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Abstract— Automatically correlating plant observable char-
acteristics to their underlying genetics will streamline selection
methods in plant breeding. Measurement of plant observable
characteristics is called phenotyping, and knowing plant phe-
notypes accurately and throughout a plant’s growth is central
to making breeding decisions. In-field plant phenotyping in
an automated and noninvasive manner is hence crucial to
accelerating plant breeding methods. However, most of the
existing methods on plant phenotyping using visual imaging
are confined to controlled greenhouse environments.

This paper presents an automated method of mapping 2D
images collected in an outdoor sorghum field to segmented 3D
plant units that are of interest for phenotyping. This method
leverages multiple horizontal and vertical viewpoints while
capturing 2D images from a robotic platform so as to generate
in-field 3D reconstructions of the sorghum plant. We develop
and quantitatively evaluate segmentation methods on these
3D reconstructions and also compare against reconstructions
obtained from a controlled greenhouse environment. We present
analysis that contrasts the role of purely local geometric features
and the effect of addition of global context in both datasets.
This work furthers capabilities of in-field phenotyping which
paves the way forward for plant biologists to study the coupled
effect of genetics and environment on improving crop yields.

I. INTRODUCTION

Plant phenotyping produces quantitative measurements of
observable plant traits. Examples of phenotypic traits include
plant height, stem diameter, leaf area, and leaf angle. The
ability to correlate phenotypic traits with their genotypes
plays a crucial role in improving plant breeding techniques.

Pheontyping in field environments is a bottleneck in the
plant breeding pipeline and high throughput automated meth-
ods are crucial to improved production [1]. The key ability
of high throughput phenotyping lies in non-destructively
capturing plant traits in an automated manner so as to
achieve imaging rates of a minimal hundreds of plants
per day [1]. There is an increasing interest in deploying
robotic platforms and computer vision methods to achieve
these phenotyping rates and hence relieve the bottleneck [1].
The TERRA program by the U.S Department of Energy
seeks to develop high-throughput phenotyping methods for
accelerated breeding of advanced biofuel crops like sorghum.

This paper addresses the problem of automated segmen-
tation and extraction of plant subunits called phytomers for
the sorghum plant. A plant phytomer unit consists of a leaf,
its sheath and the stem segment on which the leaf resides
and can be thought of as a functional building block of the
plant. It is of special significance for phenotyping, since one
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Fig. 1. High throughput phenotyping platform deployed in a sorghum field
outdoors. The platform has two arms on either side that extend outwards
into crop rows and scan plants vertically at a resolution of 10 cm. Each arm
is fitted with two multi-camera sensorpods facing front and back.

can estimate phenotypic traits like leaf angle, stem diameter,
leaf length, leaf width, and leaf area from this structure.

A high throughput phenotyping platform developed by
National Robotics Engineering Center is shown in Fig. 1. The
uniqueness of the platform lies in being able to collect 2D
images of a plant at multiple vertical heights from different
horizontal viewpoints. Consider now the problem of extract-
ing from a stream of 2D images, a set of 3D segmented
phytomer units. The problem becomes especially challenging
for field environments, where getting high quality images
is difficult due to lighting variations at different heights of
the plant canopy. Occlusions, lack of texture and non-rigid
body motion of plant structures due to wind further add to
the challenges of reliably extracting and matching 2D image
features for the purpose of 3D reconstruction.

In this paper, we present an approach for robust extraction
of 3D phytomers from raw 2D images of sorghum plants.
The key components of the approach are as follows: 3D
reconstruction of the plant using multi-view imaging (Section
III-B), robust plant segmentation using a mixture of local
and global features (Section III-C, III-D) and finally plant
phytomer extraction using 3D geometric algorithms (Section
III-E). We demonstrate the efficacy of our approach in both
indoor greenhouse environments and unstructured outdoor
field environments. The main contributions of this paper are:

1) In-field 3D reconstruction and segmentation from a

unique and challenging dataset leveraging multiple hor-
izontal and vertical views of the sorghum plant.

2) Qualitative and quantitative comparison of the 3D plant

phytomer extraction pipeline for greenhouse and field.
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Approach mapping input plant images to segmented 3D plant phytomer units. The first two stages take plant images captured from multiple

viewpoints and generate a 3D point cloud reconstruction of the plant. These two steps differ for greenhouse and field environments. Once the 3D
reconstruction is obtained, local and global 3D point features are extracted. The next stage uses a machine learning classifier to assign a semantic class
label to each 3D point. Finally, the plant phytomer is extracted from the segmented point cloud.

3) Analysis of the role of purely local geometric features
and the effect of addition of global context in both
greenhouse and field environments.

II. RELATED WORK

High-throughput phenotyping platforms deploy a variety
of imaging modalities like 2D visible imaging, 3D imag-
ing, multispectral imaging, thermal infrared imaging and
flourescence imaging [2]. Given its low cost and ease of
operation, 2D/3D visible imaging has been commonly used
for applications like plant mapping, weed control, fruit count-
ing and yield estimation. For the purpose of phenotyping,
the use of 3D visible imaging is important in order to be
able to make ground truth metric measurements purely from
imaging. However, most of the current state-of-the-art in
3D plant reconstruction, segmentation and phenotyping is
in controlled greenhouse environments [3], [4], [5], [6], [7].

Chéné, et al. utilize depth images from a Kinect to segment
and extract parameters describing leaves of rosebush, yucca
and apple plants in an indoor environment [7]. However, their
parametric approach is tailored to top-down views of leaves
of these plants in particular. Chaivivatrakul, et al. develop
a comprehensive 3D reconstruction and phenotyping system
but test it on only five corn plants in a controlled greenhouse
setting using a Kinect [5]. Moreover, their segmentation
methods utilize global shape fitting methods more suitable
for uncluttered, indoor scenes.

Several 3D segmentation methods leverage local shape
information by means of local geometric features [3], [6], [8].
Paulus, et al. use point feature histograms to distinguish be-
tween grapevine leaves/stems and between wheat stems/ears

and provide detailed tabulated results [6]. They, however,
collect all their data from a single plant imaged using a hand-
held LiDAR in an uncluttered indoor environment.

Sa, et al. utilize 3D point feature histograms for peduncle
detection in sweet peppers and validate their results across a
variety of sweet pepper plants under clutter [3]. However,
they too collect all their data in an indoor greenhouse
environment using a Kinect, as a result of which the 3D
reconstructions they work with are of high fidelity. Dey, et
al. work with field 2D images collected from a grape orchard
and perform 3D reconstruction and segmentation of plant or-
gans based on local geometric features [8]. However, unlike
sorghum, their application involves segmentation between
fairly distinct geometric structures, i.e. grapes (spherical),
grape vines (cylindrical) and grape leaves (planar). They are
hence able to utilize a low dimensional 3D shape feature
constructed using only surface curvature estimates.

Unlike, corn, wheat or grapes, sorghum is a fairly new
crop of interest for developing automated segmentation and
phenotyping methods. To the best of our knowledge, litera-
ture on sorghum phenotyping is sparse and fairly recent [4],
[9]. Ribera, et al. utilize UAV imagery to estimate macro-
phenotypic traits like plant location and densities [9]. The
UAV imagery provides very coarse reconstructions that can
not be utilized for reliably extracting individual plant traits.
McCormick, et al. generate 3D reconstructions of greenhouse
grown sorghum and correlate phenotypes like leaf angle to
underlying plant genetics [4]. As detailed later, greenhouse
data collected by McCormick, et al. has been used for
analysis and comparison to field data in this paper. The
focus of their work, however, is correlation of phenotypes to



their underlying genotypes, rather than developing automated
methods of phenotyping. In this paper, we focus on an
automated approach for extracting segmented 3D phytomer
units from field as well as greenhouse images.

III. APPROACH
A. Overview

This paper takes the approach of performing multi-view
3D reconstruction from plant images followed by classifying
individual 3D points as a stem or a leaf. The overall
approach mapping input plant images to 3D phytomers is
illustrated in Fig. 2. The following subsections elaborate on
the different stages of the overall approach. The first stage
involves reconstructing a 3D point cloud of a plant using
images captured from multiple viewpoints. The reconstruc-
tion step differs for plants in the greenhouse and in the
field, as field environments place a constraint on the imaging
modalities and the degree of control that can be placed on
the environment. Having obtained the 3D reconstructions,
the next step computes point-level 3D features using local
geometries and a global distance metric to density modes.
Each point is then classified as a stem or a leaf by learning a
Support Vector Machine (SVM) decision boundary, followed
by spatial smoothing using a Conditional Random Field
(CRF). Finally, the semantically segmented 3D point cloud
is processed to extract 3D plant phytomer units.

Performing segmentation on a 3D representation was
chosen over segmenting in 2D due to the following reasons.
Firstly, a 3D reconstruction using multiple views reduces the
effect of occlusions and background clutter. Secondly, for the
sorghum plant in particular, there exists greater distinction
between stems and leaves in terms of their 3D geometries
rather than just color. Lastly, the final objective of extracting
phytomers is to perform metric measurements of various
phenotypes. A metrically rectified 3D representation is much
more suitable than a 2D image for such an objective.

B. 3D Reconstruction using multi-view imaging

The 3D reconstruction stage takes images of the sorghum
plant captured from multiple viewpoints as input and pro-
duces a reconstructed 3D point cloud as output. We make a
distinction between data collected in an indoor greenhouse

(b)

Fig. 3.
motion stage that takes in the 2D images and computes camera poses and a sparse set of triangulated 3D points. (c¢) shows depth maps computed using
multi-view stereo for each of the input images. Finally, (d) shows the 3D point cloud reconstructed by combining multiple depth maps.

environment and an outdoor field environment since the
collected data poses different complexity levels for algo-
rithms involving 3D reconstruction and segmentation. This
is because field environments place many additional chal-
lenges over controlled greenhouse settings. Firstly, there is a
constraint in the imaging modalities that can deployed in a
field setting. Majority state-of-the-art 3D plant segmentation
and phenotyping algorithms utilize Kinect like sensors or
LiDARs, both of which are infeasible for our field settings
since Kinect doesn’t work outdoors and LiDAR units do
not provide high spatial resolution or close range (<10cm).
Secondly, getting high quality well-exposed images is dif-
ficult due to lighting variations at different heights of the
plant canopy. Thirdly, occlusions and non-rigid body motion
of plant structures due to wind in the field further add to
the challenge of reliably extracting and matching 2D image
features for doing 3D reconstruction.

1) In greenhouse environments: ldeally, to obtain a geo-
metrically consistent representation of a plant we would like
to leverage 360 degree views of the plant. This is possible to
setup for a controlled greenhouse environment. McCormick,
et al. [4] place sorghum plants on a turntable and capture 360
degree view depth images at 30° increments using a Kinect
camera. The relative poses between the camera and the plant
can be seen in Fig. 2. The multiple depth images obtained
are then fused together into a single 3D point cloud using
the iterative closest point (ICP) algorithm.

2) In field environments: A close-up of one of the multi-
camera sensor pods deployed between sorghum crop rows is
shown in Fig. 7. The sensor pod contains eight forward fac-
ing cameras arranged in two rows along with two additional
cameras verged on either ends at an angle of 30°. The sensor
pod is mounted on a robotic arm that moves vertically to
collect 2D images at multiple plant heights inside the canopy.

We utilize the Multi View Environment (MVE) proposed
in [10] for generating 3D point clouds of the sorghum plant
from 2D grayscale image sequences captured in the field. The
multi-view environment framework begins by taking as input
2D images and applying structure-from-motion technique to
reconstruct camera parameters (motion) and a sparse set of
3D scene points (structure). It then computes a depth map for
each input image using multi-view stereo [11]. Finally, all

(c) (d)

Multi-view Environment Framework : (a) shows input images from the 10 cameras on the sensorpod. (b) shows output from the structure-from-



depth maps are combined to obtain a dense 3D reconstruction
of the scene. Fig. 3 illustrates different stages of the MVE
framework applied to sorghum plant images from the field.

C. Semantic Segmentation of 3D Point Clouds

The semantic segmentation stage takes as input a 3D point
cloud of a plant and uses a support vector machine (SVM)
classifier to assigns a stem/leaf class label to each 3D point.
Such a semantic representation is important so as to be able
to compute phenotypic traits specific to the stem or the leaf.

1) Extraction of Local Features: Point feature represen-
tations like surface normals and curvature estimates as used
in [8] are somewhat basic in their representations of the
geometry around a specific point. To formulate a feature
space beyond such representations, like the Point Feature
Histogram introduced later, the concept of dual-ring neigh-
borhood needs to be defined [12]. Let P be a set of 3D points
with {x;,y;,2;} geometric coordinates. A point p; € P has
a dual-ring neighborhood, Pkn_ Pkr that are defined as,

(3) rn,7H € R, ry < rg, such that,
Pt [l -], <
T pRe it ||pj_pi||2<7"H
with, 0 < ky < kg

)

The radii rn, 7y represent two different layers of feature
representation for point p;. The first layer, P¥~, encodes
surface normal and curvature estimates, obtained by per-
forming principal component analysis on neighborhood patch
PEN . The second layer, Pku_ can encode Point Feature
Histogram (PFH) and Fast Point Feature Histogram (FPFH)
representations [13], that are based on relationships between
points in P¥# as well as their normals. Since the second layer
constitutes relationships between points and their normals,
which are in turn computed using the first layer, it is able to
capture more intricate local surface variations.

Details on the PFH and FPFH formulation for a point
pi are given in [13]. The first step involves estimating
surface normals T'; using P¥~ neighborhood for all points
belonging to P*¥#. To compute relative difference between
two points p;, p; and corresponding normals m;, mj, a
Darboux wvw coordinate frame is defined at one of the points
as shown graphically in Fig. 4. Using the Darboux frame, the
relationship between points and normals are captured as three
angular features defined as follows,

a:v.nj
Pj — Pi
qﬁ:u.i( i~ Pi) 2
IIpj — pill,

6 = arctan(w.nj, u.n;)

These three angular features («, ¢,6) are computed for
pairs of points (p;,p;) belonging to the P¥# neighborhood.
The method in which these point pairs are chosen depends on
the influence region defined for a particular feature represen-
tation. Fig. 5 shows the influence region for both PFH and
FPFH feature representations. For the PFH representation,

the query point p, and its Kz neighborhood represent a fully
interconnected mesh leading to an O(nk?) computational
complexity, where n is the number of points. For the FPFH
representation, the query point p, is connected only to its
direct kz neighbors, which in turn is connected to its own
neighbors and the resulting histograms are weighted together
with the histogram of the p,. This has an effect of reducing
computational complexity to O(nk). We choose to work with
the FPFH representation as a trade-off between running time
and accuracy. The FPFH vector is a 33 dimensional vector
obtained by placing the combination of the three angular
features (a, ¢, 0) values into 33 bins.

2) Extraction of Global Feature: While purely local fea-
tures have the advantage of being pose invariant and robust to
occlusions, they can be limiting if the 3D reconstructions are
noisy enough to prevent local features from being sufficiently
discriminative. This is more of a concern for field environ-
ments where generating greenhouse like 3D reconstructions
with high geometric fidelity is challenging. Segmentation
under such environments would benefit notably from addition
of some global context as that would increase the discrimi-
native capacity of the point features.

We factor in this global context by using the intuition
that even though each 3D model of the plant is sufficiently
different, there is still uniformity in the way stem and leaves
are connected to each other. In order to exploit this structural
uniformity, we collapse the 3D point cloud onto a 2D
plane and compute the probability density of this collapsed
representation. Each 3D reconstruction of the plant is first
transformed such that the stem axis is aligned along the z
axis. Since we know the starting camera pose with respect to
the plant and the subsequent camera motion, the stem axis

Fig. 4. Darboux uwvw frame and angular features (a, ¢, 6) for a pair of
points p;, p; along with their corresponding normals fi;, 1i;

Fig. 5. Influence region for (a) PFH and (b) FPFH for a query point pq.
Unlike FPFH that has O(nk) computational complexity, PFH computes the
histogram over a fully interconnected mesh leading to O(nk?) computa-
tional complexity



(b)

Fig. 6. 3D point cloud reconstructions from (a) greenhouse and (b) field
shown along with a heatmap representing probability distributions of their
collapsed 2D representations. The higher (red) probability density regions
represent the mode which can be seen to lie close to stem position.

determination is an automated step. Post alignment, the 3D
point cloud is collapsed onto the (x,y) plane by making all
z coordinate values 0. The structural uniformity would cause
the mode of the resulting 2D data distribution to be close to
the stem location for most cases.

To compute the mode, a kernel density estimator (KDE)
[14] is used on the collapsed 2D point distribution. KDE is
a non-parametric method to compute the probability density
function of a random variable. Let the 2D point coordinates,
(g1,92, - - gn), be n two-dimensional samples belonging to
an unknown probability distribution f. The kernel density
estimator, fy,(q), that approximates f is given as,

: RS L~ (44
o) = 23 Kl —a) = - 3k (12
i=1 i=1 3)
¢" = orgmax (fh(q))

where, K is the kernel, h > 0 represents the bandwidth
and ¢* the estimated mode. The bandwidth acts as a smooth-
ing parameter, controlling the bias-variance tradeoff of the
resulting density distribution. A small bandwidth leads to an
unsmooth distribution having high variance, while a large
bandwidth leads to a smooth distribution having high bias.
We use a gaussian kernel function with standard deviation &
computed using the n samples. The bandwidth value is taken
as h = (46/3n)"/® based on Silverman’s rule-of-thumb.

Fig. 6 illustrates the 3D point clouds and probability dis-
tribution of their collapsed 2D representations as a heatmap.
It can be seen that even with a slightly bent stem, the
mode of the collapsed distribution lies close to the (z,y)
position of the stem. The global feature for each 3D point
pi = {i,y;, 2z} is then computed as ||[z; y;] — ¢*||,. that
is its euclidean distance from mode ¢* in the xy-plane.

3) Classification using Support Vector Machine: We can
now construct a feature vector for an individual 3D point with
34 elements obtained from FPFH (33) and global (1) feature
estimation. The SVM classifier is provided a concatenated
feature vector (n x 34) as input, where n is the number of

3D points. We make use of kernel SVMs that can perform
nonlinear classification by implicitly mapping their inputs
into high-dimensional feature spaces. SVMs are a popular
and commonly used choice for binary classification problem.
The results section provides further details on choosing the
kernel function and its parameters as well as the train,
validation, test split of the concatenated feature vector.

D. Spatial Smoothing of 3D Point Clouds

The spatial smoothing stage takes as input the segmented
output from the SVM and smoothens out the assigned class
labels. The SVM predicts a class label for a single 3D point
without regard to the label assignment of the neighboring
points. A Conditional Random Field (CRF) is hence applied
as a post-processing step so as to take context into account.
The segmented 3D point cloud produced by the SVM is
expressed as a graph, G = (V, E), where the vertices V are
formed by the 3D points and edges I represent pairwise
connections from a point to every other point. An efficient
and tractable inference algorithm for such a fully connected
pairwise CRF is detailed in [15]. It begins by formulating a
Gibbs energy term E(x) that needs to be minimized,

E(x) = Xy (1) + Bicjp(xi, 75) 4

where, 1, (;) is the unary potential initialized independently
for each point by the SVM classifier. ¢, (z;,x;) is the
pairwise potential taking into account pairwise relationships
between point classifications, and is of the form,

wp(‘ri;xj) = ,u(xz,x])Efg:lw(m)k(m)(f“fj) (5)

H(fi, fj)

where, x(f;,f;) is weighted sum of kernels expressed
using positions p;, p; and surface normal vectors n;, n; as,

.2
el ) = Veap (220 )

202
smoothness kernel (6)
pi —pil* i =yl
+ w(2)exp < S J
202, 202

surface kernel

In eqn (6), the smoothness kernel minimizes label differ-
ences between neighboring points while the surface kernel
minimizes label differences between neighboring points with
differing surface normal directions. Note that the original 2D
image based segmentation kernel in [15] uses an appearance
kernel instead of the surface kernel so as to minimizes label
difference across nearby pixels with similar color values.

E. Extraction of Plant Phytomers

The phytomer extraction stage takes as input the seg-
mented and smoothed point cloud and extracts 3D plant phy-
tomer units. A 3D cylinder model is fit to the points labeled
as stem using the random sample consensus (RANSAC)
algorithm [16]. The fitted cylinder is then expanded by 25%



Algorithm 1 Region growing for extracting a single leaf

1: Initialize region set R = (), seed point set S with 3D
centroid of the input plant node.

2: for s € S do

3 Find nearest neighbor set /C of point s

4: Compute surface normal ng of point s

5: for k € K do

6 Compute surface normal ny of point k

7 if angle(ng,ns) < €1 then

8

R+~ RUE
9: Compute curvature A of point k
10: if A < €0 then
11 S+ SUk
12: return R

to intersect leaves branching out from the stem. The inter-
section points give node positions, where a node is defined
as points on the stem from which leaves grow. Individual
leaves are then extracted from each node by applying the
region growing algorithm [17], with the node serving as a
seed point for the algorithm. The region growing algorithm
taking a plant node as input and returning the leaf region
connected to that node as output is elaborated in Algorithm
1. Once individual leaves at each node are extracted, these
are then merged with a section of stem around the node to
obtain a phytomer unit corresponding to that node.

IV. RESULTS

In this section, we present results for different stages in the
overall approach along with details on parameter selection.

A. System Setup and Data Collection

The greenhouse 3D data used in the paper is the one
collected by McCormick, et al. in [4]. The field data used
in the paper was collected using the robotic phenotyping
platform shown in Fig. 1. A closeup of the multi-camera
sensor pod deployed on the robotic platform is shown in
Fig. 7. The sensor pod contains eight forward facing cameras
arranged in two horizontal rows along with two additional
cameras verged on either ends at an angle of 30°. In order

to collect different horizontal viewpoints captured by these
cameras at multiple plant heights, the sensor pod is attached
to a robotic arm that moves it vertically along the plant. All
10 cameras have a synchronized trigger and have been fitted
with wide field-of-view lenses since the distance between
one crop row to another is only about 0.75m. More details
on the hardware system and data acquisition processes can be
found in [18]. Field trials for data collection were conducted
in an outdoor sorghum field in Weslaco, TX over a period of
5 days in Dec 2016. The sorghum crop rows were pruned so
as to approximately have a single plant in foreground view.

B. Experimental Evaluation

Comparison of Two-View and Multi-view Stereo Recon-
struction: Fig. 8 shows foreground plant point clouds gen-
erated using (a) standard two-view stereo semi-global block
matching (SGBM) algorithm and using (b) the multi-view
environment framework described earlier. The two cameras
chosen for performing two-view stereo SGBM are the ones
in the center with a baseline (= 0.04m) suitable for stereo
imaging at such close range (<0.5m). The images chosen
for the multi-view stereo are those from all 10 cameras at a
particular robot arm height. It can be seen from Fig. 8 that
the dense 3D reconstruction obtained using the multi-view
stereo approach is much more geometrically consistent.

Note that when doing multi-view reconstruction using im-
ages from the 10 cameras at a particular arm height, we can
circumvent the effect of wind motion since all 10 cameras
trigger synchronously. However, when doing reconstruction
using images across multiple arm heights, we use datasets
with low to moderate level effect of wind. This is because
high winds cause non-rigid body motion of plants that breaks
standard structure-from-motion assumptions, making it a
challenging problem beyond the scope of this paper.

Feature Vector Details: The Fast Point Feature Histogram
(FPFH) feature representation is chosen over the Point Fea-
ture Histogram (PFH) for encoding local geometries as a
trade off between runtime and accuracy. Fig. 9 compares
the computation times for 10 3D point cloud reconstructions
obtained from field data. The neighborhood sizes chosen
for computing PFH, FPFH are ky = 15, kg = 125,

Fig. 7. A closeup of the multi-camera sensor pod deployed on the robotic
platform. The sensor pod contains eight forward facing and two additional
cameras verged on either ends at an angle of 30°. The sensor pod is
connected to a robotic arm and can collect images at multiple plant heights.

Fig. 8. Reconstructed foreground plant point clouds using (a) standard two-
view stereo semi-global block matching (SGBM) algorithm and using (b)
the multi-view environment (MVE) framework. The dense 3D reconstruction
using MVE can be seen to be less noisy and more geometrically consistent.
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Fig. 9. Comparison of computation times for Point Feature Histogram
(PFH) and Fast Point Feature Histogram (FPFH) feature vectors.

where ky represents first layer of neighbors, P*~ used to
compute surface normals and ky represents second layer of
neighbors, P*# , used to encode relationships between points
and normals within P*# _ Tt is important to select a suitable
value of kx so that surface normals capture the underlying
geometry of the point cloud at the desired resolution. The
value of kp controls how locally discriminative the point
feature is, higher values yielding more discriminative features
at the cost of increased computation times.

SVM Training Details: To construct the concatenated
feature vector (n x 34) that is input to the SVM, 1000

(b)

Fig. 10. Segmented SVM output for field data using (a) local and (b) local
+ global features. Stem false positives on leaf surfaces reduce considerably
in (b) due to addition of distance from mode global information.
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Fig. 11. Precision-Recall curves and their area under curve (AUC) values
over 30% test set. The curves bring out the comparison between four
scenarios: local, local+global features in field data and local, local+global
features in greenhouse data. Addition of global feature improves the AUC
value more significantly for field data compared to greenhouse data.

Fig. 12. SVM segmented output in (a) is post processed with CRF to give
(b). The CREF corrects leaf false negatives near stem/leaf intersections so as
to minimize label difference across neighbors with similar surface normals.

stem and 1000 leaf 3D points were randomly sampled across
10 different plants, making n = 2 x 10%. This was done
separately for the field data and the greenhouse data. Of
these n feature vectors, 70% were chosen for training and
30% for testing. A 3-fold cross-validation was performed on
the 70% training data to select optimal parameters for the
SVM. Radial basis function (RBF) kernel SVM was found
to perform consistently better than the linear SVM. The two
parameters that need to be set for a SVM with RBF kernel are
~ and C, where ~ represents the variance of the (gaussian)
RBF kernel and C' the misclassification cost. The optimal
values for (v, C') were selected by doing a grid search on a
range of values for (v,C) and using the Area under Curve
(AUC) of the precision-recall curve as the comparison metric.

TABLE I
MEAN ACCURACIES FOR THE SEMANTIC SEGMENTATION

Greenhouse Data Field Data
SVM  SVM+CRF SVM  SVM+CRF
Accuracy  85.5% 90.7% 79.4% 80.2%

Fig. 13. (b), (d) show qualitative segmentation outputs from SVM followed
by CRF smoothing for greenhouse and field environments respectively.
(a),(c) show the ground truth segmentations for comparison.



Fig. 14. Segmented 3D phytomers extracted from the 3D point cloud of the
plant. The numbers 0-9 represent the detected stem-leaf intersection points
(also known as nodes). A plant phytomer is extracted at each plant node.

Effect of local and global features: Having obtained the
optimal kernel parameters using the AUC metric, Fig. 11
shows the precision-recall curves for v = 0.001, C = 1.
The curve is obtained over the 30% test samples for two
different feature representations for both greenhouse and
field data. This helps quantitatively examine the impact of
local and global features on semantic segmentation in both
field and greenhouse environments. It can be seen from Fig.
11 that the AUC value using purely local features is greater
for greenhouse data than the field data. Addition of the
global feature to purely local FPFH features causes the AUC
values to increase noticeably for field data. This effect is also
captured qualitatively in Fig. 10, where addition of the global
feature reduces the stem false positives significantly.

Effect of CRF spatial smoothing: Table 1 shows the
quantitative effect of spatially smoothing the SVM output
using a CRFE. It can be seen that there is an increase in
average accuracy after the CRF post-processing step. This
effect is also qualitatively visualized for the greenhouse data
in Fig. 12. The CRF corrects leaf false negatives near the
stem/leaf intersection points. This is primarily due to the
surface kernel term in the CRF that penalizes label difference
across neighbors with similar surface normal orientations.

Results across varying plant anatomies: Fig. 13 shows
qualitative results for the semantic segmentation followed
by CRF smoothing. The quantitative accuracies computed
across 10 representative plants in greenhouse environments
and 10 representative plants in field environments is tabulated
in Table 1. The final segmented 3D phytomer units extracted
from the point cloud of a plant are visualized in Fig. 14.

V. CONCLUSION

This paper presents an approach for mapping 2D plant
images to segmented 3D plant phytomer units that are of
interest for phenotyping. It begins by performing multi-view
3D reconstruction, followed by segmentation using local and
global features, and finally using the segmented cloud to
extract phytomers. We show results for different stages of
the approach for both field and greenhouse environments.
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