
Exploiting Robotic Swarm
Characteristics for Adversarial
Subversion in Coverage Tasks

Navyata Sanghvi

CMU-RI-TR-17-60

August 2017

Submitted in partial fulfillment of the requirements for the degree of
Master of Science in Robotics

Robotics Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Thesis Committee:
Katia Sycara, Chair
Maxim Likhachev
Sasanka Nagavalli

Copyright c© 2017 Navyata Sanghvi

For my parents

Abstract
Multi-robot systems, such as swarms, with large number of members that are ho-

mogeneous and anonymous are robust to deletion and addition of members. However,
these same properties that make the system robust, create vulnerabilities under certain
circumstances. In this work, we study such a case, namely the insertion by adversarial
agents, called moles, that subvert the performance of the system. The adversary mon-
itors the swarm’s movements during surveillance operations for the presence of holes,
i.e. areas that were left uncovered by the swarm. The adversary then adds moles that
get positioned in the swarm, in such a way as to deceive the swarms regarding the exis-
tence of holes and thus preventing the swarm from discovering and repairing the holes.
This problem has significant military applications. Our contributions are as follows:
First, to the best of our knowledge, this is the first paper that studies this problem. Sec-
ond, we provide a formalization of the problem. Third, we provide several algorithms,
and characterize them formally and also experimentally. Finally, based on developed
theory and algorithms, we present a dynamic scenario and describe adversary control
laws to leverage the identified swarm vulnerability.

I

Acknowledgements
I would like to begin by thanking my advisor, Professor Katia Sycara, for her

unerring guidance and enthusiasm. Her passion for the field of swarm robotics, as
well as her constant advice and insights have created for me a novel, exciting and
highly interesting journey in robotics research. Through all the triumphs and failures
accompanying this foray, I am honored to have had her vast knowledge and invariable
support by my side.

I would also like to thank Sasanka Nagavalli, whose experience and keen intellect
have both been an inspiration as well as a steadying hand. He has spent countless hours
with me on insightful discussions which have helped me overcome many a stressful
time and have always steered my research in new, fulfilling directions.

I would like to thank my committee member Professor Maxim Likhachev for inter-
esting questions and comments, and the opportunity to have his experienced judgment
to critique and better my work. I would like to thank Professor Nilanjan Chakraborty,
Professor Michael Lewis and Changjoo Nam for their expert advice during many lab
meetings. I would also like to thank other members of our lab, Wenhao Luo, She-
hzaman Khatib, Anqi Li, Jimit Gandhi, and Ramitha Sundar for many conversations,
lots of help, laughter and sharing-in-strife during both study and work. It has been an
invaluable experience to work, learn and grow with this bunch.

Finally, I would like to express my endless thanks to my family and parents for
their many sacrifices, long-distance support, love, cheers, and boundless faith.

II

Contents
1 Introduction 1

2 Related Work 2

3 Problem Formulation 2
3.1 Preliminaries . 2
3.2 Problem Statement . 4

4 Algorithms 5
4.1 Preliminaries . 5

4.1.1 Terminology . 5
4.1.2 Mole Agents per Citizen Agent 6
4.1.3 Input, Output and Constraints 8

4.2 Random Scatter Algorithm . 8
4.3 Grid Search Algorithm . 8

4.3.1 Mole Agent Insertion . 8
4.3.2 Protrusions Grid Search Insertion 10
4.3.3 Randomized Grid Search Insertion 11

4.4 Discrete Arc Cover Algorithm . 13
4.4.1 Algorithm Description . 13
4.4.2 Greedy version . 14
4.4.3 Bounds on Sub-optimality 14

4.5 Continuous Arc Cover Algorithm . 15
4.5.1 Algorithm Description . 15
4.5.2 Greedy version . 16

5 Algorithm Results and Discussion 16
5.1 Characteristics Comparison . 16
5.2 Algorithm Advantage . 17
5.3 Run-time Ratio . 18
5.4 Overall Observations . 19

6 Dynamic Problem 19

7 Conclusions and Future Work 23

III

1 Introduction
In recent years, there has been significant interest in distributed multi-robot systems
whose members act based on information acquired through local sensing and/or com-
munication with other robots in their spatial neighborhood. When these local interac-
tions result in global collective behaviors (e.g. rendezvous, flocking, dispersion), the
system is known as a robotic swarm [3, 11]. Robotic swarms are composed of a large
number of agents that are homogeneous. Additionally, swarms are robust to addition
or subtraction of agents, which gives them the beneficial properties of scalability and
robustness to individual robot failure. However, these same characteristics also make
the swarm vulnerable to manipulation by agents that could be inserted into the swarm
by an adversary for the purpose of subverting the swarm’s performance.

Swarms have great potential for many applications including search and rescue,
environmental monitoring, exploration, reconnaissance and surveillance. Particularly
for military applications, they have the potential to be an excellent asset when employed
by allied forces or a dangerous threat when used by enemies. Robotic swarms are
envisioned to be composed of relatively inexpensive (even disposable) robots such as
commercially available quadrotors that only cost tens or hundreds of dollars, which
makes them easily accessible to many parties — even those with limited monetary
resources. Based on current trends [16], [14], it is reasonable to expect that robotic
swarms will continue to decrease in cost. Thus, it has been argued [17] in the military
literature that when defending against a hostile swarm, it is not cost-effective to use
traditional means to disrupt or destroy the swarm (e.g. ammunition expended to destroy
swarm may be more expensive than swarm itself). In these situations, a better strategy
would be to exploit swarm vulnerabilities to insert adversarial agents for the purpose of
disrupting swarm performance, with the added advantage that the enemy still thinks its
swarm works correctly. Studying such deception strategies is also necessary to guide
development of counter-measures against disruption of swarm behavior by adversarial
agents in friendly swarms.

In this work, we study a scenario in which a hostile swarm is performing surveil-
lance operations. Each robot in the swarm is assumed to have range-limited communi-
cation and sensing. A point in the environment is considered “covered” for surveillance
if it is within the sensing disk of any swarm robot. As the swarm robots slowly move
ensuring that they maintain communication connectivity, holes in coverage dynami-
cally appear. The detection of “coverage” holes in sensor networks using both topo-
logical approaches [9] and metric approaches [20, 12] has been studied in the literature
[1]. One approach based on localized Voronoi diagrams [22] requires only local infor-
mation and one-hop communication between members in the sensor network, so it is
particularly applicable to swarms and we assume the swarm under study uses this ap-
proach. By monitoring the swarm’s movements, our goal is to periodically identify the
number and location where adversarial “mole” agents must be inserted into the hostile
swarm to prevent its original “citizen” agents from detecting any holes in coverage.

This research makes the following contributions. First, to the best of our knowl-
edge, this is the first work that studies this problem. Second, we provide a formalization
of the problem. Third, we provide several algorithms, and characterize them formally
and also experimentally. In Section 3, we formalize this problem. In Section 4, we

1

present and characterize several algorithms to find the required number of moles and
their insertion locations. In Section 5, we present simulation results and discuss the
effectiveness of each algorithm. Finally, in Section 6 we describe a dynamic scenario
and adversary control laws based on the developed theory and algorithms.

2 Related Work
The problem of coverage hole discovery in sensor networks has been widely studied
in the literature [1, 21]. A variety of approaches to coverage hole discovery have been
considered for both static and mobile networks including those based on computational
geometry [22, 12] and topology [9, 8]. Computational geometry approaches typically
involve computing the Voronoi diagram [2] and then (for mobile sensor networks) fol-
lowing a simple motion rule to heuristically minimize coverage holes [20] (e.g. moving
towards the furthest Voronoi vertex, minimizing the maximum distance of any point to
the nearest Voronoi vertex). Topological approaches make minimal metric assumptions
(e.g. the ability to distinguish ‘near’ and ‘far’ neighbors) and then use only information
based on the connectivity of the sensing graphs to find and repair holes [7]. While the
previous literature has studied hole discovery, we study the novel problem of how to
place agents to prevent hole discovery.

While there is significant literature on security in sensor networks [4, 18], that work
has focused on security in communications based on (a) attacks on secrecy and authen-
tication (e.g. unauthorized snooping on private communication channels), (b) attacks
on network availability (e.g. overloading the network to cause distributed denial of
service) or (c) attacks on service integrity (e.g. compromising a sensor in the network
and injecting false data). That work is not relevant to our work since we do not try
to compromise network security, availability or integrity through communications. In-
stead, we exploit physical vulnerabilities intrinsic to robotic swarms in order to insert
the minimum number of mole agents to prevent the hostile swarm from successfully
detecting coverage holes.

Previous work on Particle Swarm Optimization (PSO) [15] defines ‘deception’ as
the average proportion of optimization iterations in which the selected and true neigh-
borhood bests are different due to noise in particles’ personal best objective values,
leading to sub-optimal particle propagation. The actions, beliefs and deception strate-
gies of a deceiver robot against its mark have also been studied using game theory
[19], but in the context of two individuals’ interaction. In contrast to such prior work
on robotic deception, we are the first to form a deliberate, structured attack on a citizen
swarm through adversarial agent insertion to subvert its performance. We demonstrate
this attack in the context of a swarm performing surveillance operations.

3 Problem Formulation

3.1 Preliminaries
We present in this sub-section preliminary concepts, definitions and assumptions used
to define our problem.

2

Citizen and Mole Agents: Assume the hostile swarm is composed of n citizen agents
P = {p1,p2, ...,pn}, pi ∈ R2. We wish to insert a set of adversarial mole agents
Q = {q1,q2, ...}, qi ∈ R2 to disrupt the performance of the hostile swarm. Our goal
is to identify the quantity and locations of moles necessary to disrupt swarm perfor-
mance. We assume moles communicate identically to citizens. That is, messages are
exchanged between moles in the same manner and format as between citizens.
Sensing, Communication and Agent Radius: We assume the sensing range rs and
communication range rc are identical for all agents (P ∪ Q) (i.e. rs = rc = r). In
addition, we assume each agent occupies a disk of radius rmin. That is, ∀ui,uj ∈
(P ∪Q) : ‖ui − uj‖2 ≥ 2rmin. To make connectivity possible, rmin ∈

(
0, r2
]
.

We assume the citizen swarm is connected. When adding moles, we must ensure that
the resulting network of agents (P ∪ Q) is connected. If mole agents qi are added
incrementally one-by-one, the following condition is both necessary and sufficient to
ensure global connectivity: ∃v ∈ (P ∪Q) : ‖qi − v‖2 ≤ r.

Figure 1: Voronoi cells of 8 agents. Agent p’s cell is �v1v2v3v4v5.

Voronoi Partition [2]: Consider the R2 plane. Given the set of citizen agent locations
P ⊂ R2, a Voronoi partition of the plane divides it into convex polygons known as
Voronoi cells (one per agent). A Voronoi cell corresponding to agent p ∈ P is the
set of all points closer to p than to any other agent. Formally, if H(pi,pj) represents
the half-plane defined by the perpendicular bisector of the line segment joining agents
pi,pj ∈ P and containing pi, the Voronoi cell of pi is given by the following.

cellvd(pi) =
⋂

pj∈P\{pi}

H(pi,pj) (1)

Voronoi Vertices: We represent the Voronoi cell corresponding to agent p ∈ P by
its set of vertices Vp(P) generated by the Voronoi partition of P . Figure 1 shows an
example of a Voronoi partition where, for agent p, Vp(P) = {v1, v2, v3, v4, v5}.
Boundary Agents: When the swarm includes both citizens P and molesQ, boundary
agents BQ(P) ⊆ P are the subset of citizens at the edge of a coverage hole. Since
Voronoi cells are defined as the set of points closest to the corresponding agent, if any
point is within an agent’s Voronoi cell but outside its sensing range, that point is not
within any agent’s sensing range (i.e. there is a coverage hole and this agent is at the

3

boundary of that coverage hole). Since Voronoi cells are convex, a boundary agent is
any citizen with one or more Voronoi vertices outside of its sensing range r.

BQ(P) = {p ∈ P|∃v ∈ Vp(P ∪Q) : ‖v − p‖2 > r} (2)

Internal Agents: These are the subset of citizen agents IQ(P) ⊆ P which are not
boundary agents (i.e. IQ(P) = P \ BQ(P)).

3.2 Problem Statement
Given a multi-agent configuration of citizen agents P performing an exploration and
surveillance mission, our problem is identifying near-optimally the number and inser-
tion locations of mole agents Q to prevent the discovery of coverage holes in a given
state of the citizen system. These insertion points are identified such that each citizen
agent (after the insertion) believes that it is not on the edge of a hole (i.e. it is not a
boundary agent) and thus, that the system as a whole has achieved full coverage.

Figure 2: In this figure, circles represent the sensing disk of each agent with radii
equal to sensing ranges r, and solid disks (blue or red) represent the physical area
occupied by each agent with radii = rmin. The left panel shows the citizen agent

formation in R2 and their Voronoi cells. The area in pink represents holes in sensing.
The right hand panel displays an example solution including citizens (in blue), moles
(in red), and mole agent placements and sensing disks (also in R2). The placement of

the moles ensures that no citizen is a boundary agent. This can be seen from the
resulting Voronoi cells of citizens, shown via blue lines.

Consider unweighted undirected graphG = (V,E) with vertex set V = P∪Q (i.e.
citizens and moles are vertices) and edgesE = {(i, j) | vi,vj ∈ V : ‖vi − vj‖2 ≤ r}
(i.e. an edge connects two agents if they are within sensing range of each other). Let
the Laplacian matrix for this graph be given by L(G). It is known that the eigenvalues
of this matrix are non-negative (i.e. ∀k : 0 ≤ λk ≤ λk+1). In addition, the second
smallest eigenvalue is non-zero (i.e. λ2 > 0) if and only if the graph is connected [13].

4

We must ensure this condition is true to ensure global connectivity of our network
of agents. If mole agents are incrementally inserted, incorporating sensing and agent
radius constraints from Section 3.1 gives us our objective:

argmin
Q

|Q|

subject to BQ(P) = ∅
∀ui,uj ∈ (P ∪Q) : ‖ui − uj‖2 ≥ 2rmin

λ (L(G)) =
{
λ1, λ2, . . . , λ|P∪Q|

}
: λ2 > 0

In Figure 2, an example of a formation of citizen agents is shown in the left panel,
along with an example solution (i.e. the near-optimal insertion locations of mole
agents) in red in the right panel. Also shown are the resulting Voronoi cells of the
citizen agents after mole insertion, which are all within the respective agents’ sensing
ranges, thus making the system of citizen agents conclude that there are no holes in
sensing.

4 Algorithms

4.1 Preliminaries
We introduce here some preliminary terminology, definitions and theorems required to
understand our algorithms.

4.1.1 Terminology

To illustrate the following concepts, consider the example boundary citizen agent in
Figure 3. We assume that the plane contains citizens P and moles Q.

Figure 3: Example of a citizen agent p1, its Voronoi cell �v1v2v3v4, sensing disk
sdisk(p1), protrusions protk(p1), angle of protrusion ∠prot and pieced angles of

protrusion ∠protk for k ∈ {1, 2}.

5

Definition 1. Protrusions protk(p), k ∈ {1, 2, ..,K} from a boundary agent p’s
sensing disk sdisk(p) are disjoint regions in its Voronoi cell cellvd(p) that are outside
of its sensing range r.

Definition 2. A boundary agent p’s protrusion angles ∠protk, k ∈ {1, 2, ...,K} are
angles subtended by each protrusion protk(p) at its center.

Definition 3. A boundary agent p’s total protrusion angle ∠prottot is the minimum
total angle subtended by all protrusions protk(p) at its center. Note that ∠prottot ≥∑
k

∠protk.

Definition 4. A boundary agent p’s protrusion angle ∠protk is said to be flipped by
the insertion of mole agents Qins iff all points in protk(p) are in the Voronoi cell of
one q ∈ Qins after insertion.

Definition 5. A boundary agent p’s total protrusion angle∠prottot is said to be flipped
by the insertion of mole agents Qins iff all its protrusion angles are flipped by the
insertion. Using Definition 1, this is equivalent to saying that p is no longer a boundary
agent.

Definition 6. A boundary agent p is said to be flipped by the incremental insertion of
mole agents Qins iff its protrusion angle ∠prottot has been flipped by the insertion.

4.1.2 Mole Agents per Citizen Agent

Here we prove that the number of moles required to flip any citizen boundary agent is
bounded.

Lemma 1. A protrusion angle ∠protk can be flipped by the insertion of a single mole
iff:

∠protk ≤ 2 cos−1
(
rmin

r

)
(3)

Proof. Given any boundary citizen p ∈ BQ (P) and its Voronoi cell, a new mole
q may be placed anywhere within p’s sensing range r such that ∀u ∈ (P ∪Q) :
‖q− u‖2 ≥ 2rmin. The maximum reduction in size of Voronoi cell of p is achieved
when q is placed as close as possible to p (i.e. ‖q− p‖2 = 2rmin). Consider Figure
4a. From congruent triangles 4s1ps3 and 4s3ps2, this theorem must be true for
∠protk = ∠s1ps2 = 2 cos−1

(
rmin

r

)
. The insertion would result in new Voronoi edge

s1s2. A smaller protrusion angle, i.e., ∠protk ≤ 2 cos−1
(
rmin

r

)
would also require

inserting only one mole to flip the citizen, but it would not require ‖q− p‖2 = 2rmin.
A larger protrusion angle, i.e., ∠protk > 2 cos−1

(
rmin

r

)
would require more than one

mole to flip. Hence, proved that a single mole agent insertion can flip ∠protk iff
∠protk ≤ 2 cos−1

(
rmin

r

)
.

6

(a) A citizen boundary agent p, its Voronoi
cell before mole insertion, the closest mole
insertion location q (2rmin from p), and
the maximum half-plane claimed by the

insertion, flipping p.

(b) Illustration that when there is only one
citizen agent p1, three moles are required

to flip it.

Figure 4: Mole agent insertion.

Theorem 1. When there is only one citizen, at most three moles are required to flip it.

Proof. First, we show that no configuration of one or two moles can flip the citizen.
When we have only one citizen p1, its Voronoi cell is the entire plane and it has one
protrusion angle ∠prot1 = ∠prottot = 2π. From Lemma 1, adding one mole q1

cannot decrease the Voronoi cell of p1 such that it becomes an internal agent, since
rmin ∈ (0, r2] ⇒ ∠prot1 > 2 cos−1

(
rmin

r

)
. After insertion of q1, the resulting

∠prot1 is minimized when q1 is placed 2rmin away from p1. That is,∠prot1 ≥ (2π−
2 cos−1

(
rmin

r

)
) ∈ (π, 4π3] ⇒ ∠prot1 > π. This cannot be flipped by one more mole

q2, since, from Lemma 1, 2 cos−1
(
rmin

r

)
∈ [2π3 , π) ⇒ ∠prot1 > 2 cos−1

(
rmin

r

)
.

Therefore, two moles cannot flip a citizen in this scenario.
We now prove that three moles are sufficient to flip this citizen. Clearly, it is suffi-

cient to show one configuration of the three which makes flipping possible. Consider
Figure 4b, one arrangement of p1, q1 and q2. In this case, both q1 and q2 are placed
at 2rmin from p1. They are arranged such that ∠s1p1s2 = ∠s2p1s3 = ∠s3p1s4 =
∠s4p1s5 = cos−1

(
rmin

r

)
. The resulting angle of protrusion is ∠s1p1s5 = 2π -

4 cos−1
(
rmin

r

)
. Applying Lemma 1, for another mole q3 to flip this citizen, we need

2π - 4 cos−1
(
rmin

r

)
≤ 2 cos−1

(
rmin

r

)
. This is true whenever rmin ≤ r

2 , which is
always true since rmin ∈

(
0, r2
]
. Therefore, three moles are required to flip a single

citizen agent.

Applying arguments from Theorem 1, it is clear that a maximum of three moles are
required to flip any boundary citizen.

7

4.1.3 Input, Output and Constraints

Each of our algorithms takes as input the citizen agent locations P , agent sensing range
r and agent radius rmin, and outputs mole agent locations Q. They all insert moles
incrementally one at a time. At any step, if the previously inserted moles isQ, a poten-
tial new mole q must satisfy the following feasibility constraints. The first constraint
prevents physical interference between agents and the second guarantees swarm con-
nectivity.

∀u ∈ (P ∪Q) : ‖q− u‖2 ≥ 2rmin (4)
∃u ∈ (P ∪Q) : ‖q− u‖2 ≤ r (5)

4.2 Random Scatter Algorithm

Algorithm 1 Random Scatter Algorithm

1: procedure SCATTERINSERTION(P, r, rmin)
2: Q ← ∅
3: while BQ(P) 6= ∅ do
4: q ∼ U{x ∈ R2 | (∃y ∈ BQ(P) : ‖x− y‖2 ≤ r)∧

(∀z ∈ (P ∪Q) : ‖x− z‖2 ≥ 2rmin)}
5: Q ← Q∪ {q}
6: while ∃q ∈ Q : BQ\{q}(P) = ∅ do
7: Q ← Q \ {q}
8: return Q

Algorithm 1 has two stages: (a) randomly insert moles one at a time at valid in-
sertion locations until no citizens are boundary agents (lines 3–5) and (b) remove un-
necessary moles one at a time until no more moles can be removed without making a
citizen a boundary agent (lines 6–7). Since this algorithm randomly samples from all
valid insertion locations during the first stage, the algorithm will find a solution (i.e.
the algorithm is probabilistically complete).

4.3 Grid Search Algorithm
We develop a protrusion-based parameterization for the possible insertion locations
of moles to flip citizens in Section 4.3.1 and present grid-search based algorithms in
Sections 4.3.2 and 4.3.3.

4.3.1 Mole Agent Insertion

Theorem 2. When the swarm is connected and contains more than one citizen, only
two moles are required to flip a protrusion angle of any boundary citizen agent.

Proof. In a connected network with more than one agent, every agent is within sensing
of at least one other agent. This means that the maximum protrusion angle occurs when

8

an agent p1 is within sensing range of only one other agent and is on the edge of the
other’s sensing disk (i.e. ∠prot1 = 4π

3). From Lemma 1 and arguments in Theorem 1,
it is clear that inserting a mole q1 at 2rmin from p1 can result in a∠prot1 ≤ 2π

3 , which
allows the citizen to then be flipped by just one more mole q2.

Now, having established each boundary agent’s protrusion angles are either one-
flippable or two-flippable, we examine each case individually. Assume the swarm is
composed of multiple citizens.

One-Flippable Protrusion Angle: For boundary agent pi, we call its protrusion angle
∠protk one-flippable if it satisfies Equation (3). We define a point on the edge of pi’s
sensing disk as visible from another point on the edge if the line segment joining the
two does not intersect the disk with radius rmin.

Figure 5: One-flippable citizen: Parameterization of possible mole insertion locations

In Figure 5, ∠s1pis2 = ∠prot. Segments s2s
,
1 and s1s

,
2 are tangents to the disk

occupied by pi. Each point sarc on arcs
_
s1s

,
1 and

_
s2s

,
2 has corresponding visible points

on the other arc. Each sarc has a corresponding arc
_

sviss1 which represents its visible
points. Each such pair of visible points defines a line segment that would be part of
a Voronoi edge within pi’s sensing disk if a mole was appropriately inserted. Let ∠S
represent half the angle such a segment subtends at pi. Let ∠P be the angle pisarc
forms with the y−axis. Observe, ∠P ∈ [∠s3pis2,∠s3pis′2]. For a particular ∠P ,
from Figure 5 (right), ∠S ∈ 1

2 [∠s1pisarc,∠svispisarc]. Then we have:

∠P ∈
[
∠prot

2 , 2 cos−1
(
rmin

r

)
− ∠prot

2

]
(6)

∠S ∈ 1
2

[
∠P + ∠prot

2 , 2 cos−1
(
rmin

r

)]
(7)

Note that the parameterization described above is symmetric about the y-axis. The
inserted mole location (xins, yins) should be along the perpendicular from pi onto the

9

corresponding new Voronoi edge to flip the protrusion angle, so:

xins = ±2r cos(∠S) sin(∠P − ∠S)
yins = 2r cos(∠S) cos(∠P − ∠S)

Two-Flippable Protrusion Angle: From Equation (3) and Theorem 2, if protrusion
angle ∠protk > 2 cos−1

(
rmin

r

)
, then it requires two moles to flip it and we call

∠protk two-flippable. In Figure 6, ∠prot1 = ∠s1pis2. To flip ∠prot1 with two
moles, the protrusion angle must first be made one-flippable (i.e. we must find a mole
insertion point such that the resulting protrusion angle is less than 2 cos−1

(
rmin

r

)
).

The resulting pair of protrusion points s3 and s2 must, at worst, be as shown. To en-
sure that this is the resulting protrusion point pair, we treat {s1, s3} as secondary pro-
trusion points, with ∠protsec = ∠s1pis3 as the secondary protrusion angle (which
will always be less than ∠s2pis3 = 2 cos−1

(
rmin

r

)
). Considering this secondary pro-

trusion angle, we insert a mole as we would in the one-flippable case. This ensures
that the resulting protrusion angle is one-flippable and is subsequently treated as such.
This secondary protrusion is symmetric about the y-axis and thus two such pairs of
secondary protrusions exist.

Figure 6: Two-flippable citizen agent: Usage of {s1, s3} as secondary protrusion
points and ∠s1pis3 as a secondary protrusion angle.

4.3.2 Protrusions Grid Search Insertion

Algorithm 2 does the following: (a) collects protrusion angles of all boundary citizens
(lines 5–6), (b) generates grid of potential mole insertion locations with discretization
d = 2π

180 in each parameter ∠P,∠S for each collected angle (line 7), (c) ranks loca-
tions, with rank proportional to total sum of protrusion and secondary protrusion angles
flipped simultaneously (line 8), (d) adds mole at one of the locations with highest rank

10

Algorithm 2 Protrusions Grid Search Algorithm

1: procedure PROTGSINSERTION(P, r, rmin)
2: Q ← ∅, d← 2π

180
3: while BQ(P) 6= ∅ do
4: G ← {},Sall ← {}
5: for all p ∈ BQ(P) do
6: Sall ← Sall ∪ PROTS(p,Vp(P ∪Q), r)
7: G ← G ∪ GETGRID(BQ(P),Sall, r, rmin, d)
8: Grank ← RANKGRID(G,Sall, r, rmin)
9: Q ← Q∪ {RAND

(
BEST(G,Grank)

)
}

10: return Q

(line 9), (e) repeats steps (a)–(d) iteratively until there are no more boundary citizens.
Since this algorithm considers all possible insertion locations to flip each protrusion
angle, it is resolution complete (i.e. it is complete for the chosen level of discretization
d).

4.3.3 Randomized Grid Search Insertion

Since Algorithm 2 evaluates all possible insertion locations for each protrusion angle, it
takes significantly more time than Algorithm 1 to execute. Since the parameterization
developed in Section 4.3.1 is applicable to any protrusion angle, including total protru-
sion angle ∠prottot, we now attempt to improve the execution time of Algorithm 2 by
modifying it to use only the total protrusion angle and randomly choose, at each step,
one boundary citizen to flip.

This modification results in Algorithm 3 which (a) identifies boundary citizens
L1flip for which ∠prottot is one-flippable (line 4), (b) chooses a random citizen
from L1flip, generates its parameterized grid of potential mole insertion locations, and
inserts a mole according to highest number of agent conversions until there are no
more one-flippable agents (line 5), (c) identifies boundary citizens L2flip for which
∠prottot is two-flippable (line 6), (d) chooses a random citizen from L2flip, gen-
erates its parameterized grid of potential mole insertion locations, and inserts a mole
according to highest number of agent conversions (line 7), and (e) repeats (a)–(d)
until there are no more boundary citizens. Here, “agent conversions” are from one-
flippable to internal or two- to one-flippable.

However, this approach is not complete. There are some situations (e.g. Fig-
ure 7) where considering the total protrusion∠prottot rather than each protrusion angle
∠protk individually results in interference with an existing agent at the potential mole
insertion location. In these situations, to enable the algorithm to proceed, the mole is
inserted at a random valid location (lines 18–19) similar to Algorithm 1.

11

Algorithm 3 Randomized Grid Search Algorithm

1: procedure RANDGSINSERTION(P, r, rmin)
2: Q ← ∅, d← 2π

180
3: while BQ(P) 6= ∅ do
4: L1flip ← GETFLIP(P,Q, r, rmin)
5: Q ← FLIPL(P,Q, r, rmin, d,L1flip)
6: L2flip ← BQ(P)
7: Q ← FLIPL(P,Q, r, rmin, d,L2flip)

8: return Q
9: procedure FLIPL(P, Q, r, rmin, d, L)

10: while L 6= ∅ do
11: p← RAND(L)
12: S ← TOTPROT(p,Vp(P ∪Q), r)
13: G ← GETGRID(p, S, r, rmin, d)
14: Grank ← RANKGRID(G, S, r, rmin)
15: if Grank 6= ∅ then
16: Q ← Q∪ {RAND

(
BEST(G,Grank)

)
}

17: else
18: q ∼ U{x ∈ R2 | (‖x− p‖2 ≤ r)∧

(∀z ∈ (P ∪Q) : ‖x− z‖2 ≥ 2rmin)}
19: Q ← Q∪ {q}
20: L ← GETFLIP(P,Q, r, rmin)
21: return Q

Figure 7: Situation where boundary citizen is incorrectly identified as one-flippable by
Algorithm 3 because it considers total protrusion angle rather than individual

protrusion angles.

12

Algorithm 4 Discrete Arc Cover Algorithm

1: procedure DISCACINSERTION(P, r, rmin)
2: Q ← ∅,Sall ← ∅,m← ∅, d← π

180
3: ol← r sin(d), t← 1.5r sin(d)
4: for all p ∈ BQ(P) do
5: Sall ← Sall ∪ PROTS(p,Vp(P ∪Q), r)
6: A ← GETARCPTS(Sall,P,BQ(P), d, r)
7: Vins ← GETVALIDINS(P, r, rmin)
8: while BQ(P) 6= ∅ do
9: Mins ← {v ∈ Vins | ‖v −m‖2 ≤ r}

10: vins ← argmax
v∈Mins

|{a ∈ A | ||v − a||2 ≤ r}|

11: Q ← Q∪ {vins}
12: Ac ← {a ∈ A | ||vins − a||2 ≤ r}
13: Oc ← {ac ∈ Ac |

(
||vins − ac||2 ≥ r − ol

)
∧(

min
a∈A
||a− ac||2 ≤ t

)
}

14: m← argmin
o∈Oc

(
min

a∈A\Ac

||o− a||2
)

15: A ← A \ Ac ∪ Oc
16: Vins ← {v ∈ Vins | ||v − vins||2 ≥ 2rmin}
17: return Q

Algorithm 5 Greedy Discrete Arc Cover Algorithm

1: procedure GREEDYDACINSERTION(P, Q, r, rmin)
2: perform DISCACINSERTION(P, Q, r, rmin) with no mandatory overlap

point, i.e., m← ∅ in every incremental insertion

4.4 Discrete Arc Cover Algorithm

4.4.1 Algorithm Description

Previous work in [10] proposes boundary node detection in a sensor network based on
finding parts of the perimeter of nodes’ sensing disks which are not covered by sensing
disks of other nodes. It is straightforward to see that, with uniform sensing ranges
across nodes, such ‘exposed’ arcs form the boundary of coverage holes.

This algorithm places moles such that ‘exposed’ arcs along the perimeter of bound-
ary agents are covered, so that boundary agents become internal agents. In Figure 3,
arcs

_
s1s2 and

_
s3s4 (i.e. the arcs corresponding to protrusion angles ∠protk for the

agent p1) are the exposed parts of the sensing disk sdisk(p1) which must be covered
by sensing disks of moles to make p1 an internal agent. Our algorithm discretizes the
exposed arcs and the valid domain of insertion satisfying feasibility conditions (4) and
(5) and searches over this domain to maximize the number of such ‘arc points’ cov-
ered. However, rather than a simple greedy approach, we also designate a mandatory
point of overlap between consecutively inserted mole agents’ sensing disks to both (a)

13

minimize redundancy in covering of arc points and (b) ensure complete coverage of
exposed arcs despite discretization.

Algorithm 4 does the following: (a) collects protrusion angles of all boundary
agents and corresponding arc points A (lines 4-6), (b) computes set of valid mole
insertion locations Vins (line 7), (c) inserts mole at the best insertion location (lines
9-11), (d) computes overlap arc points O (lines 12-13), (e) computes next mandatory
arc point (line 14), (f) updates A and Vins and (lines 15-16) (g) repeats steps (c)-(f)
until there are no more boundary citizens.

4.4.2 Greedy version

Algorithm 5 is the greedy version of Algorithm 4 where, unlike Algorithm 4, a manda-
tory overlap point is not considered in order to ensure minimum redundancy. Instead
this performs DISCACINSERTION() such that line 9 results in considering Mins =
Vins in every incremental insertion — a simple greedy approach.

4.4.3 Bounds on Sub-optimality

Algorithm 5 approaches our problem in a manner that provides guaranteed bounds on
its sub-optimality. Given the set of uncovered discretized arc points A when no moles
have been inserted, let Vins be the discretized set of potential mole insertion locations.
Then, for any v ∈ Vins, the subset of arc points covered by a mole insertion at v would
be Acov(v) = {a ∈ A | ‖a− v‖2 ≤ r}. Each potential mole insertion location has a
corresponding subset of A which would be covered in case of an insertion at that loca-
tion. Therefore, our problem is a set-covering problem, where given a set of arc points
A and a finite number of subsets Acov(v) corresponding to each potential mole inser-
tion location v, our goal is to select the minimum subset of mole insertion locations
Q ⊆ Vins so that A =

⋃
v∈QAcov(v). It is a geometric version of the set-covering

problem with discrete unit disks, which is NP-hard [6]. Let the optimal solution to this
problem be Qopt. A greedy heuristic, as applied in Algorithm 5, instead incrementally
chooses the subset with the maximum number of yet-uncovered arc points until all arc
points A are covered, resulting in a corresponding mole agent set Qg ⊆ Vins. Note
that A =

⋃
v∈Qopt

Acov(v) =
⋃

v∈Qg
Acov(v). A well-known result for the greedy

heuristic in solving set-covering problems is presented in [5], which proves:

|Qg|
|Qopt|

≤ ln

(
max

v∈Vins

|Acov(v)|
)

Therefore, Algorithm 5 has a bound on the sub-optimality of the number of moles
inserted in terms of the maximum size subset of arc points which may be covered by a
mole insertion.

While we do not prove bounds on the sub-optimality of Algorithm 4, we note that
the greedy heuristic used by Algorithm 5 does not exploit the inherently contiguous
structure of arc points on the edge of sensing holes, which Algorithm 4 does, by desig-
nating a mandatory overlap point in sensing to space consecutively inserted moles such
that redundancy is reduced. Thus, we expect Algorithm 4 to perform much better than
Algorithm 5, and indeed, from results presented in the next section, it does.

14

4.5 Continuous Arc Cover Algorithm

4.5.1 Algorithm Description

We now take the idea of arc cover to the continuous domain. We no longer discretize the
search space, nor do we discretize exposed arcs into arc points to cover. However, in or-
der to search the highly non-convex domain (under constraints (4) and (5)), we perform
maximization of our continuous objective of total arc length covered from multiple ini-
tial guess points and choose the best. In order to minimize redundancy in coverage of
the exposed boundary, we further perform the objective maximization subject to the
constraint that a subsequently inserted mole’s sensing must cover the previous one’s
sensing disk’s point of intersection with the hole boundary (if it exists). The continuous
objective ACOVERLAP(o,P,Q) = r

(∑
j

∠protj, (P∪Q) −
∑
j

∠protj, (P∪{Q∪o})
)
,

where
∑
j ∠protj, (P∪X) is the sum of all angles of protrusion for citizen swarm P in

the presence of moles at locations X .
Algorithm 6 does the following: (a) samples a number of start points in valid re-

gions (line 3), (b) finds previous mole’s intersection point with the boundary which
to subsequently overlap (line 5), (c) performs one of two optimizations: either from
samples in the neighbourhood of the previously inserted mole (lines 7-9) or from the
previously sampled start points (lines 11-13), (d) chooses the one which maximizes the
objective, and (e) repeats steps (b)-(c) till no more boundary citizens remain.

Algorithm 6 Continuous Arc Cover Algorithm

1: procedure CONTACINSERTION(P, r, rmin)
2: Q ← ∅, O ← ∅, qprev ← ∅, k ← 300
3: G ← SAMPLE

(
k, U{x ∈ R2 | (∀y ∈ (P ∪Q) : ‖x− y‖2 ≥ 2rmin)∧

(∃z ∈ BQ(P) : ‖x− z‖2 ≤ r)}
)

4: while BQ(P) 6= ∅ do
5: f ← ARCINTER(qprev,P,Q)
6: if ∃f then
7: N ← SAMPLE

(
k, U{x ∈ R2 | (∀y ∈ (P ∪Q) : ‖x− y‖2 ≥ 2rmin)∧(
∃z ∈ BQ(P) : ‖qprev − z‖2 ≤ 2r ∧ ‖x− z‖2 ≤ r

)
}
)

8: for all n ∈ N do
9: O ← O∪{ argmax

o : oinit←n, ‖o−f‖2≤r
ARCOVERLAP(o,P,Q), s.t. (4),(5)}

10: else
11: G ← {g ∈ G | ∀q ∈ Q : ||g − q||2 ≥ 2rmin}
12: for all g ∈ G do
13: O ← O ∪ { argmax

o : oinit←g
ARCOVERLAP(o,P,Q), s.t. (4),(5)}

14: qprev ← argmax
o∈O

ARCOVERLAP(o,P,Q)

15: Q ← Q∪ {qprev}, O ← ∅
16: return Q

15

Algorithm 7 Greedy Continuous Arc Cover Algorithm

1: procedure GREEDYCACINSERTION(P, r, rmin)
2: Q ← ∅, O ← ∅, qprev ← ∅, k ← 300
3: G ← SAMPLE

(
k, U{x ∈ R2 | (∀y ∈ (P ∪Q) : ‖x− y‖2 ≥ 2rmin)∧

(∃z ∈ BQ(P) : ‖x− z‖2 ≤ r)}
)

4: while BQ(P) 6= ∅ do
5: G ← {g ∈ G | ∀q ∈ Q : ||g − q||2 ≥ 2rmin}
6: for all g ∈ G do
7: O ← O ∪ { argmax

o : oinit←g
ARCOVERLAP(o,P,Q), s.t. (4),(5)}

8: qprev ← argmax
o∈O

ARCOVERLAP(o,P,Q)

9: Q ← Q∪ {qprev}, O ← ∅
10: return Q

4.5.2 Greedy version

As in sub-section 4.4, the greedy version Algorithm 7 simply does not constraint subse-
quently inserted moles to cover the previous one’s intersection with the hole boundary.

5 Algorithm Results and Discussion

5.1 Characteristics Comparison

Algorithm Deterministic Completeness Strategy
1 SCATTER No Probabilistically Complete Random Sampling
2 PROTGS No Resolution Complete Protrusion Grid Search
3 RANDGS No Not Complete* Protrusion Grid Search*
4 DISCAC Yes Resolution Complete Discrete AC Search
5 GREEDYDAC Yes Resolution Complete Discrete AC Search
6 CONTAC No Probabilistically Complete Continuous AC Search
7 GREEDYCAC No Probabilistically Complete Continuous AC Search

Table 1: Algorithm Theoretical Properties.
(*): RANDGS will switches to random sampling if stuck

We ran extensive experiments in simulation on a computer with dual Intel Xeon
CPUs (E5-2660v3, 10 cores @2.60GHz with Hyper-Threading) and 128GB RAM. We
varied the number of citizens (|P| ∈ {10, 20, ..., 100}), the configurations of citizens
(10 different configurations for each case of |P|) and the ratio of agent radius to sensing
radius rmin : r (r = 30, rmin ∈ {14, 12, 10, 6, 3, 1}). In total, 600 different trials were
conducted per algorithm. Tables 1 and 2 present a summary comparing the algorithm
properties based on our analysis and empirical results from simulation.

16

Algorithm Speed Domain Performance
1 SCATTER Fast Continuous Very low
2 PROTGS Moderate Discrete Medium
3 RANDGS Fast Discrete* Medium
4 DISCAC Slow Discrete High
5 GREEDYDAC Very slow Discrete Low
6 CONTAC Moderate Continuous High
7 GREEDYCAC Moderate Continuous Low

Table 2: Algorithm Experimental Properties.
Speed: wall-clock time. Performance: no. of moles inserted

Algorithm 1 was used as a baseline against which the performance of other algo-
rithms was evaluated. Since some of the algorithms were non-deterministic, they were
executed 10 times per trial and the result was averaged across the 10 runs.

In any trial, let moles inserted by Algorithm 1 be Qscat and for Algorithms 2, 3,
4, 5, 6, 7 be Q(algo) ∈ {QPGS ,QRGS , QDCI ,QDCIg ,QCCI ,QCCIg} respectively.
We define the ‘algorithm advantage’ of Algorithms 2, 3, 4, 5, 6, 7 as the corresponding
difference:

(
|Q(algo)| − |Qscat|

)
.

For each of the trials (here we show for r = 30, rmin ∈ {12, 6, 3, 1}): (i) The
average algorithm advantage is plotted against the average number of boundary agents
in Figure 8 and (ii) The log ratio of average run time of each algorithm to Algorithm 1
against average number of boundary agents is displayed in Figure 9.

5.2 Algorithm Advantage

(a) rmin = 12 (b) rmin = 6 (c) rmin = 3 (d) rmin = 1

Figure 8: Mean advantage of Algorithms over SCATTER vs. mean number of
boundary agents for r = 30, rmin ∈ {12, 6, 3, 1}.

17

From results in Figure 8 and as noted in Table 2, performance in terms of algorithm
advantage over Algorithm 1: GREEDYCAC < GREEDYDAC < PROTGS ≈ RANDGS
< DISCAC ≈ CONTAC and this trend holds for all values of rmin : r considered.
Interestingly, Algorithm 2 and 3 both seem to perform better than greedy Algorithm
5, for which we have proven bounded suboptimality. This is due to the preference for
simultaneously flipping as many protrusion angles as possible with a single insertion
and a degree of implicit redundancy prevention built into the algorithms. Although
Algorithm 2 is more informed at each iteration than 3 since it considers all citizen
agents and a total sum of protrusion angles flipped (whereas Algorithm 3 simply picks
a random citizen agent’s ∠prottot and considers total number of agents flipped), the
two have nearly the same performance. The greedy version of the continuous-domain
Algorithm 7 performs worse than the discrete-domain Algorithm 5 since it performs
very exact computations of insertion locations leading to more small ‘gaps’ left in
boundary coverage, subsequently leading to higher redundancy. Algorithms 4 and 6 are
by far the best performer in every case with an average algorithm advantage of ≈ 21
mole agents for |B∅(P)| ≈ 54, when rmin = 1. Their dominance is expected, as both
Algorithms 2 and 3 have limited implicit handling of redundancy in arc coverage. We
observe the general decrease in advantage across all algorithms in going from rmin =
14 to 10, and a gradual increase from rmin = 6 to 1, indicating an advantage ‘valley’
between the rmin : r ratios of 1:3 and 1:5.

5.3 Run-time Ratio

(a) rmin = 12 (b) rmin = 6 (c) rmin = 3 (d) rmin = 1

Figure 9: Log mean run time ratio of Algorithms to SCATTER vs. mean number of
boundary robots for r = 30, rmin ∈ {12, 6, 3, 1}.

From results in Figure 9 and as noted in Table 2, general performance in terms of
run time ratio against Algorithm 1: GREEDYDAC < DISCAC < GREEDYCAC <
CONTAC < PROTGS < RANDGS. For higher rmin : r ratios, Algorithms 4, 5, 6, 7
perform similarly. Algorithm 1 runs in 0.05-1.5 seconds for r = 30, rmin ∈ {14, 10}
and in 0.1-2.3 seconds for r = 30, rmin ∈ {6, 3, 1} with increasing |B∅(P)|. In-
terestingly, Algorithm 3 is fastest after Algorithm 1 due to randomization, with the

18

run-time log ratio falling almost to 0 as rmin decreases. Algorithm 2 comes in next,
with nearly constant ratios across rmin values. In fact, with large rmin : r ratio and
low |B∅(P)|, Algorithm 2 and Algorithm 3 perform similarly. Algorithm 4 is an order
of magnitude slower. However, even for the most computationally expensive case of
rmin = 1, |B∅(P)| ≈ 54, its run time was under 2 minutes. Greedy Algorithm 5 is
slowest, as this considers every remaining valid point of insertion in each iteration. By
contrast, Algorithm 4 only considers those insertion locations which are within r of
its mandatory overlap point in each iteration. Run times for the continuous-domain
Algorithms 6 and 7 are nearly invariable with number of boundary citizens, and thus
they very quickly approach the fast speeds of Algorithms 2 and 3, especially at higher
number of boundary citizens.

5.4 Overall Observations
It is surprisingly apparent among Algorithms 2, 3, 4, 5, 6 that bounded sub-optimal
Algorithm 5 is the worst empirical performer under both measures. Algorithms 4, 6
afford the best algorithm advantage in terms of number of moles required, whereas Al-
gorithm 3 is an order of magnitude faster, running in only a few seconds in every case.
Interestingly, among the protrusions-based grid search algorithms, despite the fact that
Algorithm 3 has no completeness guarantees, it is generally faster than Algorithm 2 and
inserts a similar number of moles, indicating that randomization plays a beneficial role
in improving speed without negatively affecting performance (in terms of algorithm
advantage). In fact, it is only similar to Algorithm 2 in run time at large rmin : r ratios
and low |B∅(P)|, where randomization does not provide as much advantage. Algo-
rithm 6 is able to achieve similar best performance using higher speeds than Algorithm
4; in fact, its speeds quickly approach that of 2. Admittedly, Algorithm 7 has low utility
as it is even empirically worse in performance than bounded-suboptimal Algorithm 5.

We now discuss different scenarios of mole insertion. In our formulation, all algo-
rithms operate on static snapshots of the citizen agent swarm. However, as mentioned
in Sections 5.3 and 5.4 and visible by comparison in the plots, Algorithms 1, 2, and 3
have a run-time within hundreds of milliseconds - this would enable us to recompute
and update insertion locations in near-real-time for moving goals on the fly in dynamic
multi-agent systems. All algorithms are also applicable to static sensor networks, with
Algorithms 4, 6 being most applicable in such cases and in cases of high cost per mole,
since performance would then be more important than run-time. Furthermore, for cit-
izen swarms operating in a 2D plane in a 3D world, the third dimension may be used
for mole insertion. For example, in an aerial swarm or a swarm operating on the ocean
surface, moles may be inserted from a different elevation or submerged moles may rise
to the surface.

6 Dynamic Problem
We have so far considered a given set of citizens P and tried to identify a minimum size
mole set Q so that its insertion would result in BQ(P) = ∅ under robot and sensing
radius constraints. We had assumed that as many agents as would be required would

19

be available at our disposal to insert into these locations. We have described situations
in which knowing these destination locations would be enough to insert moles and
prevent hole detection.

We now consider a different scenario: suppose we are given a limited set of moles
at certain initial locations in our plane. Our goal is now to identify control laws to
move the moles so as to minimize the final length of the ‘exposed’ boundary arcs of
the citizens P . In Figure 10, we see an example configuration of citizens in blue, and
ten moles in red scattered about the plane, before, while and after applying control to
minimize exposed coverage hole boundaries.

how do we−−−−−−→
move agents

Figure 10: Moving moles in order to minimize exposed coverage hole boundary

Formally, we wish to move the agents (say m agents) given into final positions Q
which minimize the following objective (subject to the same interference and connec-
tivity constraints):

argmin
Q

r
∑
j

∠protj, (P∪Q)

subject to |Q| = m

∀uk,ul ∈ (P ∪Q) : ‖uk − ul‖2 ≥ 2rmin

λ (L(G)) =
{
λ1, λ2, . . . , λ|P∪Q|

}
: λ2 > 0

From sub-section 4.5 we have a continuous objective function in the length of
boundary arcs covered, whose gradient gives us a natural way of moving moles to
minimize hole boundaries, i.e., in the direction of maximum ascent. Let this covering
function (called ARCOVERLAP() previously) be farc(x,P,Q) at the plane position
x ∈ R2, with current citizen positions P and mole positions Q.

In Figure 11, we see an example citizen configuration with the objective value of
the function farc() displayed, warmer colors indicating higher objective values. Also
displayed using black arrows are the gradient directions (the size of the arrow indicating
magnitude). Zoomed-in views are also shown in this figure.

20

Figure 11: ‘Exposed’ boundary coverage: objective displayed for example citizen
configuration; warmer colour denotes higher function value. Black arrows represent

magnitude and direction of gradient; zoomed in views are shown.

We now describe control laws in order to move our moles. We will see that, since
every law is purely reactive and does not depend on projected citizen locations, they

21

may be used without alteration both in the presence and absence of citizen motion.
Each mole qi ∈ Q has control inputs such that q̇i = uirep + uic .

Each mole is repelled away from any other moles or citizens in a neighborhood
within a radius of repulsion rrep, i.e., N i = {x ∈ (P ∪ Q) |

∥∥qi − x
∥∥
2
≤ rrep}, so

that for scalar krep, we have uirep = krep
∑

x∈N i

qi−x
‖qi−x‖2

.

Each mole has an additional control input uic, according to which zone away from
the citizens P they are in. Let nearest citizen distance dnear = min

p∈P

∥∥qi − p
∥∥
2
. We

use this quantity and the agents’ sensing range r to identify three possible zones:

1. If dnear > 2r:

In this zone, none of the exposed boundary can be within sensing of this mole,
and a gradient is absent. We want to move moles towards citizens. Let pi be a
citizen uniquely assigned to each mole qi in order of euclidean proximity. Then
in this zone, for scalar kfar, we have:

uic = kfar
pi − qi

‖pi − qi‖2
2. If 2r ≥ dnear > r:

We consider the gradient gi = 5xfarc(q
i, P, Q \ qi). We define a scalar

threshold for the gradient norm tg . If the gradient norm is not negligible, we
naturally move the mole in the direction of maximum ascent.

If the norm is small, this occurs due to one of two reasons: (a) the mole has
reached a local maxima or (b) the gradient is absent as any part of the exposed
boundary being covered by the mole is already covered by other moles. Neither
situation is useful, as, in (a), the mole cannot be sensed by the citizens and will
thus have no effect on their localized Voronoi computation. In (b), it is obvious
that the mole is redundant. In such a situation, we will do one of two things: (i)
move inward toward a citizen if the projection of the mole onto its sensing disk
causes a non-zero coverage of exposed boundaries, or (ii) move along the ‘wall’
formed by the hole boundary, i.e., move perpendicular to the nearest citizen di-
rection in search of exposed boundaries elsewhere. An example of directions the
mole would move in under the two conditions is depicted in Figure 12.

Figure 12: Zone 2 behavior of mole in dynamic problem

22

Let PC(x) be the projection of vector x onto the set C. For scalars kg, ks, we
have:

uic =

kgg

i, if
∥∥gi∥∥

2
> tg

ks
pm,i−qi

‖pm,i−qi‖2
, if

∥∥gi∥∥
2
≤ tg, mi > 0

ks

(
pn,i−qi

‖pn,i−qi‖2

)⊥
, if

∥∥gi∥∥
2
≤ tg, mi = 0

where

pm,i = argmax
{p∈P:‖qi−p‖2≤2r}

farc
(
P{x:‖x−p‖2≤r}(q

i), P, Q \ qi
)

mi = farc
(
P{x:‖x−pm,i‖2≤r}(q

i), P, Q \ qi
)

pn,i = argmin
p∈P

∥∥qi − p
∥∥
2

(x)⊥ denotes vector x rotated by
π

2

3. If r ≥ dnear:
We consider the gradient gi = 5xfarc(q

i, P, Q \ qi). We define a scalar
threshold for the gradient norm tg . If the gradient norm is not negligible, we
naturally move the mole in the direction of maximum ascent.

If the norm is small, we simply make sure moles are spaced well apart throughout
the exposed boundary by adding repulsion between moles in a certain neighbor-
hood. For scalars kg, krep, we have:

uic =

kgg
i, if

∥∥gi∥∥
2
> tg

krep
∑

x∈N i

qi−x
‖qi−x‖2

, if
∥∥gi∥∥

2
≤ tg

where

N i = {q ∈ Q \ qi |
∥∥q− qi

∥∥
2
< 2r cos(

π

6
) ∧

∥∥n(q)− n(qi)∥∥
2
≤ 2r}

n(x) = argmin
p∈P

‖x− p‖2

Videos: These laws were tested out in cases with {10, 30, 50, 70} citizens, with rmin =
10, r = 30 both in the presence and absence of citizen motion. The videos of these
trials can be found at this link. Here, we see the citizens in blue, the moles in red,
and one mole qi in magenta whose objective value farc(x,P,Q \ qi) is displayed
throughout the plane with warmer colour depicting higher objective value.

7 Conclusions and Future Work
In this research, we explored novel problems for robotic swarms. We identified a swarm
vulnerability and studied how an adversary can take advantage of this vulnerability to

23

https://www.dropbox.com/sh/5e9o2fw2hoa5yed/AACJGE2xgd4HQrW38Yu3pWska?dl=0

find the best locations to insert mole agents so as to prevent the original swarm from
discovering and repairing faulty performance (in our case the faulty performance con-
sists of leaving holes in area coverage in a surveillance mission). To the best of our
knowledge, this is the first to study this problem. We formalized the problem and
devised supporting theory and algorithmic solutions. Furthermore, we experimentally
evaluated our algorithms, and presented and discussed their different efficiency, perfor-
mance characteristics and tradeoffs. Finally, based on developed theory and algorithms,
we presented control laws governing adversary movement to leverage this vulnerabil-
ity.

In future work, we plan to (a) identify ways for the swarm to protect itself from
such mole insertions, and (b) identify any additional swarm vulnerabilities.

24

References
[1] Nadeem Ahmed, Salil S Kanhere, and Sanjay Jha. “The holes problem in wire-

less sensor networks: a survey”. In: ACM SIGMOBILE Mobile Computing and
Communications Review 9.2 (2005), pp. 4–18.

[2] Franz Aurenhammer. “Voronoi diagrams – a survey of a fundamental geometric
data structure”. In: ACM Computing Surveys (CSUR) 23.3 (1991), pp. 345–405.

[3] Manuele Brambilla et al. “Swarm robotics: a review from the swarm engineering
perspective”. In: Swarm Intelligence 7.1 (2013), pp. 1–41.

[4] Xiangqian Chen et al. “Sensor network security: a survey”. In: IEEE Communi-
cations Surveys & Tutorials 11.2 (2009), pp. 52–73.

[5] Vasek Chvatal. “A greedy heuristic for the set-covering problem”. In: Mathe-
matics of operations research 4.3 (1979), pp. 233–235.

[6] Gautam K Das et al. “On the discrete unit disk cover problem”. In: International
Workshop on Algorithms and Computation. Springer. 2011, pp. 146–157.

[7] Jason Derenick, Vijay Kumar, and Ali Jadbabaie. “Towards simplicial coverage
repair for mobile robot teams”. In: Robotics and Automation (ICRA), 2010 IEEE
International Conference on. IEEE. 2010, pp. 5472–5477.

[8] Stefan Funke. “Topological hole detection in wireless sensor networks and its
applications”. In: Proceedings of the 2005 joint workshop on Foundations of
mobile computing. ACM. 2005, pp. 44–53.

[9] Robert Ghrist and Abubakr Muhammad. “Coverage and hole-detection in sensor
networks via homology”. In: Proceedings of the 4th international symposium on
Information processing in sensor networks. IEEE Press. 2005, p. 34.

[10] Chi-Fu Huang and Yu-Chee Tseng. “The coverage problem in a wireless sensor
network”. In: Mobile Networks and Applications 10.4 (2005), pp. 519–528.

[11] Andreas Kolling et al. “Human Interaction With Robot Swarms: A Survey”. In:
IEEE Transactions on Human-Machine Systems 46.1 (2016), pp. 9–26.

[12] Prasan Kumar Sahoo, Ming-Jer Chiang, and Shih-Lin Wu. “An Efficient Dis-
tributed Coverage Hole Detection Protocol for Wireless Sensor Networks”. In:
Sensors 16.3 (2016), p. 386.

[13] Bojan Mohar et al. “The Laplacian spectrum of graphs”. In: Graph theory, com-
binatorics, and applications 2.871-898 (1991), p. 12.

[14] Martin EW Nisser et al. “Feedback-controlled self-folding of autonomous robot
collectives”. In: Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ Inter-
national Conference on. IEEE. 2016, pp. 1254–1261.

[15] Juan Rada-Vilela, Mark Johnston, and Mengjie Zhang. “Population statistics for
particle swarm optimization: Resampling methods in noisy optimization prob-
lems”. In: Swarm and Evolutionary Computation 17 (2014), pp. 37–59.

[16] Michael Rubenstein, Christian Ahler, and Radhika Nagpal. “Kilobot: A low cost
scalable robot system for collective behaviors”. In: Robotics and Automation
(ICRA), 2012 IEEE International Conference on. IEEE. 2012, pp. 3293–3298.

25

[17] Paul Scharre. “Robotics on the Battlefield Part II: The Coming Swarm”. In: Cen-
ter for a New American Security 6 (2014).

[18] Jaydip Sen. “A Survey on Wireless Sensor Network Security”. In: International
Journal of Communication Networks and Information Security (IJCNIS) 1.2
(2009).

[19] Alan R Wagner and Ronald C Arkin. “Acting deceptively: Providing robots with
the capacity for deception”. In: International Journal of Social Robotics 3.1
(2011), pp. 5–26.

[20] Guiling Wang, Guohong Cao, and Thomas F La Porta. “Movement-assisted
sensor deployment”. In: IEEE Transactions on Mobile Computing 5.6 (2006),
pp. 640–652.

[21] Mohamed Younis and Kemal Akkaya. “Strategies and techniques for node place-
ment in wireless sensor networks: A survey”. In: Ad Hoc Networks 6.4 (2008),
pp. 621–655.

[22] Chi Zhang, Yanchao Zhang, and Yuguang Fang. “Localized algorithms for cov-
erage boundary detection in wireless sensor networks”. In: Wireless networks
15.1 (2009), pp. 3–20.

26

	Introduction
	Related Work
	Problem Formulation
	Preliminaries
	Problem Statement

	Algorithms
	Preliminaries
	Terminology
	Mole Agents per Citizen Agent
	Input, Output and Constraints

	Random Scatter Algorithm
	Grid Search Algorithm
	Mole Agent Insertion
	Protrusions Grid Search Insertion
	Randomized Grid Search Insertion

	Discrete Arc Cover Algorithm
	Algorithm Description
	Greedy version
	Bounds on Sub-optimality

	Continuous Arc Cover Algorithm
	Algorithm Description
	Greedy version

	Algorithm Results and Discussion
	Characteristics Comparison
	Algorithm Advantage
	Run-time Ratio
	Overall Observations

	Dynamic Problem
	Conclusions and Future Work

