
A Multi-Heuristic framework for Humanoid
Planning

Karthik Vijayakumar
CMU-RI-TR-17-57

August 2017

Robotics Institute
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Maxim Likhachev (Chair)

Manuela M. Veloso
Venkatraman Narayanan

Submitted in partial fulfillment of the requirements
for the degree of Master of Science.

Copyright c© 2017 Karthik Vijayakumar

Abstract
Humanoid robots have been the subject of active research for several years, with

the aim of developing systems that can potentially replace humans in performing dan-
gerous tasks with similar agility and versatility. Motion planning for humanoid robots
is a particularly challenging problem because of the high-dimensionality of the plan-
ning space, kinematic constraints and stability. The general approach to planning for
humanoid mobility in complex environments, such as industries, with potentially mul-
tiple state-space abstractions, for e.g. bipedal, ladder, crawling etc., is to plan sepa-
rately for each of these representations and combine the solution. A recently devel-
oped technique of planning with adaptive dimensionality can be used to develop a sin-
gle planner to handle such multiple state-space abstractions. To this end, we develop a
Multi-heuristic framework, as a generalization of MHA*, that can simultaneously plan
across multiple state-space representations to produce a single solution. We test our
planner in challenging environments containing several abstractions such as staircases,
ladders, etc.

A heuristic based planner for high-dimensional state-space planning has a potential
drawback of the user having to define good heuristic functions that guide the search.
This can become a very tedious task for a system as complex as the humanoid. In
this thesis, we address the issue of automatically deriving heuristic functions by learn-
ing macro-actions from a database of previous plans. By extracting spatio-temporal
bases of repeatedly seen motions in prior plans, we generate new macro-actions as
a planning pre-computation, subject to various constraints. We also show how these
macro-actions can be used as heuristics and provide preliminary results on full-body
planning for humanoids.

iv

Contents

1 Introduction 1
1.1 Related Work . 2
1.2 Preface . 2

2 Planning in Multiple Representations 3
2.1 Introduction . 3
2.2 Notations . 3
2.3 Adaptive Dimensionality . 4
2.4 Multi-Representation Adaptive Dimensionality 5
2.5 MultiRep-MHA* . 7

2.5.1 Algorithmic Details . 8
2.5.2 Sharing on Demand . 10
2.5.3 Experiments . 12

2.6 Conclusion . 16

3 Learning Macro-Actions to guide Planning 17
3.1 Introduction . 17
3.2 Related Work . 18
3.3 Bilinear SpatioTemporal Models . 19
3.4 Learning Macro-Actions . 20

3.4.1 Approach . 20
3.5 Macro-Actions in Planning . 23

3.5.1 Heuristics . 23
3.5.2 Adaptive Motion Primitives . 24

3.6 Experiments . 24
3.7 Conclusion . 28

4 Conclusion 29

v

vi

List of Figures

1.1 Humanoids in different application . 1

2.1 An example environment of operation for the Humanoid Robot 4
2.2 Pseudo code of Planning with Adaptive dimensionality 5
2.3 Lower dimensional representations . 6
2.4 Motivating example for MR-MHA* . 8
2.5 Multi-Rep Multi-Heuristic A* (MR-MHA*) . 9
2.6 An example scenario depicting how path sharing in SMHA* can at times degrade

performance . 10
2.7 Beta distribution . 11
2.8 Sharing-on-Demand . 11
2.9 Environment used for experiments. Random starts were sampled on the ground

and planned one of the two goals shown in the figures. 14
2.10 Example planning expansions in the test environment. 15
2.11 Comparison of planning times and expansions between wA*, MR-MHA* and MR-

MHA* with Sharing-on-Demand(SOD) for a footprint planning example 16

3.1 Repetive humanoid motions like stepping and staircase climbing 18
3.2 Bilinear Spatio-Temporal Models . 19
3.3 Projecting circular dimension in the Real space 21
3.4 Pure pursuit approach to using trajectories as heuristics 24
3.5 Macro-action for the left foot. Both feet start at the same level and the left foot is

moved up and forward to satisfy the step length and step height.View clockwise. . . 26
3.6 Macro-action for the left foot. Both feet start at difference of step height and the

left foot is moved up and forward to satisfy the step height and step length. View
clockwise. 26

3.7 Macro-action for the right foot. Both feet start at the same level and the right foot
is moved up and forward to satisfy the step length and step height.View clockwise. 27

3.8 Macro-action for the right foot. Both feet start at difference of step height and the
right foot is moved up and forward to satisfy the step height and step length.View
clockwise. 27

3.9 Planning with macro-actions as heuristics and snap motions. Red colour shows the
expansions and yellow color shows the macro-action heuristic suggestions. 28

vii

viii

List of Tables

2.1 Comparison of Total time and success rate for MR-MHA* and wA* 14
2.2 Comparison of Planning phase and tracking phase times for MR-MHA* and wA* . 15
2.3 Comparison of Planning phase and tracking phase expansions for MR-MHA* and

wA* . 15

3.1 Optimization statistics for stepping macro-actions. 25

ix

x

Chapter 1

Introduction

Humanoid robots has been the subject of active research over the past several years [1],[3],[2]. The
goal of humanoid research is to develop a robot with agility and precision similar to a human. This
enables the usage of these robots in environments that require solving of complex tasks suited to
a human, but are also dangerous for humans to operate in. Industrial environments, disaster prone
settings, nuclear power plants, search and rescue, maintenance etc. are ideal examples where
humanoids can replace humans for better functioning. Developing systems as complex and as
versatile as humans comes with a lot of challenges. Motion planning for humanoids is especially a
challenging problem, firstly because of the high dimensional state-space that a humanoid plans in,
and secondly because of the various constraints that come with planning for human-like systems.

Figure 1.1: Humanoids in different application

1

1.1 Related Work

Several techniques have been proposed literature to tackle the motion planning problem for hu-
manoids. [17] presents an overview of earlier motion planning techniques used independently to
solve the problem of footstep planning, manipulation, full body motion etc using sampling based
approaches. There have also been extensions to make motion plans which are dynamically feasi-
ble [18]. There has also been significant effort in using search-based techniques for optimal path
planning for humanoid footsteps[9] [14] [13]. There has also been recent work on whole body
navigation for humanoids with significant focus on combining task constrained planning and full
body locomotion [8].

1.2 Preface

Though a lot of literature has focused on motion planning for humanoids to perform stair climbing,
crawling on the ground, climbing ladders as individual problems, there has not been any work to
develop a single framework for planning for humanoids to the best of our knowledge. In collabo-
ration with others 1, the goal of this research project is to develop a single planner that would be
able to plan among several different modes such as planning for stairs, ladders, crawling on clutter
etc. This kind of framework allows the planner to simultaneously search all representations to get
the best path to goal, instead of having to hierarchically breaking down the planning problem and
run different planners.

To this end, in this thesis we develop a Multi-Heuristic search-based planner that can work with
multiple abstractions in the environment to produce a valid plan Chapter. 2. Since heuristic based
planners for high DOF systems like the humanoid are hugely heuristic driven and are often to prone
to local-minima, we develop an approach to learn useful humanoid macro-actions that can be used
to guide the search Chapter. 3. We provide some concluding arguments and directions for future
work in Chapter. 4.

1Andrew Dornbush, Sameer Bardapurkar, Kalin Gochev, Fahad Islam, Masayuki

2

Chapter 2

Planning in Multiple Representations

2.1 Introduction

In this chapter we present a Multi-Heuristic framework to planning for a variety of motions of the
humanoid. In a typical industry setting, we can expect a humanoid to be able to perform a wide
range of tasks such as bipedal motion on the ground, handling stairs of different dimensions, climb
ladders, crawl on cluttered objects etc. As stated earlier, the number of DOFs of a humanoid robot
is very high and planning in such a state-space is hugely time consuming. While planning in a
high dimensional state-space is often necessary to ensure the feasibility of the resulting path, large
portions of the path have a lower-dimensional structure [11].

We take advantage of this observation to create a multi-representation state-space that sits on top of
a recently developed framework called Adaptive dimensionality [11] to plan for various motions of
the Humanoid. Each representation would typically correspond to a lower dimensional state-space
of a unique motion that a Humanoid would execute.

To effectively make use of this Adaptive multi-representative state-space, we introduce a general-
ization of the Multi-heuristic A* planner to plan in such a multi-representative state-space.

2.2 Notations

In this thesis we use the exact same notation as in [11]. We represent the planning environment as a
discretized finite state-space S, of dimensionality d consisting of state vectors X = (x1, x2, ...xd)
and a set of transitions T = {(Xi, Xj) |Xi, XjεS}. Each transition corresponds to a feasible
transition between the corresponding state vector values and is associated with a cost c (Xi, Xj)
which is bounded from below by some positive , that is, c (Xi, Xj) > δ > 0. Thus, we have an
edge-weighted graphGwith a vertex set S and edge set T . The goal of the planner is to find a least-
cost path in G from the start state XS to the goal state XG. We will use the notation π (Xi, Xj) to

3

denote a path in graph G from state Xi to state Xj . We will use π∗ (Xi, Xj) to denote a least-cost
path. The cost of any path π (Xi, Xj) is the cumulative costs of the transitions along it and will be
notated by c (π (Xi, Xj)).

Figure 2.1: An example environment of operation for the Humanoid Robot

2.3 Adaptive Dimensionality

Here we present an overview of the Adaptive Dimensionality framework with a two state-space
illustration for easier understanding [11].

Consider two state-spaces, a higher dimensional state-space Shd and a lower dimensional state-
space Sld, where Shd can be projected into Sld.

λ : Shd → Sld

where λ represents a many-to-one mapping. There also exists an inverse projection λ−1 which
maps from the lower dimension to a higher dimension. Typically, this is one-to-many mapping and
projects every lower dimensional state to a set of higher dimensional state.

Each state-space have its own set of transitions T ld and T hd and their corresponding graphs Gld

and Ghd.

The algorithm iteratively constructs and search a hybrid graph Gad consisting of both low- and
high-dimensional states and transitions. Initially Gad is identical to Gld. The iterative nature
of the algorithm stems from the fact that each iteration identifies new areas of Gad where high-
dimensional regions need to be introduced until a valid solution is found. Upon addition of new
high-dimensional regions into Gad, another search iteration is performed on the new instance of
Gad taking into account the new high dimensional regions. The process is repeated until a search

4

iteration is able to successfully compute a solution that is feasible in the high-dimensional state-
space and satisfies the specified cost sub-optimality bound.

To satisfy bounds on sub-optimality the algorithm requires that the cost of a least-cost path between
any two states in the high dimensional state-space to be at least the cost of a least-cost path between
their images in the low-dimensional state-space. if π represents the path then we have

c(π(Xi, Xj)) ≥ c(π(λ(Xi), (Xj)))

The pseudo-code for planning with adaptive dimensionality as in [11] is shown in Fig. 2.2 below

Figure 2.2: Pseudo code of Planning with Adaptive dimensionality

2.4 Multi-Representation Adaptive Dimensionality

In this section, we summarize a direct extension of the framework of Adaptive Dimensionality
to multiple representations as described in [10]. As mentioned earlier, a humanoid robot in an
industrial setting may be needed to navigate around challenging features of the environment such
as ladder, stairs etc. An example figure in shown in Fig. 2.1.

A straight-forward extension of the Adaptive dimensionality framework is to consider several
lower dimensional representations for a complex system such as a humanoid, and track solutions

5

of these lower dimensional plans in the full DOF of the robot. Hence, one can think of a lower di-
mensional representation each for bipedal motion, crawling motion, ladder climbing etc. A lower
dimensional plan would consist of several different lower dimensional transitions and projections
between these representations. We then plan in the full-body only in regions of the state-space
where the lower dimensional plan does not satisfy controller constraints. Some available lower
dimensional representations for the Waseda humanoid robot is mentioned in Fig. 2.3.

Figure 2.3: Lower dimensional representations

When developing complex robotic systems, such as legged robots, researchers often develop higher-
level controllers that allow the system to execute simple tasks or behaviors based on simple inputs.
For instance, controllers that maintain balance while minimizing the distance to a desired robot
configuration, or even controllers that achieve basic locomotion based on a desired direction of
movement and speed [29]. These controllers are usually carefully tuned operate with precision
on the specific robotic system. The motion planning framework can leverage such built-in system
capabilities in order to improve its performance. Rather than having to always produce full-body
trajectories, the planner can produce the simplified inputs required by a given high-level controller
to achieve a desired action or task, provided that the high-level controller is safe to use in the par-
ticular part of the state-space. For parts of the state-space that do not allow for the safe utilization
of high-level controllers, the planner can resort to full-body planning.

Consider, for example, the problem of navigating a bipedal robot through a complex environment.
Let us assume that the robot has the built-in capability to robustly follow a sequence of footstep
locations which conform to a set of pre-defined constraints Q (e.g. consecutive footsteps are not
too far from each other, the change in heading between consecutive footsteps does not exceed
a threshold, the sequence maintains a minimum safe distance from obstacles, etc.). Thus, if the
planner is made aware of this built-in capability, by specifying the state-space on which the high-
level controller operates (expected input to the controller), a set of transitions available in this state-
space, the capability constraints Q, and the parts of the environment that the capability is available,

6

then the planner can make use of this simplified state-space and perform footstep planning for
large areas of the environment, thus limiting the use of full-body planning to challenging areas of
the environment. The fact that such high-level controllers are available for many robotics systems
can be exploited in higher dimensional tracking phase instead of full dimensional planning in the
tracking phase of Adaptive Dimensionality.

Hence, a high level controller will be able to generate a high dimensional path πhd from a lower
dimensional path πld provided the lower dimensional path satisfies the controller constraints. For
every high-level controller, we can construct a state-abstraction A = (λ, λ−1, G = (S, T), c) that
operates in the sub-space S, by providing a set of transitions T , which satisfy controller constraints
Qt, and a cost function c : T → R+. The projection function λ and λ−1 are implicitly defined by
the choice of S.

In the framework of adaptive dimensionality it was assumed that the lower dimensional path will
not be directly executable by the robot in the higher dimension, and hence the feasibility is checked
through an explicit tracking phase. However, path segments through state-abstractions constructed
from high-level controllers can be executed by the robot provided that these path segments satisfy
the corresponding high-level controller requirements. Thus, we can simplify and expedite the
search performed during the tracking phase of the algorithm by not requiring full-dimensional
tracking. This can be extremely beneficial for very high dimensional planning problems, such
as motion planning for humanoid robots, as even the tunnel-constrained full-dimensional search
during the tracking phase can be prohibitively expensive. A more detailed presentation of the
approach of the same can be found in [10].

2.5 MultiRep-MHA*

In this section we discuss a planning algorithm which would be better suited to planning in adaptive
multiple representation state-spaces. This planner called the MultiRep-MultiHeuristic A*(MR-
MHA*) is a generalization of the MHA* algorithm [4] that can take into account several different
state-space representations simultaneously in the planning space to successfully determine a plan.

Multi-Heuristic A* is a search framework that uses multiple inadmissible heuristics to simultane-
ously explore the search space, while preserving guarantees of completeness and sub-optimality
bounds using a consistent heuristic. The algorithm showed success in higher dimensional com-
plex planning problems such as Mobile manipulation planning for the 12D PR2 robot where a
naive wA* approach is prone to huge depression regions. [4] describes two variants of the MHA*
approach, IMHA* where individual searches run independently and SMHA*, where the searches
share the current path obtained to a state. A improved variant of MHA* has also been presented
in [20]. In this thesis unless otherwise stated, MHA* refers to the Shared variant of the algo-
rithm(SMHA*).

MHA* having proved its efficacy for higher dimensional planning problems is a natural choice
for planning in complex systems such as humanoids. When the planning space is composed sev-

7

eral different state-space representations, it might be effective if the planner can explore different
representations simultaneously to reach the goal.

Figure 2.4: Motivating example for MR-MHA*

Consider for example, an industrial environment consisting of a staircase, a ladder and a humanoid
robot has to reach from the ground to a top platform which can be reached either through the
stairway or the ladder. In such a scenario, it would be preferable for the search to explore along
both the ladder and stairway at the same time and whichever representation gets it faster to the
goal is the shorter path. Also, since we need the statespace for bipedal and ladder representations
are significantly different, we might need different heuristics to explore along each representation.
This is the motivation for generalizing the MHA* to a multi-representation setting. The algorithm
is presented as follows in Fig.2.5.

2.5.1 Algorithmic Details

Heuristic Lists

Following MHA*, we have a single consistent heuristic across all lower dimensional representa-
tions to satisfy sub-optimality bounds on the solution obtained from the lower dimensional plan-
ning space. Each lower dimensional representation now holds its own set of inadmissible heuristics
which are independent of each other. The higher dimensional representation has its own anchor
and a set of inadmissible heuristics. These are defined in lines 1− 4 in the algorithm.

It is important to note the lower dimensional planning phase and higher dimensional tracking phase
are independent searches and hence we have a single anchor across lower dimensional representa-
tions which is different from the higher dimensional anchor heuristic. Consider a planning space

8

1 procedure InitializeHeuristicList()
2 for i = 1 to max dim
3 heuristic list[i].inadm = hi1, h

i
2, ...

4 procedure key(s, i)
5 return g(s) + w1 ∗ hi(s);
6 procedure Expand(s)
7 Remove s from OPENi ∀ i in heuristic list[s→ dim];
8 for each s′ in Succ(s)
9 if s′ was never visited

10 g(s′) =∞; bp(s′) = null;
11 if g(s′) > g(s) + c(s, s′)
12 g(s′) = g(s) + c(s, s′); bp(s′) = s;
13 if s′ has not been expanded in the anchor search
14 insert/update (s′) in OPEN0 with key(s′, 0);
15 if s′ has not been expanded in any inadmissible search
16 for i in heuristic list[s′ → dim].inadm
17 if key(s′, i) ≤ w2 ∗ key(s′, 0)
18 insert/update (s′) in OPENi with key(s′, i);
19 procedure MR-MHA*()
20 g(sgoal) =∞; bp(sstart) = bp(sgoal) = null;
21 g(sstart) = 0;
22 InitializeHeuristicList();
23 for i = 0 to n
24 OPENi = ∅;
25 if i in heuristic list[sstart → dim]
26 insert sstart into OPENi with key(sstart, i) as priority;
27 while OPEN0 not empty
28 for i = 1 to n
29 if OPENi.Minkey() ≤ w2 ∗OPEN0.Minkey()
30 if g(sgoal) ≤ OPENi.Minkey()
31 terminate and return path pointed by bp(sgoal);
32 s = OPENi.T op();
33 Expand(s);
34 else
35 if g(sgoal) ≤ OPEN0.Minkey()
36 terminate and return path pointed by bp(sgoal);
37 s = OPEN0.T op();
38 Expand(s);

Figure 2.5: Multi-Rep Multi-Heuristic A* (MR-MHA*)

with n lower dimensional representations specified as Sld1, Sld2, ...Sldn and the higher dimensional
representation specified as Shd. Now for each of these representations we can define heuristics as

Sld1 : [hld0 , h
ld1
1 , ...hld1p]

Sld2 : [hld0 , h
ld2
1 , ...hld2q]

.

.

Sldn : [hld0 , h
ldn
1 , ...hldnr]

Shd : [hhd0 , h
hd
1 , ...h

hd
t]

where hld0 represents the anchor heuristic for the lower dimensional representation, hhd0 represents
the anchor heuristic for the higher dimensional representation and hXk represents the inadmissible
heuristics for X = [Sld, Sld2, ...Sldn, Shd] and ∀k > 0.

9

Successor Generation

In MHA*, whenever a state is expanded, it successors are inserted in all inadmissible heuristic
queues that are available to the search provided it has not been expanded either in the anchor or
any of the inadmissible searches. This enables MHA* to effectively share paths through different
heuristics that can help the search in different parts of the state-space.

When a state is expanded in MR-MHA*, the representation dimension of each successor is ex-
tracted, and accordingly are only inserted in heuristic queues which are available to that partic-
ular representation as defined in the heuristic lists. This allows MR-MHA* to effectively share
paths within each representation without unnecessarily expanding states out of irrelevant heuristic
queues. This is shown in line 17 in the algorithm.

2.5.2 Sharing on Demand

MR-MHA* presented in the previous section is a generalization of the SMHA* algorithm. SMHA*
though is very powerful in handling nested local minima [4], can be counter productive at times
when path sharing drags the search into a local minima that could have been avoided if the searches
were kept independent. [4] shows an example where IMHA* terminates earlier than SMHA*
which is provided in the Fig. 2.6 below

Figure 2.6: An example scenario depicting how path sharing in SMHA* can at times degrade performance

This local minima becomes more apparent in the humanoid setting where several inadmissible
heuristics interact with one another and often times leads the search into a local minima similar
to what we see in the figure above. To mitigate this issue, once can think of sharing between
heuristic queues only when necessary and run independently otherwise. In this section, we discuss
an extension to MHA* which exhibits this feature of Sharing on Demand.

10

Dynamic Thompson Sampling

Dynamic Thompson Sampling [12] is an algorithm which reacts to changing bandits in the Multi-
Armed bandit setting. DTS maintains a β distribution for each bandit over the likelihood of the
internal bernoulli parameter. [23] shows the use of the DTS for the problem of selecting the next
queue to expand from in the Shared Multi-Heuristic A* framework. A picture of the β distribution
is shown in Fig. 2.7 below

Figure 2.7: Beta distribution

We use DTS in a very similar manner as to how it is presented in [23]. The only difference is
that we do not use it to choose the search to expand from. We only use it as a measure of how
well a particular heuristic queue is performing. If the queue is performing well, as determined
by the mean of the β distribution corresponding to the particular heuristic, then expansions from
other queues cannot share successors with this queue. If the queue is not performing as well, then
the queue allows sharing from other queues. The Expand function of Sharing-on-Demand with
MR-MHA* is mentioned in Fig.2.8 below.

1 procedure Expand(s)
2 Remove s from OPENi ∀ i in heuristic list[s→ dim];
3 for each s′ in Succ(s)
4 if s′ was never visited
5 g(s′) =∞; bp(s′) = null;
6 if g(s′) > g(s) + c(s, s′)
7 g(s′) = g(s) + c(s, s′); bp(s′) = s;
8 if s′ has not been expanded in the anchor search
9 insert/update (s′) in OPEN0 with key(s′, 0);

10 if s′ has not been expanded in any inadmissible search
11 for i in heuristic list[s′ → dim].inadm
12 if µ(β(i)) > constant
13 continue
14 if key(s′, i) ≤ w2 ∗ key(s′, 0)
15 insert/update (s′) in OPENi with key(s′, i);

Figure 2.8: Sharing-on-Demand

11

2.5.3 Experiments

In this section we draw statistics of the MR-MHA* planner by running it on 35DOF humanoid
robot in a simulated environment. The robot has 4 limbs each 7DOF , 6DOF for the Center of
Mass(COM) of the robot and 1DOF for the Torso. We consider an environment where the robot
can plan to a goal either through the stairways or the ladder. The lower dimensional representations
include bipedal, ladder and crawling representations. The higher dimensional representation is
the full-body humanoid representation. In all these experiments only the Bipedal and ladder low
dimensional representations are active, which are tracked in the higher dimension. Also it is useful
to note, as mentioned before, that the higher dimensional controllers for bipedaling and ladder
climbing execute the tracking phase unless the path is non-executable by the controller (e.g. on
stairways). Before we summarize the motion primitives and heuristic used in each representation,
we quickly describe how a grid search in a projected state-space is used as a heuristic.

A common approach to designing heuristics for high dimensional state-spaces is to project it to a
lower-dimensional grid and perform a search(eg. BFS or Dijkstra) in this grid, taking the obstacles
into account. The lower dimensional search cost to get to goal is used as a heuristic for the high
dimensional state.

Bipedal Representation

State-space : 6DOF (x, y, θ) for each feet

Motion Primitives :

∆xtarget,∆ytarget,∆θtarget, target = {left leg, right leg}

Heuristics :

1. Sum of 3D grid search(Dijkstra) from Goal to feet.

2. Inflate the value of the 3D grid search values only on staircases, with an inflation factor of
1.0 in the middle of the stairs and increasing outwards to the end of stairs.

3. Inflate the value of the 3D grid search values only on ladder climb platforms, with an inflation
factor of 1.0 in the middle of the platform and increasing outwards so as to align the feet in
front of the ladder.

Ladder Representation

State-space : 4DOF (x, y, z, θ) for each limb

Motion Primitives :

12

∆xtarget,∆ytarget,∆ztarget,∆θtarget

target = {left leg, right leg, left arm, right arm}

Heuristics :

1. Sum of 3D grid search(Dijkstra) from Goal to all four end-effectors.

Crawl Representation

State-space : 3DOF (x, y, θ) for the COM

Motion Primitives :

∆xCOM ,∆yCOM ,∆θCOM

Heuristics :

1. 3D grid search(Dijkstra) from Goal to the COM of the humanoid robot.

Humanoid Representation (Stepping)

State-space : 35DOF (θ1, θ2, ..., θ7) for each limb, (x, y, z, roll, pitch, yaw) for COM, (pitch) for
torso

Motion Primitives :

∆θ1,∆θ2,∆θ3,∆θ4,∆θ5,∆θ6,∆θ7, for all four limbs

∆x,∆y,∆z,∆yaw, for all four end− effectors

∆x,∆y,∆z,∆roll,∆pitch,∆yaw, for COM

Heuristics :

1. 3D grid search(Dijkstra) from Goal to the COM of the humanoid robot.

2. Difference in heading between the root of the robot and the feet of the robot.

3. Euclidean distance between COM of the current state and target state.

4. Euclidean distance between target feet of the current state and target state.

5. Curve to provide guidance for stepping feet movement during the search.

6. Remaining number of steps on the lower dimensional path that need to be tracked.

13

Planners
Goal 1 Goal 2

Total Time(s) Success rate Total Time(s) Success rate
MR-MHA* 94.55 63.4 74.61 51.1
wA* 10.91 4.1 - -

Table 2.1: Comparison of Total time and success rate for MR-MHA* and wA*

We make comparisons of MR-MHA* and wA* for getting to either of the goal shown in Fig. 2.9. A
total of 220 random starts were sampled in the environment such that the humanoid starts in valid
ground state and several statistics recorded. All experiments were ran with w1 = 10 and w2 = 100
for MR-MHA* and w = 100 for wA*. All statistic shown are averaged over all instances for each
planner. It is important to note that Goal 1 can be reached both from the ladder and stairways, while
Goal 2 can only be reached through the stairs. The tracking phase on the ladder is executable for
the controller and hence is much faster. On the other hand, tracking on stairways is not executable
and hence a full-body planning is executed in the tracking phase.

In Table. 2.1 we compare the total time and success rate between the planners for both goals from
various starts. The total time includes the entirety of planning and tracking time. We can see that
MR-MHA* is able to solve a lot more scenarios than wA*. Also we see that wA* has solved
successful instances much faster. This is because all the instances solved successfully for wA* is a
path through the ladder and none through the stairs. This becomes more apparent for Goal 2 where
wA* has not solved even one instance.

(a) Goal 1 used for all our experiments (b) Goal 2 used for all our experiments

Figure 2.9: Environment used for experiments. Random starts were sampled on the ground and planned one of the
two goals shown in the figures.

Table. 2.2 and Table. 2.3 shows the planning phase and tracking phase time taken and expansions
for both goals. Fig. 2.10 shows planning examples in the test environment to both goals through
the stairs and the ladder.

We also conduct experiments to showcase the performance of the Sharing-on-Demand along with

14

Planners
Goal 1 Goal 2

Planning Time(s) Tracking Time(s) Planning Time(s) Tracking Time(s)
MR-MHA* 27.33 67.22 25.7 48.91
wA* 7.87 3.03 - -

Table 2.2: Comparison of Planning phase and tracking phase times for MR-MHA* and wA*

Planners
Goal 1 Goal 2

Planning Exps Tracking Exps Planning Exps Tracking Exps
MR-MHA* 5796 856 3583 640
wA* 146 74 - -

Table 2.3: Comparison of Planning phase and tracking phase expansions for MR-MHA* and wA*

MR-MHA*.We use an example of bipedal footprint planning on stairs for the test. wA* is used
with a consistent Dijkstra heuristic, MR-MHA* is used with a consistent Dijsktra heuristic as
anchor, and quadratic inflated heuristics for stairs. We test Sharing-on-Demand with MR-MHA*
with the same set of heuristics for the bipedal footprint planning. We compare the planning times
and expansions of the three planners for a total of 20 randomly generated starts, and statistics
averaged over all of them. We see that Sharing-on-Demand performs better than the vanilla MR-
MHA* variant Fig. 2.11.

(a) A plan to Goal 2 through the stairs (b) A plan to Goal 1 through the ladder

Figure 2.10: Example planning expansions in the test environment.

15

Figure 2.11: Comparison of planning times and expansions between wA*, MR-MHA* and MR-MHA* with Sharing-
on-Demand(SOD) for a footprint planning example

2.6 Conclusion

In this chapter we presented a Multi-Heuristic framework that can work with multiple represen-
tations (state-spaces) in an environment. The representations own their set of heuristics and the
search selectively explores across different representations to reach the goal. We also presented a
extension to the algorithm, namely Sharing-on-Demand, where the heuristics for different repre-
sentations share information only when needed. The framework was tested in Planning for Hu-
manoid mobility in complex industrial environments.

16

Chapter 3

Learning Macro-Actions to guide Planning

3.1 Introduction

In the previous chapter, we presented a Multi-Heuristic algorithm that can work with multiple
statespace representations. This algorithm built on top of Shared Multi-Heuristic A*[4], holds one
key property that you can have any arbitrarily inadmissible heuristic among the set of heuristics as
long as you have one consistent heuristic to satisfy sub-optimality bounds. This gives us freedom
in designing and incorporating several different kinds of heuristics which can possibly help the
search, especially for high DOF planning problems such as 12DOF mobile manipulation planning
for PR2[4] [16][20], 35DOF mobility planning for humanoids as dealt in this thesis etc.

One major challenge of using a multi-heuristic framework for Humanoid planning is that designing
several different heuristics that share information with each other fluently without introducing
local minima for the search might be difficult. For example, the current set of heuristics used for
Humanoid full representation, as defined in Chapter.2, include Euclidean distance between COM,
Dijkstra for the feet, fitting different curves for feet movement etc. Though Sharing-on-Demand
can be helpful in this regard to some extent, the problem of designing complex heuristics in the
first place is challenging.

Another problem with search-based planning for high DOF planning problems such as for hu-
manoids is that the action-set is not representative enough. A general set of actions would include
incremental changes for each DOF in the planning space. Though such an action-set is represen-
tative of all movement that the robot would make, it would be more beneficial to have actions
that move several different joints of the robot at the same time. Also, a humanoid operating in an
industrial environment will repeat several actions over and over to complete any task assigned to
it. It has been well studied in literature that a lot of these problems are intrinsically lower dimen-
sional [7]. For example, a humanoid might execute an action trajectory several times to walk from
one location in space to another, climbing a ladder might involve similar motions to reach from
one rung to another, executing similar arm motion to hold handrails on stairs to balance itself etc

17

which might involve coordinating a lower dimensional space of movements[24], [19]. This mo-
tions essentially comprise of similar set of actions which move a set of joints together to achieve
intermediary goals , like making a step. These set of actions or macro-actions can be very useful
in planning for humanoids for tasks which involve a lot of repetitive motions. While it is straight-
forward to look at executed motions from previous plans and use them for future planning, it can
difficult to generalize this to similar macro-actions that satisfy new constraints.

Figure 3.1: Repetive humanoid motions like stepping and staircase climbing

In this chapter, we present an approach to learn new macro-actions from previous planning data that
adapt to the new constraints while maintaining temporal and spatial structure of similar motions
executed previously. We look to a recently developed method called bilinear SpatioTemporal Basis
models [5] that exploits spatial and temporal regularity in data while generalizing to new sequences
at the same time. We use this bilinear model to learn new macro-actions that are relevant to the
planning problem in hand, from spatiotemporal bases vectors learnt several such similar motions
from previous planning solutions. We attempt to use these newly learnt macro-actions both as an
action for the search to select and as one of the heuristics in the framework of MR-MHA* to help
the search get to the solution faster.

3.2 Related Work

A good amount of previous work in the past have looked at learning movement primitives for
humanoids. [25] present a method to create fundamental action blocks called Dynamic Movement
primitives(DMPs) for humanoid control using nonlinear attractor systems. DMPs are a formulation
of movement primitives with nonlinear differential equations, whose time evolution creates smooth
kinematic control policies. Model-based control theory is used to convert the outputs of these
policies into motor commands. There were natural extensions to the framework to learn from
demonstrations and imitation learning[27][15][26][21].

There has also been a lot of work on the statistical side, especially in the graphics community to
develop determination of motion primitives using dimensionality reduction techniques like PCA.

18

[19] represent a way to generate natural looking motions in an efficient manner at a dynamic level
by extracting basis functions from observed human movements. [24] uses a similar approach to
exploit the fact that human motions are intrinsically lower dimensional and use PCA to look at
a reduced search space to perform the optimization. The difference between our approach and a
PCA-based approach is that we use a Bilinear SpatioTemporal Model presented in [5], but we also
don’t take dynamics into account. [28] uses a Gaussian Process Models to extract human motions
in lower dimensional space from high dimensional mocap data.

3.3 Bilinear SpatioTemporal Models

We summarize the model presented in [5] in this section.

Figure 3.2: Bilinear Spatio-Temporal Models

Consider a set of P n-dimensional points sampled at F time instances. Such as a set of points can
be represented in the form of the matrix as below

S =

X1

1 X1
2 . . X1

P

X2
1 X2

2 . . X2
P

.

.
XF

1 XF
2 . . XF

P

where each X = [p1, p2, ...pn].

The spatial regularity in the data represented in S can be represented by concatenating each n-D
shape in a row-wise manner.

S = σBT

whereB is a nP×Ks matrix containingKs basis vectors for the spatial direction and σ corresponds
to the spatial coefficients of the data of size F ×Ks.

19

An alternative representation is to model the temporal regularity in the data S. This is done by
concatenating P n-D trajectories in a column-wise manner.

S = θAT

where θ is a F×Kt matrix containingKt basis vectors for the temporal direction andA corresponds
to the temporal coefficients of the data of size nP ×Kt.

The key idea presented in [5] is that a spatial or temporal basis individually fails to generalize
spatiotemporal regularities. If S can be represented as S = σBT and as S = θAT then there exists
a factorization

S = θCBT

where C = θσ = ATB is Kt ×Ks matrix of spatiotemporal coefficients. This allows to specify a
trajectory in both the spatial and temporal bases through a single set of coefficients in C [5].

3.4 Learning Macro-Actions

In this section, we present our method to use Bilinear SpatioTemporal models to learn macro-
actions suitable to Humanoid motions which can be further used in Planning. As mentioned earlier
we know that the humanoid executes several similar motions when performing a task. Through
this approach we aim to learn several bilinear models for several distinct behaviors of a humanoid,
such as stepping, holding handrails, etc. Once we extract the bases, we optimize for a new set
of coefficients that corresponds to a new macro-action which satisfies the constraints of the envi-
ronment. This optimization as we will show later is much faster than optimizing over the entire
trajectory space. Also the bases vectors in the spatial and temporal direction makes the resulting
motion similar to the ones we have seen before satisfying the newer constraints. We summarize
our approach below

3.4.1 Approach

Training Phase : Learning the SpatioTemporal basis

1. We use a database of several previous plans of humanoid mobility. Each plan consists of
several different behavioral motions such as stepping, arm motions etc. We manually seg-
ment the various behaviors and group them accordingly. This process can also be automated
through a probabilistic PCA or using Gaussian Mixture Models [6].

20

2. Each clustered motion behavior consists of a set of similar trajectories. We make sure that
all trajectories are of the same dimension in the temporal dimension, we uniformly sample
the same number of time steps in each trajectory. For n behavioral motions M , each with a
set of trajectories we have

M1 = T 1
1 , T

2
1 , T

3
1 ...

M2 = T 1
2 , T

2
2 , T

3
2 ...

.

.

Mn = T 1
n , T

2
n , T

3
n ...

where T ji would represent the jth trajectory in the ith motion.

3. For each trajectory T ji , we extract the actions in each trajectory so as to obtain a set- of
actions that define each kind of behavior. This is done so that the behaviors we learn the
bases from are not subject to the pose of the robot, and are only concerned with the actions
that each DOF is subject to. To extract the macro-action corresponding to each trajectory,
we compute the differences between consecutive waypoints in each trajectory. This can
represented through a simple linear transform.

S = RT

R =

0 0 . . 0
−1 1 0 . 0
0 −1 1 . 0
.
0 0 . −1 1

4. For each of these macro-action trajectories Sji we do a polar mapping for values in the

circular dimension. This is because certain DOFs of the trajectory such as rotational joints
are values in the circular dimensions. Hence we project this angular dimension into the real
dimension through the following projection into the R Fig. 3.3.

Figure 3.3: Projecting circular dimension in the Real space

21

The projection is represented through the equation as stated below

a = 2Rsin(α/2)

where α is the value in the circular dimension projected to a in the real dimension. R can be
set as 1.

5. We have a set of macro-actions Sji defined for each behavior motion, where each DOF of
every time step are mapped onto the R space. Hence for any behavior Mi we have

Mi = S1
i , S

2
i , S

3
i ..., S

P
i

We concatenate these macro-actions in the spatial and temporal direction and extract Bilinear
SpatioTemporal bases for each motion, predefining the temporal bases as DCTs.

S1
i = θiC

1
i B

T
i

S2
i = θiC

2
i B

T
i

.

.

SPi = θiC
P
i B

T
i

For all macro-actions corresponding to a behavior motion, we have extarcted a single tempo-
ral basis θi, a single spatial basis Bi and a set of coefficient matrices Cj

i each corresponding
to a macro-action Sji . It is an important point to note that we always select the most impor-
tant basis vectors that explain the data in the spatial and temporal direction. Hence if each
macro-action is a matrix of size F × n where F is the number of time steps and n is the
number of DOFs, then the number of spatial basis vectors Ks ≤ n and number of temporal
basis vectors Kt ≤ F . Usually the number of bases vectors is much less than the dimension
of the space. The matrix C representing the coefficients is of size Kt ×Ks.

Test Phase : Generating a new macro-action

In the test phase, the goal is to generate a new macro-action given the learnt bases vectors
and set of constraints. hence we need to optimize for a new coefficient matrix C which
satisfies the new constraints provided during the test phase.

min
C

∑
j

‖C−Cj
i‖F (3.1)

22

subject to

g(C) ≤ 0 (3.2)

h(C) = 0 (3.3)

where ‖A‖F represents the Frobenius norm of the difference between optimized coefficient
matrix C and the coefficient matrices Cj

i of trajectories of behavior motion i from which the
basis have been learnt before. Hence the optimization objective in Eq.(3.1) tries to converge
to a coefficient matrix C that is similar coefficients of trajectories seen before. g(C) repre-
sents inequality constraints such as joint limits of the humanoid robot. h(C) represents the
equality constraints such as end-effector position of certain limbs, contact constraints etc.

3.5 Macro-Actions in Planning

The macro-actions generated in the optimization procedure mentioned above is used as a pre-
computation step before planning starts. From previously generated planning data, spatiotemporal
basis pertaining to different behaviors are learnt. When a new planning request is generated in a
different environment, the constraints from the environment are used to optimize for a new Ci for
every behavior i. These new constraints can be different stair heights, step lengths, handrail height
and orientation etc.

The most common approach to using macro-actions in planning itself is to use them as one of the
available options in the action-set. While this can be useful, the macro-actions generated may often
be invalid since we don’t have constraints on collision with the world, self-collision etc. Hence
we follow an approach similar to E-graphs [22] in effectively using these macro-actions with the
MR-MHA* framework. E-graphs use prior plans to accelerate the plans of new planning requests
by using heuristics to bias the search towards these prior experience and avoiding to search large
parts of the state-space.

3.5.1 Heuristics

We consider a nominal standing pose of the humanoid and apply the learnt macro-actions to these
nominal poses. The trajectories generated out of these are used as heuristics for the search in the
multi-heuristic framework. We follow a pure-pursuit approach in using trajectories as heuristics.
Fig. 3.4

23

Figure 3.4: Pure pursuit approach to using trajectories as heuristics

The heuristic of a state is calculated as

h(state) = dist(state, p) + dist(p, e)

where p is the lookahead waypoint and e is the end waypoint on the macro-action trajectory. We get
the distance to the macro-action trajectory shown as distance to point p. To follow the trajectory
we also add the distance along the trajectory from point p to end point e to guide the search to
follow the trajectory.

3.5.2 Adaptive Motion Primitives

As discussed earlier, depending on the current state of expansion during the search, a trajectory
for each macro-action is generated from a chosen nominal pose and added as an experience in the
search graph. Hence while selecting the next best action, the search also considers snapping to
one of these states on the trajectory in addition to other actions available in its action-set. The
heuristic, explained above, in addition to these snapping actions, guides the search to execute the
macro-action trajectories appropriately.

3.6 Experiments

We perform preliminary experiments to extract macro-actions for stepping actions of humanoid
robot and testing it in planning for climbing stairways. We collected 100 different stepping mo-
tions from previous plans with weak heuristics where the environment step height ranged from

24

Optimization statistics
Macro-action Time(s) Spatial Basis vec-

tors
Temporal Basis
vectors

Left(Both feet
start at the same
height)

15.2 6 6

Right(Both feet
start at the same
height)

8.4 6 6

Left(Both feet
start at a step
height difference)

9.17 6 6

Right(Both feet
start at a step
height difference)

17.31 6 6

Table 3.1: Optimization statistics for stepping macro-actions.

0.1 − 0.2m and step length of 0.2m. The left stepping motions and right stepping motions were
segmented into separate behaviors and spatiotemporal bilinear basis were learnt for both the step-
ping behaviors.

Each action trajectory was of size 50×17 where 50 is the number of time steps and 17 is the number
of DOFs considered. Note that we did not consider the entire 35DOF since we already know that
the arms did not move at all during any of these plans. The 17 DOF corresponds to 7 DOF for each
leg, and 3 for the COM(x, y, z). From our experiments we determined that 6 basis vectors each for
the spatial and temporal basis, (i.e) Ks = 6 and Kt = 6, worked well in reconstructing the data
and generating new macro-actions. Note that the number of basis selected is much less than the
full dimensionality of the spatial and temporal direction and helps speed up the optimization of
coefficient matrix C.

The environment of the new planning problem consisted of a step height of 0.25m and step length
of 0.3m both of which have not been seen before. Hence we solve the optimization presented in
Eq.(3.1) to determine a new C. The inequality constraints are the joint limits of the robot and
equality constraints correspond to the new step length and step height.

We use the Sequential Quadratic Programming(SQP) implementation in Matlab to determine the
C which satisfies the constraints. Four macro-actions were generated two each for the right feet
and left feet step-up. The optimization time taken to generate new macro-action and the number
of basis vectors used for each macro-action is specified in the table.

25

(a) (b) (c)

(d) (e) (f)

Figure 3.5: Macro-action for the left foot. Both feet start at the same level and the left foot is moved up and forward
to satisfy the step length and step height.View clockwise.

(a) (b) (c)

(d) (e) (f)

Figure 3.6: Macro-action for the left foot. Both feet start at difference of step height and the left foot is moved up and
forward to satisfy the step height and step length. View clockwise.

26

(a) (b) (c)

(d) (e) (f)

Figure 3.7: Macro-action for the right foot. Both feet start at the same level and the right foot is moved up and forward
to satisfy the step length and step height.View clockwise.

(a) (b) (c)

(d) (e) (f)

Figure 3.8: Macro-action for the right foot. Both feet start at difference of step height and the right foot is moved up
and forward to satisfy the step height and step length.View clockwise.

As mentioned before the macro-actions are generated as a pre-computation step. Once these

27

macro-actions are generated, they are used in the planning as heuristics and snapping actions as
mentioned before. We perform an experiment of climbing on top of a single flight of stairs with
and without macro-actions. In the case of planning without macro-action heuristics, the search
times out in the tracking phase, failing to find a plan for a timeout of 180s. With the presence of
macro-actions, the search in the tracking phase is able to find a solution in 44s. Fig. 3.9 shows the
expansions(red) during planning along with the heuristic suggestions(yellow).

Figure 3.9: Planning with macro-actions as heuristics and snap motions. Red colour shows the expansions and yellow
color shows the macro-action heuristic suggestions.

3.7 Conclusion

In this chapter we presented an approach to learn useful macro-actions from previous planning
data using Bilinear SpatioTemporal basis models. We also presented a way to use these macro-
actions as snapping motions and heuristics in the search. We showed some preliminary results for
humanoid mobility planning on a staircase.

28

Chapter 4

Conclusion

In this thesis we have presented a Multi-heuristic framework for planning hor humanoid mobility
in industrial environments. Industrial environments present a challenge of multiple state-space
representations that we have to plan in. In this thesis we introduce MR-MHA*, as a generalization
of the MHA* algorithm, that is used on top of the adaptive dimensionality framework to produce a
plan that searches among all these state-space representations simultaneously. We also talk about
an extension to MHA* called Sharing-on-Demand where we discuss how limited sharing between
several heuristic queues can be useful while having a set of heuristics which might potentially
pollute each other.

We also discuss an approach to learning macro-actions for full-body planning for humanoids. We
extract a bilinear bases models in both the spatial and temporal direction to represent several dif-
ferent humanoid behaviors. Using these bases models we optimize for new macro-actions subject
to newer constraints. We then show how these macro-actions can be used in motion planning for
humanoids and provide preliminary results on full-body planning.

29

30

Bibliography

[1] Honda motor corp. the honda humanoid robot asimo. URL http://world.honda.
com/ASIMO. 1

[2] Yaskawa electric corp. motoman-sda10. URL http://www.yaskawa.co.jp/en/
newsrelease/2007/02.htm. 1

[3] Honda motor corp. the honda humanoid robot asimo. URL http://world.honda.
com/ASIMO. 1

[4] Sandip Aine, Siddharth Swaminathan, Venkatraman Narayanan, Victor Hwang, and Maxim
Likhachev. Multi-heuristic a*. Berkeley, USA, July 2014. doi: 10.15607/RSS.2014.X.056.
2.5, 2.5.2, 3.1

[5] Ijaz Akhter, Tomas Simon, Sohaib Khan, Iain Matthews, and Yaser Sheikh. Bilinear spa-
tiotemporal basis models. ACM Transactions on Graphics, 31(2):17:1–17:12, April 2012.
doi: 10.1145/2159516.2159523. 3.1, 3.2, 3.3, 3.3

[6] Jernej Barbič, Alla Safonova, Jia-Yu Pan, Christos Faloutsos, Jessica K. Hodgins, and
Nancy S. Pollard. Segmenting motion capture data into distinct behaviors. In Proceedings
of Graphics Interface 2004, GI ’04, pages 185–194, School of Computer Science, Univer-
sity of Waterloo, Waterloo, Ontario, Canada, 2004. Canadian Human-Computer Communi-
cations Society. ISBN 1-56881-227-2. URL http://dl.acm.org/citation.cfm?
id=1006058.1006081. 1

[7] Matei T. Ciocarlie and Peter K. Allen. Hand posture subspaces for dexterous robotic
grasping. Int. J. Rob. Res., 28(7):851–867, July 2009. ISSN 0278-3649. doi: 10.1177/
0278364909105606. URL http://dx.doi.org/10.1177/0278364909105606.
3.1

[8] Marco Cognetti, Pouya Mohammadi, and Giuseppe Oriolo. Whole-body motion planning
for humanoids based on com movement primitives. In Humanoid Robots (Humanoids), 2015
IEEE-RAS 15th International Conference on, pages 1090–1095. IEEE, 2015. 1.1

[9] Johannes Garimort, Armin Hornung, and Maren Bennewitz. Humanoid navigation with dy-
namic footstep plans. 2011 IEEE International Conference on Robotics and Automation,
pages 3982–3987, 2011. 1.1

[10] Kalin Gochev. Planning with adaptive dimensionality. In Publicly Accessible Penn Disser-
tations. 1739., 2016. URL http://repository.upenn.edu/edissertations/

31

http://world.honda.com/ASIMO
http://world.honda.com/ASIMO
http://www.yaskawa.co.jp/en/newsrelease/2007/02.htm.
http://www.yaskawa.co.jp/en/newsrelease/2007/02.htm.
http://world.honda.com/ASIMO
http://world.honda.com/ASIMO
http://dl.acm.org/citation.cfm?id=1006058.1006081
http://dl.acm.org/citation.cfm?id=1006058.1006081
http://dx.doi.org/10.1177/0278364909105606
http://repository.upenn.edu/edissertations/1739
http://repository.upenn.edu/edissertations/1739

1739. 2.4, 2.4

[11] Kalin Gochev, Benjamin J. Cohen, Jonathan Butzke, Alla Safonova, and Maxim Likhachev.
Path planning with adaptive dimensionality. In Proceedings of the Fourth Annual Sym-
posium on Combinatorial Search, SOCS 2011, Castell de Cardona, Barcelona, Spain,
July 15.16, 2011, 2011. URL http://www.aaai.org/ocs/index.php/SOCS/
SOCS11/paper/view/4037. 2.1, 2.2, 2.3

[12] Neha Gupta, Ole-Christoffer Granmo, and Ashok Agrawala. Thompson sampling for dy-
namic multi-armed bandits. In Proceedings of the 2011 10th International Conference on Ma-
chine Learning and Applications and Workshops - Volume 01, ICMLA ’11, pages 484–489,
Washington, DC, USA, 2011. IEEE Computer Society. ISBN 978-0-7695-4607-0. doi: 10.
1109/ICMLA.2011.144. URL http://dx.doi.org/10.1109/ICMLA.2011.144.
2.5.2

[13] Armin Hornung, Daniel Maier, and Maren Bennewitz. Search-based footstep planning. 1.1

[14] Armin Hornung, Andrew Dornbush, Maxim Likhachev, and Maren Bennewitz. Anytime
search-based footstep planning with suboptimality bounds. In Humanoids, 2012. 1.1

[15] J. A. Ijspeert, J. Nakanishi, and S. Schaal. Movement imitation with nonlinear dynami-
cal systems in humanoid robots. In International Conference on Robotics and Automation
(ICRA2002), Washinton, May 11-15 2002, 2002. URL http://www-clmc.usc.edu/
publications/I/ijspeert-ICRA2002.pdf. 3.2

[16] Fahad Islam, Venkatraman Narayanan, and Maxim Likhachev. Dynamic multi-heuristic a.
In Robotics and Automation (ICRA), 2015 IEEE International Conference on, pages 2376–
2382. IEEE, 2015. 3.1

[17] James Kuffner, Koichi Nishiwaki, Satoshi Kagami, Masayuki Inaba, and Hirochika Inoue.
Motion Planning for Humanoid Robots, pages 365–374. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2005. ISBN 978-3-540-31508-7. doi: 10.1007/11008941 39. URL https:
//doi.org/10.1007/11008941_39. 1.1

[18] James J. Kuffner, Satoshi Kagami, Koichi Nishiwaki, Masayuki Inaba, and Hirochika Inoue.
Dynamically-stable motion planning for humanoid robots. Autonomous Robots, 12(1):105–
118, Jan 2002. ISSN 1573-7527. doi: 10.1023/A:1013219111657. URL https://doi.
org/10.1023/A:1013219111657. 1.1

[19] Bokman Lim, Syungkwon Ra, and Frank C Park. Movement primitives, principal component
analysis, and the efficient generation of natural motions. In Robotics and Automation, 2005.
ICRA 2005. Proceedings of the 2005 IEEE International Conference on, pages 4630–4635.
IEEE, 2005. 3.1, 3.2

[20] Venkatraman Narayanan, Sandip Aine, and Maxim Likhachev. Improved multi-heuristic a*
for searching with uncalibrated heuristics. In Eighth Annual Symposium on Combinatorial
Search, 2015. 2.5, 3.1

[21] Peter Pastor, Heiko Hoffmann, Tamim Asfour, and Stefan Schaal. Learning and general-
ization of motor skills by learning from demonstration. In Proceedings of the 2009 IEEE

32

http://repository.upenn.edu/edissertations/1739
http://repository.upenn.edu/edissertations/1739
http://www.aaai.org/ocs/index.php/SOCS/SOCS11/paper/view/4037
http://www.aaai.org/ocs/index.php/SOCS/SOCS11/paper/view/4037
http://dx.doi.org/10.1109/ICMLA.2011.144
http://www-clmc.usc.edu/publications/I/ijspeert-ICRA2002.pdf
http://www-clmc.usc.edu/publications/I/ijspeert-ICRA2002.pdf
https://doi.org/10.1007/11008941_39
https://doi.org/10.1007/11008941_39
https://doi.org/10.1023/A:1013219111657
https://doi.org/10.1023/A:1013219111657

International Conference on Robotics and Automation, ICRA’09, pages 1293–1298, Piscat-
away, NJ, USA, 2009. IEEE Press. ISBN 978-1-4244-2788-8. URL http://dl.acm.
org/citation.cfm?id=1703435.1703645. 3.2

[22] Mike Phillips, Benjamin J Cohen, Sachin Chitta, and Maxim Likhachev. E-graphs: Boot-
strapping planning with experience graphs. 2012. 3.5

[23] Mike Phillips, Venkatraman Narayanan, Sandip Aine, and Maxim Likhachev. Efficient search
with an ensemble of heuristics. In Qiang Yang and Michael Wooldridge, editors, Proceedings
of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015,
Buenos Aires, Argentina, July 25-31, 2015, pages 784–791. AAAI Press, 2015. URL http:
//ijcai.org/Abstract/15/116. 2.5.2, 2.5.2

[24] Alla Safonova, Jessica K. Hodgins, and Nancy S. Pollard. Synthesizing physically real-
istic human motion in low-dimensional, behavior-specific spaces. In ACM SIGGRAPH
2004 Papers, SIGGRAPH ’04, pages 514–521, New York, NY, USA, 2004. ACM.
doi: 10.1145/1186562.1015754. URL http://doi.acm.org/10.1145/1186562.
1015754. 3.1, 3.2

[25] S. Schaal. Dynamic movement primitives - a framework for motor control in humans and
humanoid robots. In The International Symposium on Adaptive Motion of Animals and Ma-
chines, Kyoto, Japan, March 4-8, 2003, March 2003. URL http://www-clmc.usc.
edu/publications/S/schaal-AMAM2003.pdf. 3.2

[26] S. Schaal, J. Peters, J. Nakanishi, and A. Ijspeert. Control, planning, learning, and imitation
with dynamic movement primitives. In IROS 2003, pages 1–21. Max-Planck-Gesellschaft,
October 2003. 3.2

[27] S. Schaal, J. Peters, J. Nakanishi, and A.J. Ijspeert. Learning Movement Primitives. In
International Symposium on Robotics Research (ISRR2003), 2003. 3.2

[28] Jack M. Wang, David J. Fleet, and Aaron Hertzmann. Gaussian process dynamical models.
In In NIPS, pages 1441–1448. MIT Press, 2006. 3.2

[29] KangKang Yin, Kevin Loken, and Michiel van de Panne. Simbicon: Simple biped loco-
motion control. In ACM SIGGRAPH 2007 Papers, SIGGRAPH ’07, New York, NY, USA,
2007. ACM. doi: 10.1145/1275808.1276509. URL http://doi.acm.org/10.1145/
1275808.1276509. 2.4

33

http://dl.acm.org/citation.cfm?id=1703435.1703645
http://dl.acm.org/citation.cfm?id=1703435.1703645
http://ijcai.org/Abstract/15/116
http://ijcai.org/Abstract/15/116
http://doi.acm.org/10.1145/1186562.1015754
http://doi.acm.org/10.1145/1186562.1015754
http://www-clmc.usc.edu/publications/S/schaal-AMAM2003.pdf
http://www-clmc.usc.edu/publications/S/schaal-AMAM2003.pdf
http://doi.acm.org/10.1145/1275808.1276509
http://doi.acm.org/10.1145/1275808.1276509

	1 Introduction
	1.1 Related Work
	1.2 Preface

	2 Planning in Multiple Representations
	2.1 Introduction
	2.2 Notations
	2.3 Adaptive Dimensionality
	2.4 Multi-Representation Adaptive Dimensionality
	2.5 MultiRep-MHA*
	2.5.1 Algorithmic Details
	2.5.2 Sharing on Demand
	2.5.3 Experiments

	2.6 Conclusion

	3 Learning Macro-Actions to guide Planning
	3.1 Introduction
	3.2 Related Work
	3.3 Bilinear SpatioTemporal Models
	3.4 Learning Macro-Actions
	3.4.1 Approach

	3.5 Macro-Actions in Planning
	3.5.1 Heuristics
	3.5.2 Adaptive Motion Primitives

	3.6 Experiments
	3.7 Conclusion

	4 Conclusion

