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Abstract— Cooperative driving behavior is essential for driv-
ing in traffic, especially for ramp merging, lane changing or nav-
igating intersections. Autonomous vehicles should also manage
these situations by behaving cooperatively and naturally. In this
paper, we present a novel learning-based method to efficiently
estimate other vehicles’ intentions and interact with them in
ramp merging scenarios, without over-the-air communication
between vehicles. The intention estimate is generated from a
Probabilistic Graphical Model (PGM) which organizes histori-
cal data and latent intentions and determines predictions. Real
driving trajectories are used to learn transition models in the
PGM. Thus, besides the structure of the PGM, our method
does not require human-designed reward or cost functions.
The PGM-based intention estimation is followed by an off-
the-shelf ACC distance keeping model to generate proper
acceleration/deceleration commands. The PGM plays a plug-
in role in our self-driving framework [1]. We validate the
performance of our method both on real merging data and using
a designed merging strategy in simulation, and show significant
improvements compared with previous methods. Parameter
design is also discussed by experiments. The new method
is computationally efficient, and does not require acceleration
information about other vehicles, which is hard to read directly
from sensors mounted on the autonomous vehicle.

I. INTRODUCTION

Since the DARPA Urban Challenge, there has been signifi-
cant work on developing autonomous urban driving. Some of
this work is currently being commercialized. Early advanced
driving assistance systems (ADAS) can detect dangers and
warn drivers. The most advanced products can assume con-
trol in specific simple scenarios. For example, GM’s Full
Speed Range ACC and Audi’s “STOP and GO” adaptive
cruise control (ACC) enable the car to follow other cars even
in dense traffic at low speed. Mercedes-Benz’s lane departure
prevention system and Tesla’s “Autopilot” combine ACC
with auto-steering to achieve a certain level of autonomous
driving at high speed.

Though these techniques can allow cars to drive hands-
free under certain conditions, they do not guarantee proper
interaction with other cars. Even if autonomous cars become
affordable to consumers and successfully commercialized in
the near future, there will be a long period of time before
human-driven cars disappear. It is therefore important for
autonomous cars to exhibit social behaviors to properly inter-
act with human-driven cars or other autonomous cars which
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Fig. 1: Merge scenario. The host car (green) is an autonomous
vehicle, running on the main road; the merge car (red) is a human-
driven car, running on the ramp.

are not equipped with a V2V communication system. The
autonomous car should handle various cooperative situations,
such as lane changing, intersections and entrance ramps. The
biggest challenge of social behavior systems is to estimate
human drivers’ intentions. Human-driven cars introduce great
uncertainty in autonomous-human driving interactions.

One typical example of these interactions is ramp merging.
Normally, a human driver will implicitly “negotiate” with
one or more drivers on a ramp, estimate their intentions, and
then make decisions to successfully cooperate with them to
pass the ramp merging point. Autonomous cars should make
a decision to yield or not yield to the merging car which is
based on some information. In this paper, we focus on ramp
merge control, as shown in Fig. 1. The goal of our method is
to estimate whether or not the merging car intends to yield
to the host car, and then safely react to it.

II. RELATED WORK

There are several references that address the merging
problem. Urmson et al. [2], Hidas [3] and Marinescu et
al. [4] all used the same idea of a slot-based approach
for cooperative merging control. They first check merging
availability for each slot in the target-lane (a slot is the
free area between two cars). Then they check feasibility of
actions to find the best feasible slot for acceptable merging
acceleration. Their decision is based on current states and no
historical data are considered, which can lead to failures in
some cases. Details will be discussed in Section III-B.2.

J. Wei et al. [5] proposed an intention-integrated frame-
work to enable an autonomous car to perform cooperative
social behavior. Accelerations of cars merging from a ramp
are considered. The estimation again only considers the
merging vehicle’s current state, ignoring its historical state.
The lack of historical data leads to instability in estimated
intention, which results in oscillation or delayed reaction to
the autonomous vehicle. To react to surrounding vehicles



and reduce computational time, Wei et al. [6] proposed
a QMDP [7] single-lane behavior framework which takes
uncertainties into account. They also applied a cost function
to evaluate and select the proper strategy. The Markov
Decision Process (MDP) implicitly estimates intention based
only on current state, again without considering historical
data. Schlechtriemen et al. [8] proposed a learning-based
approach to estimate lane-changing intention. They calcu-
late lane-changing probabilities by vehicles’ current lateral
speeds using Random-Decision-Forest and Gaussian Mixture
Regression. Lenz et al. [9] generate cooperative planning for
autonomous highway driving using Monte-Carlo Tree Search
(MCTS), which relies on a manually designed cooperative
cost function. Their method can handle multiple vehicle
interactions in a merging scenario in the simulator. However,
all vehicles in the simulator based on the designed cost
function and model. Lenz did not validate the method on
a large number of real world data.

Prior work above has focused on current state and ne-
glected past information. One possible reason is that in-
volving more data dramatically increases the dimension of
the parameters, which makes the computation intractable.
Cunningham et al.[10] and Galceran et al.[11] utilized past
data and extended the reaction ability of autonomous cars
from a single lane to multiple lanes, including merging. They
modeled the multipolicy decision-making into a partially
observable Markov decision process (POMDP). To speed up
the evaluation, a limited number of actions (policies) are
used, such as “change-lane-left/change-lane-right” and “lane-
normal”. The method needs forward simulation and manually
designed reward and cost functions.

We use a probabilistic graphical model (PGM) to describe
dependency among observed data and estimate other cars’
intention. The task of the PGM is to generate an intention
estimation with maximum probability, given observed infor-
mation. The PGM clearly organizes relationships among
short-term historical data, movement prediction and intention
estimation. Thus the joint distribution among the data can
be separated into several conditionally independent distri-
butions, which eases analysis and computation. Besides the
structure of the PGM, our method does not require other
human-designed parameters or cost functions. We rely on
real driving data to parametrize this model. The intention
estimation can be extended to various cooperation situations,
such as lane changing, stop sign traversal and ramp merging
control. And in this paper, we focus on ramp merging.

III. PGM-BASED INTENTION ESTIMATION
A. Structure of PGM

Intuitively, human drivers estimate intentions of other cars
by their current and immediately previous state and by
considering the driving environment. Our method simulates
this process to achieve human-like social behavior. The most
important part of our method is understanding the cause-
effect relationship among previous states and intention. To
simplify and abstract this dependency, we apply a probabilis-
tic graphical model. There are three kinds of nodes in the

model: (1) state nodes, which are the time-to-arrival for each
car; (2) an intention node, which is either “Yield” or “Not
Yield”; (3) speed nodes, which contain the speed history
of the target vehicle. The model’s topology describes the
dependency. Intuitively, current state affects intention, thus
speed changes. So we design the graphical model as shown
in Fig. 2. The task here is to estimate the intention node

Fig. 2: Probabilistic Graphical Model of the social behavior of an
autonomous vehicle.; V,, is the current speed, V; is the speed at
the previous time step; 7)., T} are the current time-to-arrival for
merging and host car respectively; I is the latent intention which
needs to be estimated.

once the car has observed enough information (speeds and
times-to-arrival). As the program runs, the speed nodes are
updated by the speeds of the last n cycles and the time-
to-arrival nodes are updated by the current speeds and the
distance-to-merging-point for each car.

Our model assumes that human intention does not oscillate
as fast as the program’s update rate. Therefore, one intention
node will affect the next n speed nodes. These n speed
nodes keep track of the target vehicle’s speed during n
cycles. The time-to-arrival for each car will initially decide
the intention. However, this decision is solely based on
current states. To further adjust the intention estimate, more
evidence is needed. The speeds in the last n cycles can
provide movement information of the car, and thus refine the
intention estimate. Physically, given intention, those speeds
form a Markov Chain, which means that every speed node
is affected only by its parent node (the vehicle’s previous
speed).

B. Evaluation of PGM

We are interested in the following probability of the
merging car’s yielding or not yielding to the autonomous
car. P(I|V,T,,,T), where V denotes a vector of speed
during n cycles: V = [V4, Vs, ..., V;,] The T,,, T}, are the
time-to-arrival for the merging and host cars, respectively. [
denotes the estimated intention of the target vehicle.

P(Iv Va Tm7 Th)
P(V,T,,,Th) (D
xP(V, Ty, Th|I)P(I)
Equation 1 is based on Bayes’ Rule, and we focus on the
likelihood term. From the graphical model, it is known that

V and T,,, T}, are conditionally independent, given intention.
Therefore this term can be further separated into two parts:

P(VaTm7T}L|I) = P(V|I)P(TmaTh|I) (2)

P(I|V7 Tnu Th) =
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Fig. 3: Merging vehicle following behind but accelerating. The host
(green) vehicle is on the main road; the merging vehicle (red) is on
the on-ramp. In fact, the host vehicle can slightly accelerate to avoid
ambiguities and collisions. However, the iPCB model will slow
down the host vehicle regardless of the distance from the merging
vehicle to the host and the current speed. The PGM model sends
proper commands by integrating speed and distance information.

The first term is the speed term, and the second one is the
time term. Besides these two terms, we also rely on the prior
information P(I) in Equation 1.

1) Speed term: From the graphical model, the merging
speed has the Markov Property given intention. Thus the
speed term can be further simplified:

P(V|I) = P(W,Va, ..., Vi I)
= PO |T)P(Va| Vi, I)...P(Viy|Vyro1, I)

Here we assume Vi, I are independent, thus P(Vi|I) =
P(V1). Since there is no preference for V1, it can be assumed

3)

to have a uniform distribution, namely P(V;) = a. To
prevent underflow, log-likelihood is used:
log P(V|I) = ) log P(V;|[Vi1,1) &)

i=2
There are only two intentions to be considered: yield and not
yield, i.e., P(V|I =Y) and P(V|I = N). The probability
distribution P will be learned directly from training data,
which will be introduced in Section IV.

2) Time term: The time term implicitly contains two kinds
of information: 1) current speed; 2) distance to the merge
point. The time term describes how soon the cars will reach
the merging point given current speed and distance. Values
in the time term determine the intention of the merging
vehicle. The time term will also reduce ambiguity in the
speed term. In iPCB [5], only instantaneous acceleration is
considered. Fig. 3 shows a failure scenario for iPCB that
results from solely considering the current acceleration. This
is a non-trivial problem which contributes the majority of the
failure cases in the iPCB algorithm, as shown in Table II.
However, in our proposed model, we additionally consider
the time term, avoiding the ambiguity described above. The
time term P(T,,,Ty|I) is a joint conditional probability,
where T}, T}, denote the time-to-arrival of the merging and
host car, respectively. Time-to-arrival is defined as the current
distance to the merging point divided by the current speed.
To prevent underflow, we instead use log P(T,, Th|I).

3) Prior Term: In Equation 1, the last term P([) is the
prior distribution for the merging vehicle intention, i.e., the
percentage of merging vehicles that yield (P(I =Y) = )
or not yield (P(I = N) = 1 — ~). This prior term gives an
initial statistical estimate of intentions.

C. Intention Estimation Procedure
The final step is to combine the speed term and time term.
Equations 1 and 2 yield:
log P(I|V, Ty, Ty) < log P(V, Ty, T |T)P(I)
=log P(V|I)P(T,,, Th|I)P(I)

=ay log P(Vi|Vie1, 1)+
=2

&)

Speed Term
log P(Ty,, Th|I) +
—_——
Time Term
log P(I)
——
Prior Term

The estimated intention is:
I = arg max log P(I|V, Ty, Th) (6)

I* is either “Yield” or “Not Yield”. If “Not Yield”, the
merging car will be set as the target for the distance keeping
model [12].

IV. TRAINING FROM DATA

In [5], prediction of the merging car’s behavior was based
on hand-coded cost functions and assumptions about the
probability distribution of acceleration. We instead use the
US-101 freeway real-world dataset NGSIM [13] to extract
a model of cooperative behavior between host and merging
vehicles. The dataset was obtained from overhead cameras
near the US-101 Ventura Boulevard entrance ramp in the Los
Angeles area.

Cars in this region were filmed and tracked during morning
rush hours (7:50 am to 8:35 am). The road segment consists
of 5 lanes and one entrance ramp at the beginning. Vehicles
in the right-most lane on the main road are considered
host vehicles, and counterparts on the entrance ramp are
considered merging vehicles. We preprocessed the data to
filter out unrelated cars that run in inner lanes without
interacting with merging vehicles, and used only those from
the right-most lane and the entrance ramp. Host vehicles are
paired with merging vehicles that are close to and temporally
overlapped with the host. There were 354 host-merge vehicle
pairs in the dataset. We use 1/3 of the total dataset for
training, and the remaining 2/3 for real-data testing. We
classify merging vehicles into two classes: 1) yield; 2) not
yield, based on which car reaches the merging point first.
From group 1, the distribution of P(V|I = Y) can be
estimated; from group 2, the distribution of P(V|I = N).

A. Speed Transition Model

The goal of training is to estimate the conditional prob-
ability of intentions given historical speed information, i.e.,
P(V|I). The two classes of data are used to train two dif-
ferent models, i.e., speed transition probability distributions.
Fig. 4 shows an example of speed transition probability
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Fig. 4: Example of speed transition probability P(Vi|Viz1,I),
which is learned from training data. The vertical dashed line is the
previous speed; the x-axis indicates the current speed; Two colors
indicate different intentions.

distributions for given speed and intention. The vertical
dashed line indicates the previous speed V;_;; the x-axis
shows the current speed V;, discretized with resolution of
1m/s; and the y-axis shows the probability of a particular
speed transition occurring. If the intention is “Yield”, there
is higher probability to decrease speed. In Fig. 4, the black
line is higher than the green to the right of the dashed line
(previous speed), which means if the merge car driver decides
not to yield to the host, it has higher probability to accelerate;
on the other hand, the black line is lower than the green to the
left of the dashed line, which means the merge car is more
likely to decelerate if it decides to yield to the host. These
results are consistent with intuition. Additionally, each speed
has specific transition probabilities under different intention.
Those transition probabilities are not necessarily Gaussian or
of other parametric forms, unlike iPCB [5], which assumes a
Gaussian distribution to characterize the probabilities of all
speed changes.

B. Time Model

The Time model can also be learned from the dataset.
The task is to estimate P(7,,,T,|I). Similar to the speed
transition model, the time-to-arrival distribution is also di-
vided into two classes: 1) Yield; 2) Not Yield. Fig. 5 shows
an example for the “Yield” transition model, where the x-
axis is the merging car’s time-to-arrival 7}, and the y-axis
is the host car’s time-to-arrival T},. the z-axis reflects the
probability of observing such a pair of times-to-arrival under
the Yield intention hypothesis.

V. EXPERIMENTAL RESULT

We conducted two sets of experiments in simulation: 1)
reacting to merging vehicles with real-data trajectories which
are extracted from datasets; and 2) reacting to merging
vehicles which use a manually designed motion strategy. We
perform the second set of tests to evaluate the generality of
our method with respect to differing merging car strategies
and a broader range of initial conditions (speeds and relative
location). It should be emphasized that even though we
programmed the strategy of the merging car in the second

P(T, T, 11=Yield)

Fig. 5: P(Tr, Th|I = Yield). Time-to-arrival transition probability
distribution when the merge car yields the host.

experiment, the host car does not know the strategy or true
intention of the merging car. All the host car can do is
observe the state of the merging car and estimate its intention
by using our model. We compare our new algorithm with the
following methods:

1. ACC merging, a non-cooperative method that distance-
keeps to the merging car if it is closer to the merging
point;

2. Slot checking, which is adopted from the Urban Chal-

lenge [2].

iPCB, which is proposed in [5].

4. PGM-G, which uses the proposed PGM structure, but
assumes a Gaussian Distribution for the speed transition
probability, like iPCB [5].

We use three criteria to verify the performance of these
algorithms: 1) failure rate based on number of collision
scenarios; 2) average minimum distance between the host
and the nearest merging car when the host reaches the
merging point; 3) average computation time (for successful
cases only). The first criterion deals with safety; the second
with efficiency. Vehicles on the main road and ramp have
the same task: they should cooperate to merge together
safely and efficiently. Therefore, regardless of the main/ramp
road geometry, the ramp merging problem is topologically
symmetric, so there is no difference if we make the main
road or the ramp vehicle autonomous. In our experiments,
we put the autonomous vehicle on the main road.

w

A. Experiments with real data

To validate the learned model on real data, we use the
remaining 2/3 of the US-101 dataset and the full I-80 dataset
[13] for testing.

TABLE I: Features of the US-101 and I-80 datasets

Dataset Lmerge SMS [14] Num. of Pairs.
m m/s (mph)
UsS-101 90.4 12.4 (27.7) 354
1-80 110.8  14.2 (31.3) 452

Obviously, no collisions occur in the real data. The main
idea for this test is to compare the performance of the new



method with previous methods. None of these autonomous
methods is as capable as a human driver. The setup and
traffic conditions are shown in Table 1. L,,crge is the
average merging distance on the on-ramp. Since the data
were collected during morning rush hour, the average speeds
are fairly low. Here we use Space-Mean-Speed (SMS) [14],
the total distance traveled by vehicles over the total traveling
time of these vehicles, to represent average speed. There is
traffic congestion, so those are not typical highway speeds.
We do not consider the interaction between adjacent vehicles
in the host lane but only cooperation between cars in the host
and merging lanes. We only extract merge/host vehicle pairs,
and treat them individually to train our model. There are 354
pairs of merging-host pairs in US-101, and 452 pairs in I-80.

TABLE II: Statistical results for different methods

US-101 1-80 Designed Designed Cycle
Method Data Data Test 1 Test 11 rate
% D(@m) % D(m) % % ms
ACC 17.6 222 165 7.0 13.3 6.8 0.05
Slot 148 228 104 103 24 4.2 N/A
iPCB 19.3 23.7 15.8 13.7 0.9 1.2 0.20
PGM-G 20.1 243 113 14.6 0.9 1.8 0.51
PGM 87 258 76 164 04 0.2 0.08

The host car uses PGM for intention estimation and ACC
for distance keeping [12], and we apply real trajectories to
the merging cars. In a given test, the merge car replays a
real trajectory from the dataset, and the host vehicle’s start
position and speed are also taken from the dataset. We then
run our proposed PGM method to estimate intention of the
merging car and apply the LQR control model. The failure
rates are shown in Table II in the “US-101 Data” and the “I-
80 Data” columns. PGM has the lowest failure rate, and does
well on I-80 even though it was trained on US-101. In tests of
different datasets, the D(m) columns show average distances
between the host vehicle and the closet merging car when
the host reaches the merging point. PGM has the highest
average distance, which means that it allows larger space to
the merging car, and thus behaves safely. As indicated in
Table I, I-80 and US-101 have similar traffic conditions. I-
80 samples have a longer merging ramp, which means that
the host vehicle has more time to interact with the merging
vehicle, and the controller also has enough time to adjust
the vehicle to a certain speed. This may explain why the
experimental results on I-80 are slightly better than those on
US-101.

Fig. 6 shows an individual example from US-101 testing
data comparing performance among iPCB, PGM-G and the
proposed PGM method and real merging/host data. We use
a station-vs-time plot to visualize their performance, where
station is the longitudinal distance relative to the merging
point. All simulated host vehicles and the real host vehicle
start at the same state (speed at around 9.9m/s and location
at 170m away from the merging point). The merging car
replays the log in the dataset, and starts at about 100 meters
away from the merging point and about 10.4 m/s.
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Fig. 6: Station-vs-Time plot of host cars which use different

methods for intention estimation. The dashed line indicates merging
location, which was set as the zero position.

In Fig. 6 the horizontal dashed line indicates the merging
point. Before reaching that point, the merging car runs on
a separate ramp, so the intersections below the dashed line
(e.g., the intersection between the green and red line) only
indicate that they are the same distance from the merging
point, not a collision. However, an intersection above the
dashed line, e.g., the green and blue line, does indicates a
collision. Therefore, according to Fig. 6, applying iPCB is
problematic, but using PGM avoids collision. PGM makes
the correct decision that the merging car will reach the
merging point first and not yield to the host car. Thus PGM
sets the merging car as the following target, which makes the
orange curve (PGM) diverge from the purple curve (human
driving host car ground-truth)

In sum, PGM is more conservative than the human driver,
makes more space between the two cars, and performs
similarly to human drivers at the early stage of merging.

B. Experiments with manually designed merging strategy

To test the generality of our algorithm against a different
merging behavior, we applied a manually designed merging
strategy. The intention estimation and control part of the host
vehicle remained unchanged. We implemented an aggressive
strategy for the merging vehicle:

o If no car ahead, accelerate to speed limit.

o If the host car is driving ahead, distance-keep to it.

In the following two tests, the merging car uses our designed
strategy for a variety of initial states, and the host car used
the 5 different models including PGM to react.

1) Designed Test I: The initial states of the merge and
host vehicle were taken from the datasets. This test shows
the performance of our method under a different merging
strategy. Column “Designed Test I’ shows the result. PGM
also has the lowest failure rate here. iPCB and PGM-G
have the same failure rate, because iPCB relies heavily
on accurate merging-car acceleration, which can be easily
calculated according to the designed merging strategy. PGM-
G does not perform as well as PGM, since it also uses the



Gaussian assumption which is used in iPCB. iPCB and PGM-
G tend to have similar estimates. As expected, except for
ACC, the failure rate dramatically dropped compared with
the real data tests because when the strategy is implemented
in the simulator there is no noise. The ACC merging is not
a cooperative method, so its failure rate does not decrease
as much as that of the other, cooperative methods.

2) Designed Test II: Based on the dataset and the road
geometry, the origins of the main/ramp roads are set to be 90
meters away from the merging point. The merging car starts
at the origin, and the host car’s position varies from +5 to -5m
at 1m intervals; giving 11 cases of initial distances between
two cars. Each car with initial speed varies from 1 — 25m/s
at 1m/s intervals, so there are 625 combinations of initial
speeds. In total, there are 6875 different cases (note that
this number of cases is almost 9 times the total for US-101
and I-80). This test shows the generality and performance of
our method over a broader range of initial states. Column
“Designed Test II” shows the result. The PGM still has the
lowest failure rate. For the same reason as in “Designed Test
17, iPCB and PGM-G have similar failure rates.

These experiments indicate that our proposed PGM
method has some degree of generality, thus it can handle
different types of behaviors and a broader range of initial
states (speeds and positions).

C. Collision Rates v.s. Number of Speed Nodes

In order to determine the proper number of speed nodes,
the proposed method was applied to the dataset, with a
varying number of speed nodes. In Fig. 7, the collision
rates decrease as we increase the number of speed nodes to
around 52 — 73, and then slightly go up. It is no surprise
that more speed information helps the decision making.
However, excess past information can reduce sensitivity to
the present dynamic changes, which is the reason why the
collision rates increase as we use more than 73 nodes. Thus,
choosing a proper number of speed nodes is a trade-off
between robustness, sensitivity and computational efficiency.
Therefore, 52 speed nodes are preferred to 73. Note that each
node captures one speed measurement whose update rate is
10Hz. Thus 52 nodes require 5.2s past measurements for
estimates.

VI. CONCLUSIONS

Both real data and designed-strategy test results show
that the proposed method has the lowest failure rate and
improves intention estimation in merging control, compared
with previous algorithms. Additionally, its behavior is similar
to that of human drivers and somewhat more conservative.
Our new approach can enhance the safety of merging ramp
behavior of autonomous cars. In the future, we will refine
the algorithm by considering how previous intentions affect
the current one. We will also extend our method to estimate
long-term motion of merging vehicles and take advantage of
a broader set of training data.
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Fig. 7: Collision rates v.s. different number of speed nodes.
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