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Abstract— Efficient exploration of unknown terrains by ex-
traterrestrial rovers requires the development of strategies that
reduce the entropy in the geological classification of a given
terrain. Without such intelligent strategies, teleoperation of the
rover is reliant either on human intuition or on the exhaustive
exploration of the entire terrain. This paper highlights the
use of low-resolution reconnaissance using satellite imagery to
generate plans for rovers that reduce the overall uncertainty
in the various geological classes. This becomes pivotal when
exploration to collect diverse samples is resource constrained
through exploration budgets and transmission bandwidths.
We put forward two major contributions- a science-aware
planner that uses information gain and a novel method of
estimating this information gain. We propose an exploration
strategy, based on the Multi-Heuristic A*, to solve the trade-
off between optimizing path lengths and geological exploration
through Pareto-optimal solutions. We show that our algorithm,
which explicitly uses projected entropy-reduction in planning,
significantly outperforms science-agnostic approaches and other
science-aware strategies like greedy best-first searches. We
further propose a feature-space based entropy formulation in
contrast to the frequently used differential entropy formulation
and show superior results when reconstructing the unsampled
data from the set of sampled points.

I. INTRODUCTION

Space exploration has been aided greatly by the de-
velopment of extraterrestrial rovers which employ domain
dependent task planners. One of the specific domain specific
tasks includes spectroscopic analysis of geological samples.
The frontiers of such exploration include not only other
planets like Mars but also terrestrial environments like the
Atacama desert [1], [2]. Spectral analysis of the red planet
has been carried out in the past [3], [4] using high-resolution
equipment like the Alpha Particle X-ray Spectrometer and
the Sample Analysis at Mars (SAM) instrument suite [5].
The advancement in scientific payload allows rovers to
perform scientific exploration efficiently and reliably over
larger distances. However, low bandwidth and high latency
lead to large feedback times during operation which proves to
be a bottleneck in operation and planning. Shared autonomy
provides a way to mitigate this by communicating higher-
level objectives to the rover to execute autonomously through
delegation of low-level controls. However, planning for high-
level objectives is challenging due to the competing nature
of the objectives for the exploration itself.

This work aims at increasing the effectiveness of the
collaboration between robots and researchers by proposing
a new science-aware approach to exploration. The proposed
approach utilizes the low-resolution reconnaissance data to
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measure the information gain by visiting a point on the
map and then generating budget-constrained plans which
maximize the information gained. This low-resolution data is
relatively cheaper to obtain through interplanetary commu-
nications when employing extraterrestrial rovers to sample
high-resolution spectroscopic data.

We pose the problem of exploring a space as a multi-
objective optimization problem wherein we try to maximize
the information gained through map traversal whilst minimiz-
ing the distance traveled to collect that information. These
competing objectives often force researchers to use heuristics
and intuition to guide the rover to an overall global objective.
We propose a structured way to resolve this ambiguity using
a Pareto-optimal solution obtained as a result of implement-
ing an evolutionary multi-objective algorithm [6]. We further
present our results: the effectiveness of computing infor-
mation gain in feature-space versus calculating differential
entropy [7]. Differences in these approaches are pivotal for
science-based approaches and this is discussed in detail in
section IV.

To solve the problem of generating science-aware paths,
we incorporate the projected information gain of a location
explicitly in a search-based planning paradigm using the
Multi-Heuristic A* (MHA¥*) [8]. This projected information
gain is used as an additional inadmissible heuristic guided by
the Euclidean heuristic which anchors the search towards the
global goal. Paths generated henceforth are bounded in length
due to the proven sub-optimality bounds for the MHA*. The
quality of the paths is quantifiable using the reconstruction
error of the sampling points when reconstructing the ground
truth. Additionally, this approach scales well with the larger
sizes of maps than greedy or direct approaches. Paths ob-
tained from the Multi-Heuristic approach can be seen in
Figure 1.

II. RELATED WORK

Optimization techniques based on reconstruction error and
differential entropy have been well researched and analyzed
in the past [9]. However, graph-based search techniques,
which have proven optimality guarantees, are often over-
looked in information-based path planning. Nevertheless,
path planning for maximizing mutual information [10] has
been explored in underwater exploration which testifies a
strong need to develop such techniques for extra-terrestrial
exploration. Multi-robot exploration provides faster coverage
and robustness to failures but deploying such a system proves
to be prohibitive in extra-terrestrial environments [11][12].
Additionally, while there has been much investigation into
evaluating information gain using the differential entropy
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Fig. 1: Planned paths using the greedy, direct and MHA* approaches on spectroscopic data from Cuprite, Nevada. The start
position is on the upper left and the goal position is at the bottom right of the map. Whilst the greedy approach visits
high-information areas initially, it fails to explore the area near the goal due to path constraints. The direct approach, being
science-blind, yields poor information returns. The science-aware planning algorithm, MHA* with information gain as an
inadmissible heuristic, deviates from the canonical straight line path to maximize information gain.

of the sample set, there exist few approaches that estimate
information gain directly in the feature space of images. Our
search-based Multi-Heuristic A* approach using information
gain in the feature space as the inadmissible heuristic un-
derpins our novel approach to solving the problem of rover
exploration.

Solving the problem of adaptive exploration requires mul-
tiple steps. First, a classification algorithm is run on the
key features extracted from the rover and orbital imagery to
train a model. Once a model is learned, sampling reward is
predicted for each feasible sampling point. Following that, a
path is planned through the terrain using the sampling reward
as a metric. Finally, sampling along the path can be used to
adaptively improve the model on the planned transect. A
wide body of Artificial Intelligence research exists in each
of these activities.

Like most classification problems, features are extracted
from imagery collected either through orbital flybys or
through rover traversal. Thompson et al. extract rock-classes
from the rover imagery using a modified Viola/Jones rock
classifier [13], which can then be used as features for terrain
classification in a spatial model [14]. Classification in the
pixel space, using robust machine learning techniques like
random forests, yields much more precise classification [15].
Classification methods in pixel-space first detect superpixels
and later defining a similarity graph over the superpixels
by applying a graph cut algorithm [16], [17]. Working in
the pixel-space is at risk to the curse of dimensionality as
not all wavelength bands in a spectroscopic image are of
importance. As such, PCA-based dimensionality reduction

[18] can be applied prior to classification, thereby reducing
computation requirements.

Once classified into geologically relevant classes, the
reward calculation proceeds by estimating the gain from each
sampling opportunity. Both Foil and Thompson consider
iteratively modeling the sample space to assess the reward
of future samples [19], [13]. Additionally, Thompson et al.
provide a spatial model that predicts future readings based
on previous observations using a Gaussian process reliant on
information gain based sampling. Foil et al. models the sam-
ple space using modifications to Gaussian mixture model and
relies on different metrics to calculate rewards. For instance,
[19] uses an adaptive Gaussian mixture model in sample
space to assign rewards to points where sampling is feasible.
Most methods in exploration robotics assign an entropy or
information gain metric to every exploration opportunity and
define an objective function which usually serves to maxi-
mize the total information gain. Several approaches exist to
delineate transects using the estimated reward of a location.
Such planning involves formulating an objective function and
optimizing it with distance constraints. Maximum-Entropy
Sampling (MES) strategies select the next sampling point
based on the sole criterion of maximizing the entropy within
the set of sampled points. Such a method is therefore
restricted by selecting when a single sample is being selected.
However, the problem at hand needs to select a subset of all
available sampling opportunities. Spatial design is applied
by Thompson et al., which consists of selecting samples that
maximize the differential entropy of the sample space [14].



On the other hand, instead of optimizing over the differential
entropy, Thompson et al. optimizes the reconstruction error
and analyzes greedy Least Squares and non-negative Least
Squares optimization techniques. For optimization to work, a
path needs to be evaluated. Therefore, it becomes necessary
to select sampling points within a transect, which can then
provide the quality of the path. Bayesian experimental design
techniques and optimal foraging based on multi-armed ban-
dits are applied by Matikainen et al. for sampling opportunity
selection on a given transect [20].

III. PROBLEM DEFINITION

The problem of exploring unknown geological terrains
draws equivalence to the problem of mapping an area.
Maps encapsulate diverse information ranging from terrain
characteristics to geological properties. During mapping, the
agent creates a comprehensive representation of the envi-
ronment by visiting locations in the environment and taking
samples of the environment [13] which in effect allows for
comparison to the Travelling Salesman Problem [21].

The specific problem of budgeted adaptive exploration is
that of planning for maximizing information gain given an
orbital spectroscopic image of the terrain and a sampling
budget. Planning is constrained by the number of samples
the rover can take as well as the total distance it can travel.
We assume that the there exists a global goal location where
the rover intends to be at the end of the planning cycle.
This goal location is generally derived from higher level
exploration goals like visiting specific sites. The problem,
therefore, reduces to generating plans that deviate from the
shortest path to this global goal at the cost of collecting more
information about the geology of the terrain. The sampling
budget is imposed as a hard constraint and is affected by the
time taken to sample and transmit to the ground station. This
sampling budget represents the constraints imposed by time,
bandwidth and power requirements [14].

The problem is motivated by the fact that spatial distribu-
tion of minerals is pivotal in reasoning about the geological
history of the region and serves as a precursor to planning
terrain-aware paths for advancing further exploration. More-
over, a geological map is a more compact representation of
visual or spectroscopic data, which is required for efficient
data transfer over constrained high-bandwidth links between
planetary missions and the Earth [19].

One of the most widely used sensors for geological classi-
fication are spectrometers, which measure the reflectance in
different wavelength bands. While orbital flybys can provide
an overview of a large region, they are limited by their
limited resolution. Atmospheric effects and inherent mea-
surement noise further lead to this spectral data being noisy.
Instead of relying on this data for accurate classification,
this low-resolution data when used in conjunction with high-
resolution spectrometric observation from rovers leads to the
formulation of better sampling strategies. Rovers, equipped
with more accurate spectrometers, can be commanded on
the ground to take more informative measurements, guiding
their sampling based on the intelligence received from orbital

flybys.In contrast, the complete teleoperation of the rover
to guide sampling based on human intuition allows greater
customization for visiting areas of interest. However, such
an unstructured approach generally yields poorer results.

IV. APPROACH
A. Multi-Heuristic A*

Search-based planners form a potent method to explore
the state space from a start location to a goal location, using
heuristics to guide the search. Heuristics traditionally have
been used to better guide the search towards the goal config-
uration. However, innovative heuristics, such as those which
use cached plans [22] to estimate cost-fo-goal have been
used. Until recently, a common way to combine multiple
admissible heuristics would be to take their maximum, i.e,
for two admissible heuristics H; and Hs at state s:

H(s) = max (Hq(s), Ha(s)). (1)

This combination, however, dilutes the effectiveness of
an individual heuristic in situations where it could be more
informative. For example, planning in constrained spaces, a
heuristic that measures the distance to obstacles could be
more informative than simple Euclidean distance. Combin-
ing multiple heuristics can be effectively done through the
Multi-Heuristic A* (MHA*) algorithm [8], even if one of
the heuristics is inadmissible. Heuristically guided search
based techniques are optimal at a resolution and weighted
search techniques ensure bounded sub-optimality. Despite
incorporating inadmissible heuristics, the MHA* algorithm
has bounded sub-optimality guarantees. Proofs for bounded
sub-optimality and guarantees on state expansions for the
MHA?* can be found in [23]. One of the main theorems for
the algorithm provides sub-optimal bounds on the path cost.
Given that the weight on the anchor heuristic is w and the
weight on n arbitrary inadmissible heuristics is w1, wa...w,
it is given that

9(Sgoal) < W * w1y * W * .. Wy, * §" (Sgoal) 2)

where ¢g* represents the optimal g-value. This in effect
ensures that the solution is bounded by the sub-optimality
factor of:

W * W1 * W ¥ ... W, - 3)

Due to the guarantees and a well-formulated way to
combine inadmissible heuristics, we use the MHA* as the
search based technique. The euclidean distance to goal is
the consistent and admissible heuristic. Information gain
is an inadmissible heuristic which has no guarantees on
the optimality of the path. Information gain is the only
inadmissible heuristic, with a weight «, which reduces the
sub-optimality equation to be bounded by

w * Q. @)

Information gain, despite being inconsistent and inadmis-
sible, can guide the search into high areas of information,
while the Euclidean distance to the goal anchors the search



to the goal. As such, Euclidean distance was used as the
anchor heuristic, and the inverse information gain was used
as the inadmissible heuristic to model it as a cost.

The state space for the graph search is defined to be
Euclidean and the edge costs are modeled as such. Explicitly
including the uncertainty reduction in the state space and
formulating this composite cost function, which encapsulates
the notion of a short path and that of maximizing information
gain, is challenging. Such a cost function can possibly be
learned by learning the cost function through expert demon-
stration [24], [25]. However, learning from expert demon-
strations does not lend well to the problem of geological
exploration due to their scarcity in a budgeted domain. As
a result, these two inherently competing objectives lend the
problem to be of finding Pareto-optimal solutions.

Once the heuristics have been designed, parameters w and
« are usually tuned to achieve the desired behavior in the
given environment. Instead of hand-tuning these parameters,
we implement an evolutionary algorithm based Pareto op-
timization. This is essential in a budgeted domain where
scientists are constrained by the distance budgets and try to
maximize the information gain. For the sake of not sacrificing
optimality in Euclidean space, we set w to 1 and optimize
the weight for the information gain, «.

B. Evolutionary algorithm based Pareto-optimization

The optimization problem can be formulated as maxi-
mizing information gain while minimizing the cost incurred
while traversing the path. In its most primitive form, the
path cost can be modeled simply as the length of the
path traversed. These two competing objectives form an
arbitrary optimization manifold where gradient-based opti-
mization methods are generally slower and are prone to
local minima. Exploring such arbitrary decision surfaces is a
problem well suited for evolutionary algorithms such as the
Multi-Objective Genetic Algorithm (MOGA) and the Non-
dominated Sorting Genetic Algorithm-1I (NSGA-II) [26].

We use the NSGA-II algorithm as it scales better with
more decision points and preserves diversity in the popu-
lation when compared to the MOGA. We optimize on the
design parameter «, the weight given to the information-
gain heuristic during planning. Intuitively, this also relates
to the relation between the importance given to following
the shortest path as compared to exploring areas with more
information gain. The Pareto-optimizer framework we follow
is depicted in Algorithm 1.

An example of a Pareto-optimal solution is given in
Figure 2. Points in the Pareto frontier are non-dominated,
i.e. improving any one objective is always at the cost of
making the other objective worse. For budgeted exploration,
the problem of picking a plan for the rover to execute
reduces to picking a parameter from this optimization that
satisfies the plan budget while simultaneously maximizing
the information gain.

C. Information Gain

Information theory formalizes entropy as the expected
information in a random variable. Discrete random variables
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Fig. 2: Concept of state dominance in the space of rover
exploration. Point A dominates point B as the length of
the path to gain the same amount of information is greater
for point B. Point C dominates point D as the amount of
information gained is more for a shorter path length as
compared to point D.

Algorithm 1 Pareto Optimizer

1: procedure PARETOOPTIMIZER
Input: PopSize, InitAlpha, MHAplanner, MaxGenerations
Qutput: ParetoFrontier
2: FitnessFunc < MHAplanner
3: CurrentPopulation < InitAlpha
CurrentPopulation — CurrentPopulation +
RandomPopulationGenerator((PopSize-1)
while NumGeneration < MaxGeneration do
Offsprings < Crossover(CurrentPopulation)
Offsprings < Mutation(Offspring)
EvaluablePop < CurrentPopulation 4+ OffSpring
Fitnesses < FitnessFunc(EvaluablePop)
10: CurrentPopulation —

BestPopulation(CurrentPopulation, Fitnesses)
return NonDominatedPopulation (CurrentPopula-

tion)

»
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entropy can be calculated using Equation 5, while continuous
variables entropy can be calculated using Equation 6.

H(z) = - P(x)log P(x) )
@)=~ [ Pwoare) ©

For stationary distributions, optimal experimental design
can be applied to select the sampling point that maximizes
the entropy of the sample space [13], [14]. Spatial design
is an experimental design technique that chooses the next
sampling point in addition to a subset of all sampling
opportunities. Solving for the entropy of the sample space
yields the following entropy formulation:

1
H(z) = ~3 Z log(2moy), (7
beB



which is the differential entropy for a Gaussian random
variable. As demonstrated in [19], if the sample space is
a mixture of Gaussians, it can be shown that the differential
entropy for Gaussian random variables can be expressed as
Equation 7. Spatial design is then effectively an entropy
calculation of a Gaussian continuous random variable. A
scheme that samples points based on differential entropy
maximizes the variance in the set of sampled points, 0. This
is an effective measure assuming that the greater variation
within the samples that the rover carries, the more informa-
tion about the map is gained.

Traditionally, exploration robotics calculates entropy in
sample space using the aforementioned theoretical backing.
However, entropy can also be calculated in image space,
where each channel in the image is a feature. We present this
new approach of calculating entropy in the feature space as a
way of minimizing the reconstruction error. As such, an RGB
image will have 3 dimensions, and a n-wavelength band
spectral image will have an n-dimensional feature space,
where each pixel will be a single point and image will form
a point cloud in feature space, a map M. It is quite intuitive
that a spectral image will form clusters in the feature space,
which can then be used to formulate discrete entropy based
exploration strategy.

The objective is to minimize H (M|X), which is the
entropy of the complete map given the sampled points. The
assumption is that choosing points according to Equation
8 is the optimized way to minimize H (M|X). Note that
each pixel in the spectroscopic image is considered a random
variable and the whole image/map is also considered a
random variable. This effectively means choosing the point
that has the maximum entropy given the previously collected
samples X and the satellite-provided spectroscopic map M
of the region with high uncertainty/noise.

et = argmaxH (x| M, X Nx) )
rzeEM—-X

To calculate the entropy of a point, k-means clustering is
used to attain C' clusters. The covariance of each cluster,
assuming Gaussian densities, can be approximated from
the sample covariance from cluster members. Using the
cluster center as the mean and the calculated covariance, the
probability of a map point being sampled from the cluster
can then be computed. Shannon discrete entropy can then be
applied to work out the entropy of the map point as shown

in Equation 9.

1

(2m) |22

Inherently, this formulation pushes the rover to sample
points that make the clusters tighter. This can be attributed
to the points of maximum entropy not being classified with
high confidence in any of the clusters due to factors such as
sensor noise. The underlying assumption is that the data in
spectroscopic feature space forms a mixture of Gaussians.

To ensure a comprehensive comparison, we implement
both entropy formulations. While the differential entropy
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(a) Data obtained from the
AVIRIS-NG spectroscopic sensor.

(b) Generated simulated data.

Fig. 3: Datasets encapsulating the geological environment as
seen by the orbiting satellites.

prioritizes variance of samples, the feature-space entropy
prioritizes samples with low clustering confidence.

V. EXPERIMENTAL RESULTS
A. Experimental Setup

The experimental setup involved using simulated and real
satellite data to compare different exploration algorithms.
This ensured that the algorithms were comparable not only
in real world data, but the claims would hold to much wider
and complex scenarios that could be recreated in simulation.

We use high-resolution spectroscopic data collected from
the Airborne Visible Infrared Imaging Spectrometer Next
Generation (AVIRIS-NG) [27], [28]. The AVIRIS-NG sensor
mapped the Cuprite mining district of Nevada at high spatial
resolution (3.9 m per pixel) with radiance measurements
from 380-2510 nm [29]. The data were acquired during
overflights in 2014 and converted from measured at-sensor
radiance to surface reflectance using the procedure described
in [30]. The Cuprite mining dataset and our simulated dataset
can be seen in Figure 3. The dataset contains 20-channel
reflectance measurements which we use in its entirety to
compute information content and generate plans. The simu-
lated data consisted of 10 random cluster centers, each center
representing a spectral class. To account for the sensor noise
for the rover and the orbiter, a zero-mean Gaussian noise
was added to the ground truth data. The data available to
the orbiter is of much higher variance than that available to
the rover. This is consistent with available real-world data
where the rover carries much more sophisticated sampling
equipment with low sensor noise than orbiters.

The metric we use to compare planning approaches is the
mean reconstruction error as explained in [19]. This metric
quantifies how well the sampled points, X, can recreate the
unsampled data, Y, as shown in Equation 10.

W* = argmin||[W' X — Y|,
w (10)
w; > O,Vwi ew

The Pareto-optimal frontier was generated using a fixed start
and end point for a fixed planning environment. Comparison



between different planning approaches was performed over a
set of X maps, each with 100 randomized starting and ending
locations.

B. Results

The Pareto-optimal frontier, generated using the multi-
objective genetic algorithm approach, can be seen in Figure
4. Each point in the frontier depicts a planning configuration
with a fixed a. Each point in the frontier is non-dominated
by any other point in the frontier where state dominance is
defined in terms of lower information gain whilst having a
higher path cost. Instead of optimizing for a single objective
like the reconstruction error [14], our genetic algorithm based
multi-objective optimization optimizes for both the path
length and the information gain simultaneously. The non-
dominated frontier provides decision points for estimating
the entropy reduction given a constrained path length which
provides a structured way in reducing ambiguity in decision
making.
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Fig. 4: The Pareto frontier for the multi-objective opti-
mization. Each point in the frontier represents a trajectory
generated for a Pareto-optimal value of alpha.

We compared our approach of using the MHA* with
other science-aware and science-agnostic approaches. The
direct planner is a science-agnostic approach to exploration
which simply tries to plan a path between the start and the
goal using classical planning algorithms. We use the A*
algorithm as a baseline science-agnostic approach due to its
strong guarantees on optimality. This comparison provides a
baseline for any science-aware method as a method which
explicitly takes geological information into account while
planning should not be any worse than a planner that is
agnostic to this.

Further, to compare to a science-aware approach, we com-
pare the results obtained by a short-sighted greedy planner.
The greedy planner simulates a limited-horizon best-first
search based on the information gain. The greedy planner
samples at the highest entropy point in a window around
its current location. Once the planner has deviated from the
goal enough to just satisfy the path constraint, it plans a
direct path to the goal. This closely approximates a rover
being teleoperated to the nearest waypoint of interest and

being directed to the goal once the exploration budget has
been exhausted. Such a planner serves as a baseline when
comparing science-aware approaches.

Whilst, it might seem ideal to compare to a planner
which uses dynamic programming to recursively compute
the most informative path from the goal, such an approach
is not suitable when operating with practical applications.
Running a dynamic programming planner would result in
an unbounded computation if not restricted to a map and
even in the bounded case, the planning resources in terms of
time and memory are exponential in the number of states. We
implemented a simple dynamic programming based approach
to solving a 100x100 grid which took nearly 5 hours to solve
on a Core-i7 machine, thereby proving its severe limitation
in scaling to real-world scenarios.
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(a) Mean and variance plots for the simulated dataset

Fig. 5: Comparison for planning approaches based on their
mean reconstruction error. (A) Direct, (B) Greedy with
Differential Entropy, (C) Greedy with Feature-Space En-
tropy, (D) MHA* with Differential Entropy, (E) MHA* with
Feature-Space Entropy.

The results for our comparison are depicted in table I.
The science-aware greedy and MHA* methods are able to
reconstruct the unsampled points better, proving that using
differential and feature-space entropies allow the rover to
collect more meaningful samples. Within the information
metrics, we see superior performance for the MHA* when
coupled with our proposed feature space formulation. Even
for the case when differential entropy is used, the MHA*
planner performs much better than both the greedy and direct
approach. The differences are more glaring in the simulated
data but are also reflected in the Cuprite dataset, albeit on
a smaller scale, as shown in Figure 5. As a consequence
of exploration, the path cost for the MHA* planner lies
between that of greedy and direct approaches. Additionally,
the planning times for the MHA* are comparable to other
approaches and are not egregiously prohibitive like dynamic
programming. Additionally, the type of paths provided by



TABLE I: Reconstruction error for planning approaches
using different information metrics and datasets.

Algorithm| Information Dataset Mean Mean Mean
Metric Recon- Path Planning
struction | Length Time (s)
Error (m)
Direct — Cuprite 1.0865 166.16 0.0026
Direct — Simulated | 8.3016 68.05 0.0024
Greedy Differential Cuprite 1.133 295.38 0.1073
Greedy Differential Simulated | 2.3150 651.57 0.0990
Greedy Feature-Space Cuprite 0.975 287.82 1.262
Greedy Feature-Space Simulated | 2.416 649.23 0.749
MHA* Differential Cuprite 1.076 165.231 11.39
MHA* Differential Simulated | 1.6015 91.2819 | 4.1843
MHA* Feature-Space Cuprite 0.9428 170.891 4411
MHA* Feature-Space Simulated 1.7623 76.7723 0.4375

each planner is also shown. As can be predicted, the direct
planner takes the rover directly to the goal position. On the
other hand, the greedy planner deviates from this direct path
till a budget runs out and then follows a direct path to the
goal. This isn’t a good approach because it uses up it’s budget
pretty much near the start position. The MHA*, however,
provides a goal oriented path that widens the exploration
horizon as it doesn’t use it’s budget near the start-location.
Paths generated using the various planning approaches can
be visualized on the Cuprite dataset in Figure 1.

VI. CONCLUSION AND FUTURE WORK

This paper describes a science-aware search-based plan-
ning approach using information gain as a heuristic. We
propose measuring information gain in the feature-space in
addition to conventional differential entropy approaches. We
present a structured approach to resolving the constrained
exploration problem by optimizing for the information and
the path length in a constrained multi-objective optimization.
This results in supplementing decision making for rover ex-
ploration with a Pareto-optimal decision frontier as compared
to a single decision point. Additionally, we demonstrate
the effectiveness of using the MHA* with information as
an inadmissible heuristic when compared when compared
to greedy and science-blind approaches and show how our
approach can better reconstruct the entire map through the
points in its set of sampled points in the trajectory.

After proving the effectiveness of our algorithm against
non-science and greedy methods, we wish to draw compar-
isons to other science-based methods in the future. Addition-
ally, having tackled the problem of a budgeted path, we wish
to investigate developing a sampling strategy on the planned
path to optimize the information gain whilst being confined
to a sampling and path budget. Further, we aim to use our
sampling strategy to develop efficient re-planning strategies
that best use the dynamic information gained through the
sampling strategy.
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