with parameter 6. In this paper, we only consider the case where «, 5 > 1, in
which the Beta distribution is concave and unimodal.

3.3.1 Variance Compared to Gaussian Policy

One unfortunate property of the Gaussian policy is that the variance of policy gradient estimator
is inversely proportional to o2, As the policy improves and becomes more deterministic (¢ — 0),
the variance of (2.4) goes to infinity [42, 43, 64].

This is mainly because the ordinary policy gradient defined in (2.4) does not always yield the
steepest direction [1], but the natural policy gradient [19, 34] does. The natural policy gradient
is given by

gt =T 0)g,, (3.3)

where Z(6) is the Fisher information matrix defined as
Z(0) = Eqr, [V@ log mg(als) Vg log 7r9(a|s)T] (3.4)

10



and the variance of the policy gradient is

Valggl = Ealg] — E2[g4]
=K. [Vglogmg(als) Vglog mo(als)" Q™ (s, a)] — E2[gg] -

First note that it is often more useful (and informative) to say X standard deviations rather
than just Y points above the average. In other words, one should consider the metric defined on
the underlying statistical manifold instead of the Euclidean distance. The Fisher information ma-
trix Z(#) is such metric [18]. A gradient vector consists of direction and length. For a univariate
Gaussian distribution, the ordinary policy gradient has the correct direction, but not the correct
length. As one moves in the parameter space, the metric defined on this space also changes,
which effectively changes the length of the ordinary gradient vector. The natural gradient adjusts
the learning rate according to the probability distribution, slowing down the learning rate when
the distance on the parameter space compresses, and speeding it up as the distance expands.

For the Gaussian distribution, the Fisher information matrix has the form of 1/0? (see Sup-
plementary Section A.1). The more deterministic the policy becomes, the smaller the size of step
(proportional to o) is needed to take in order to increase the same amount of objective function.
As a result, a constant step of the ordinary gradient descent update will overshoot, which results
in higher variance of (2.4).

As for the Beta policy, the Fisher information matrix goes to zero as policy becomes deter-
ministic, as does the variance of the policy gradient (see Supplementary Section A.2). However,
this is not a desirable property. This can be better illustrated by the example in Figure 3.3, where
the curvature flattens out at a rate so high that it is impossible for the ordinary policy gradient to
catch up with, making the estimation of o and 3 increasingly hard without the use of the natural
policy gradient. In this case, not just the length has to be adjusted, but also the off-diagonal terms
in the information matrix.

11
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Chapter 4

Experiments

We evaluate our proposed methods in a variety of environments, including the classical control
problems in OpenAl Gym, the physical control and locomotion tasks in Multi-Joint dynamics
with Contact (MuJoCo) physical simulator, and a setup intended to simulate an autonomous
driving in an off-road environment.

In all experiments, inputs are processed using neural networks with architectures depending
on the observation and action spaces. For both distributions, we assume the action dimensions
are independent and thus have zero covariance. For all architectures, the last two layers output
two ||.A||-dimensional real vectors: either (a) the mean p and the variance o for a multivariate
normal distribution with a spherical covariance, or (b) the shape vectors «, 3 for a Beta distribu-
tion. Specifically, for the Normal distribution, p is modeled by a linear layer and o2 by a softplus
element-wise operation, log(1 + exp(z)). For the Beta distribution, o, 3 are also modeled by
softplus, except a constant 1 is added to the output to make sure o, 5 > 1 (see Section 3).

For both policy distributions, we add the entropy of policy 7y (a|s) with a constant multiplier
0.001 encouraging exploration in order to prevent premature convergence to sub-optimal policies
[30]. A discount factor + is set to 0.995 across all tasks.

4.1 Classical Control

First, as a proof of concept, we compare the Beta distribution with Normal distribution in two
classical continuous control: MountainCarContinuous-v0O and Pendulum-v0 (see Figure 4.1(a)
and 4.1(c)) using the simplest actor-critic method: no asynchronuous updates [30], experience
replays, or natural policy gradient are used. For the actor, we only use low-dimensional physical
state like joint velocities and vehicle speed. No visual input, such as RGB pixel values, is used.
We first featurize the input state to 400-dimensional vectors using random Radial Basis Functions
[36] and then pass it to a simple neural network where the only layer is the final output layer
generating statistics for the policy distribution. This is effectively a linear combination of state
features: ¢(s)76, where ¢ is the featurizing function and @ is the weight vector to be learnt. For
the critic, we use 1-step TD-error! as an unbiased estimation of the advantage function in (2.7).

Ue-step TD error = S0 (Yiress + v Va(serr)) — Va(se)

13
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Figure 4.2: Screenshots of the continuous control tasks on OpenAl Gym’s MuJoCo continuous
control problems and training summary for Normal distribution and Beta distribution. The x-axis
shows the total number of training epochs. Thel§—axis shows the average scores (also 1 standard
deviation) over several trials.



Table 4.1: List of Environments

ENVIRONMENTS |S]| |A|l DOF
MOUNTAINCARCONTINUOUS-V0 2 1 1
PENDULUM-VO0 3 1 1
INVERTEDPENDULUM-V1 4 1 2
INVERTEDDOUBLEPENDULUM-V 11 1 3
HUMANOID-V1 376 17 27
OFF-ROAD DRIVING 400+ 6 2 6

In both tasks, we found that Beta policies consistently provide faster convergence than Gaus-
sian policies (see Figure 4.1(b) and 4.1(d)).

4.2 MuJoCo

Next, we evaluate Beta policies on three OpenAl Gym’s MuJoCo environments: InvertedPendulum-
vl, InvertedDoublePendulum-v1 and Humanoid-v1 (see Figure 4.2(a), 4.2(c), and 4.2(e)) using
both on-policy and off-policy methods. Results are shown in Figure 4.2(b), 4.2(d), and 4.2(f).
The goal for the first two is to balance the inverted pendulum and stay upright as long as possible.
For the humanoid robot, the goal is to walk as fast as possible without falling at the same time
minimize actions to take and impacts of each joint.

In the on-policy experiments, we use the original implementation? provided by the authors
of TRPO [40] with the same hyperparameters and configuration that were used to generate their
state-of-the-art training results. TRPO is similar to natural policy gradient methods but more
efficient for optimizing large function approximators such as neural networks.

By simply changing the policy distribution, we find that TRPO+Beta provides a significant
performance improvement (about 2x faster) over TRPO+Gaussian on the most difficult Hu-
manoid environment. However, only a slight improvement over the Gaussian policy is observed
on the less difficult Inverted Double Pendulum. For the simplest task, Inverted Pendulum, Gaus-
sian+TRPO has a slight advantage over TRPO+Beta; however, since both methods completely
solve the Inverted Pendulum in a matter of minutes, the absolute difference is small.

For the off-policy experiments, we implement ACER in TensorFlow according to Algorithm
3in [56]. Asynchronous updates with four CPUs and non-prioritized experience replays of ratio
8 are used. The learning rate is sampled log-uniformly from [107%,5 x 107%]. The soft updating
parameter for the average policy network is set to 0.995 across all tasks. For the Gaussian
distribution, ¢ is squashed by a hyperbolic tangent function to prevent a variance that is too
large (too unstable to be compared) or too small (underflow). Specifically, we only allow o
ranging from 10~ to h (see Section 3.2).

Substantial improvements over Gaussian policies are also observed in the off-policy experi-
ments among all tasks. Though sometimes Gaussian can find a good policy faster than the Beta, it
plummets after tens of training episodes, then repeats, which results in a lower average score and

’See https://github.com/joschu/modular_rl.
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higher variance (Figure 4.2(d)). The improvement over the Gaussian policy on the Humanoid is
the most prominent and that on the Inverted Pendulum is less significant. This trend suggests that
the bias introduced by constrained action spaces is compounded in systems with higher degrees
of freedom.

Note that these results are not directly comparable with the previous on-policy TRPO. First,
a fast and efficient variant of TRPO was proposed in ACER as a trade-off. Second, we do not
use the generalized advantage estimator (GAE) [41], though it can be done by modifying the
Retrace [31] target update rule in ACER. Third, a smaller batch size is usually used during the
alternating on-policy and off-policy updates in ACER. Similar unstable behaviors can also be
observed when we try to reduce the batch size of update in on-policy TRPO experiments. We
believe this is because a smaller batch size means more frequent updates, which helps the agents
to explore faster in the early stage of training but starts to hamper the performance in the later
stage, when a larger sample size is needed to reduce the sample variance in such unstable robot
arm (or locomotion) configurations.

Similar to the findings in evolution strategies [39], humanoid robots under different stochastic
policies also exhibit different gaits: those with Beta policies always walk sideways but those
with Gaussian policies always walk forwards. We believe this suggests a different exploration
behavior and could be an interesting research direction in the future.

4.3 Off-Road Autonomous Driving in Local Maps

Last, we consider a simplified All Terrain Vehicle (ATV) autonomous navigation problem. In this
problem, the angent (an ATV vehicle) must navigate an off-road 2D map where each position in
the map has a scalar traversability value. The vehicle is rewarded for driving on smoother terrain,
while maintaining a minimum speed.

The map is 20 x 20 meters, represented as a 40 x 40 grid (as shown in Figure 4.3(a)).
The input of the agent is the vehicle’s physical state and top-down view of 20 x 20 grid in
front of the vehicle, rotated to the vehicle frame. The vehicle’s action space consists of two
commands updated every 5 Hz: steering angle and forward speed. Steering angle is constrained
to [—30°,30°] and speed is constrained to [6,40] km/h. The vehicle’s state is (z,y,w, &, 9, w),
where x, y are velocity in lateral and forward direction, w is the yaw rate, and z, ¢, w are the time
derivatives. The vehicle commands are related to ¢ and w by a second order vehicle model.

The vehicle’s dynamics, which are unknown to the agent (thus model-free), are derived from
a vehicle model obtained by system identification. The data for the identification was recorded
by driving an ATV manually in an off-road environment. In all simulations, a constant timestep
of 0.025 seconds is used to integrate &, 7/, w for generation of trajectories with a unicycle model.

We follow the (convolutional) network architectures used for 3D maze navigation in [27] and
use the same setup of ACER as in Section 4.2, except we use a replay ratio sampled over the
values {0.25,1,4}.

Results show the Beta policy consistently outperforms the Gaussian policy significantly under
all different replay ratios. We found that higher replay ratio works better for the Beta but not for
the Gaussian. We suspect that despite off-policy training being more sample efficient (a sample
can be learnt several times using experience replay), it is generally noisier due to the use of
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importance sampling. Even with the help of Retrace, off-policy training with high experience
replay ratio still destabilizes the Gaussian policy (Figure 4.3(d)).

100+ —Beta

—Gaussian
80+
60+
40}

20+

Score

2201
0 IK 2K 3K 4K 5K 6K
Training episodes

(a) Off-Road Driving (b) replay ratio 0.25
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=
g 40
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220!
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(c) replay ratio 1 (d) replay ratio 4

Figure 4.3: Screenshots of off-road driving task and training summary for the Normal distribu-
tion and Beta distribution. The z-axis shows the total number of training epochs. The y-axis
shows the average scores (also 1 standard deviation) over 10 different experiments with varying
parameters (see text for details).
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Chapter 5

Conclusion and Future Work

We introduce a new stochastic policy based on the Beta distribution for continuous control rein-
forcement learning. This method solves the bias problem due to boundary effects arising from
the mismatch of infinite support of the commonly used Gaussian distribution and the bounded
controls that can be found in most real-world problems. Our approach outperforms the Gaussian
policy when TRPO and ACER, the state-of-the-art on- and off-policy methods, are used. It is also
compatible with all other continuous control reinforcement algorithms with Gaussian policies.

For future work, we aim to apply this to more challenging real-world robotic learning tasks
such as autonomous driving and humanoid robots, and extend it for more complex problems, e.g.
by using mixtures of Beta distributions for multimodal stochastic policies.
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Appendix A

Derivations

A.1 Fisher information matrix for the Normal Distribution

Under regularity conditions [57], the Fisher information matrix can also be obtained from the
second-order partial derivatives of the log-likelihood function

921(6)

1(6) = ~E[;

I, (D)

where [(0) = log mg(a|s). This gives us the Fisher information for the Normal distribution

2 o
2 o
Z(py0) = —Eomry | %, 85_2 (D2)
| dodu 002
[ 1 (a=p) 1
~1 —olepw 10
— _E,_. ) 7 _| o2
0 i _2(“;3#) —3(3210 _|_$ 0 %

A.2 Fisher information matrix for the Beta Distribution

To see how variance changes as the policy converges and becomes more deterministic, let us first
compute the partial derivative of log 7y (a|s) with respect to shape parameter «

310%”9(“’3) _ il <F(CY—|—5) a—l(l _a>ﬂ—1)

Ao da E\T(a)r(5)"
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where ¢(-) = LlogD'(-) is the digamma function. Similar results can also be derived for 3.
From (D1), we have

9 o

da? dadf

2L 0%
9B0a P2

- E { 2Wla+p8) —v(@)  Zla+B) ]
|l Z@a+B)  Zla+B) - v(B)
_ { V()= ¢(a+p8)  —¢(a+p) }
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(o, B) = —Eqrry

where 1/(z) = ™M (z) and ™) (2) = j;n—fl logT'(2) is the polygamma function of order m.
Figure A.1 shows how //(z) goes to 0 as z — o0.
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Figure A.1: Graphs of the digamma function, the polygamma function, and the harmonic series.
The harmonic series and the digamma function are related by > ;_, % = (z + 1) + ~, where
v = 0.57721 - - - is the Euler-Mascheroni constant.
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