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Abstract
In this thesis, we focus on making robots more trustable by making them describe

and explain their actions. First, to tackle the problem of making robots describe their
experience, we introduce the concept of verbalization, a parallel to visualization.
Our verbalization algorithm can analyze log files as well as the robot’s live execu-
tion data to produce narratives describing its actions while taking user’s preference
about into consideration using the verbalization space. We introduce the verbaliza-
tion space to cover the variability in utterances that the robot may use to narrate
its experience as we realized that different people might be interested in a different
type of description from the robot. We demonstrate verbalization at multiple levels
of verbalization space to describe CoBot’s path while performing multi-floor navi-
gation tasks. Our initial introduction of verbalization requires manual grounding of
the log data to natural language phrases which makes the algorithm unscalable. To
tackle this problem, we propose using classifiers and similar techniques to act on
robot’s data to automatically annotate or ground the data. We then discuss and an-
alyze the classifier we use to ground the log data to natural language automatically.
We create DNN based classifier to find the floor CoBot has entered via elevator us-
ing input from the camera mounted on CoBot. To analyze the classification, we use
different techniques to find important regions in the images for the classification. We
have also developed metrics to analyze the relative importance of different regions
in the image for a classification. Finally, using the important regions in an image,
we produce an explanation in terms of natural language for its classification. We
evaluate each algorithm and technique we have developed in this work and compare
them with similar state-of-the-art techniques. Although our work focuses on CoBot,
we contribute techniques to generalize the techniques we develop here beyond it.



iv



Acknowledgments
First, I would like to thank my advisors Stephanie Rosenthal and Manuela Veloso

for providing me advice and teaching me. I’m deeply thankful for your patience and
support along the way, and I enjoyed working with you. You gave me the resources
and the freedom to do independent research. I would like to thank my thesis com-
mittee for all of their help, guidance, and feedback through this process.

I appreciate the valuable discussions with many intelligent students here, espe-
cially Sandeep Konam, Devin Schwab, Rui Silva, Avinash Siravaru, Guan-Horng
Liu, Ashwin Khadke, and Lekha Walajapet Mohan, as they have knowingly or un-
knowingly inspired my research. I also thank all my friends both close and afar who
had motivate me when I needed it.

Finally, I would like to thank my parents for providing guidance, care and the at
times annoying motivations without which none of this would have been possible.



vi



Contents

1 Introduction 1
1.1 Verbalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Automatic Annotation for Verbalization . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Explaining Robot’s Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Evaluating Importance Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6 Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Verbalization 9
2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Route Verbalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Robot Map and Route Plan . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Simple Route Verbalization . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Verbalization Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 Verbalization Space Definitions . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Variable Verbalization Algorithm . . . . . . . . . . . . . . . . . . . . . 13

2.4 Mobile Robot Route Verbalizations . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.1 Robot Map and Language Corpus . . . . . . . . . . . . . . . . . . . . . 15
2.4.2 Route Experience Variable Verbalization . . . . . . . . . . . . . . . . . 16
2.4.3 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Automatic Annotation for Verbalization and Classifier-Based Evaluation of Image
Feature Importance 21
3.1 Automatic Annotation for Verbalization . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.2 Annotating CoBots Paths with Floor Labels . . . . . . . . . . . . . . . . 23
3.1.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.4 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Classifier-Based Evaluation of Image Feature Importance . . . . . . . . . . . . . 26
3.2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.2 Importance Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.3 Analyzing Important Features . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

vii



3.2.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.6 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Explaining the Robot’s Actions 39
4.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3.1 Generating explainable features . . . . . . . . . . . . . . . . . . . . . . 42
4.3.2 Class-wise explainable features . . . . . . . . . . . . . . . . . . . . . . 42
4.3.3 Generating explanations . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.6 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Conclusion 47

6 Future Work 49

Bibliography 51

viii



List of Figures

1.1 Example of a mobile service robot’s navigation task . . . . . . . . . . . . . . . . 6
1.2 Example for explanation generation module for scene recognition classifier (a)

original image captured by the robot near Room 5, (b) object predictions or lan-
guage groundings on the image, (c) importance heat mask for the image . . . . . 7

2.1 Robot route plan (green lines), nodes {S,P1,...P6}, Starting node S, and finish
node P6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Top: Example of our mobile robot’s multi-floor plan in our building (blue walls,
green route, red connects elevator between floors). Bottom: Images of our robot
navigating the route. The robot (1) starts at Office 3201, (2) travels down the
3200 corridor, and turns right to (3) reach the elevator. Once it (4) reaches the
7th floor, it (5) travels straight across the bridge, (6) turns left at the kitchen, (7)
travels down the 7400 corridor, and then (8) makes its first right to Office 7416. . 15

2.3 Average number of words generated. . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Average number of numbers generated. . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Sample of images from the Floor detection dataset. Each image belongs to a
different floor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Architecture of modified Siamese network used for training floor identification
classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 (a) is the original image, (b) is the base image obtained from using Gaussian
kernel Gk, and (c) is the heat map obtained using C-MWP, where red and blue
represents the most and the least important pixels. (d) is the mask obtained after
thresholding the heat map (c) for top ρ=5% pixels, and (e) is the mask obtained
after growing the regions of the mask in (d). (f) and (g) are the hybrid images
created using mask in (d) and (e) respectively using the base image (b). (h) is the
hybrid image obtained using mask in (d) and a base image obtained using zeros
kernel Zk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 The image masks for the (top) occ importance function and (bottom) grad impor-
tance function generated with the parameters ρ=25% and with dilation = {0, 2,
5} respectively for one image from the Building-Floor dataset (left three images)
and one image from the Places365 dataset belonging to the class amusement station
(right three images). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

ix



3.5 A side by side comparison of occ (patch size = 10), grad (dilation = 5), and C-
MWP respectively on an image from the Building-Floor dataset and the Place365
dataset (ρ=25%). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6 A side by side comparison of the three pairs of importance functions (grad+occ,
C-MWP+grad, and C-MWP+occ respectively) on an image from the Building-
Floor dataset and the Place365 dataset (ρ=25%). . . . . . . . . . . . . . . . . . . 35

4.1 Example for generating Er (a) original image belonging to floor 3 of floor-
detection dataset, (b)D predictions on the image, (c) heat maskM using gradient
visualization technique, and (d) discretization of image into 9 grids. . . . . . . . 44

4.2 Testing images belonging to (a) floor 3, (b) floor 5, and (c) floor 6 . . . . . . . . 45

x



List of Tables

2.1 Narrated information depends on preferred Verbalization Space parameters. In-
formation for Abstraction A and Specificity S are shown assuming Locality L
is Global. For a different Locality, a subset of the route is generated, and the
information provided is computed in terms of the subset. . . . . . . . . . . . . . 11

3.1 Average SCG values (*100) for individual masks with 25% and 5% top pixels.
C-MWP performs best (bold) in almost all datasets, base image kernels, and
values of ρ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Average SCG and CCG values (*100) for all combinations of importance func-
tions with 25% and 5% top pixels. The best single importance value is also
included (the bold value from each column of Table 1). Patch size for occ is 10,
and number of dilate operations for grad was 5. . . . . . . . . . . . . . . . . . . 35

xi



xii



Chapter 1

Introduction

Service robots can autonomously generate and execute plans to successfully perform tasks for
humans, appropriately handling the uncertainty of their surroundings. Service robotics is a field
where the state-of-the-art techniques in robotics and artificial intelligence merge. For exam-
ple, our service robot CoBot [46] can localize and autonomously navigate in our buildings to
complete assigned tasks like escorting people, as well as participate in a dialogue with humans.
CoBot intelligently uses symbiotic autonomy, i.e., CoBot uses help from people around it to
overcome some of its limitations, like pressing the elevator buttons or making coffee.

With mobile robots performing more autonomous behaviors without human intervention,
people in the environment may wonder what exactly the robot was perceiving, predicting, plan-
ning, and doing. Since service robots work in an environment where humans interact with them,
they need to make people understand their capabilities. Robotics researchers have developed log-
ging approaches to enable the recording of the robot experience. For debugging purposes, such
developers must dig through the accumulated robot logs to find out about the robot experience
in great detail. In addition to researchers, an office worker may want the robot to identify why
it was late in completing its task. And a person accompanying the robot may want the robot to
summarize its speed and distance traveled.

As exemplified above, making robots describe their actions makes them more transparent,
but for the robots to be trustable, they need to be able to explain their actions. For example, an
autonomous car when questioned why it is taking the longer route should be able to justify its
action by informing the user that the shorter route has heavy traffic. We can achieve explanations
for robot’s actions by making the robot’s decision and inference making modules explainable.
Such explanations not only increase the trust in the robots but also helps users better understand
its capabilities. Hence, we say that making robots explain themselves is a necessary step for
them to be able to play a bigger role in our society.

To tackle the problem of making robots describe their experience, we introduce the concept
of verbalization. Our verbalization algorithm can analyze log files as well as the robot’s live ex-
ecution data to produce narratives describing the robot’s actions. Verbalization also takes user’s
preference about the description into consideration using verbalization space; we introduce ver-
balization space as we realized that different people might be interested in a different type of
description from the robot. We demonstrate verbalization with multiple levels of verbalization
space to describe CoBot’s path while performing multi-floor navigation tasks. Our initial intro-
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duction of verbalization requires manual grounding of the log data to natural language phrases
which makes the algorithm unscalable. We propose using classifiers and similar techniques to
act on robot’s data to automatically annotate or ground the data. In the remainder of the thesis,
we discuss and analyze the classifier we use to ground the log data to natural language automat-
ically. We create DNN based classifier to find the which floor the CoBot has currently entered
via elevator using a camera. To analyze the classification, we use different techniques to find
important regions in the images for the classification. We have also developed metrics to analyze
the relative importance of the different regions in the image for a classification. Finally, using
the important regions in the image for the classification we produce an explanation for the same.
In this thesis, we briefly describe each of our contributions in turn.

First, we start by describing our work on verbalization for describing robot’s actions.

1.1 Verbalization
Verbalization converts the robot’s experience data into natural language and is parallel to vi-
sualization. During the process of verbalization robot’s execution data is converted to natural
language. We achieve this conversion to natural language by first grounding the data with the
natural language phrases. Then, we generate a description by combining the groundings using a
template based natural language generation.

Different people’s interaction with autonomous robots might focus on different specific infor-
mation or, different specific parts of the robot’s experience. A one-size-fits-all verbalization will
not satisfy all users. To vary the explanations according to the user’s preference, we introduce the
verbalization space. The verbalization space has a set of predefined orthogonal axis or param-
eters to modify the robot’s experience data according to the needs of the user. We demonstrate
verbalization for describing CoBot’s task execution path. Our algorithm modifies the robot’s
data and the corresponding groundings according to the user’s preference specified through the
verbalization parameters and thus allowing each person to receive a personalized narrative based
on their priorities and interests.

For describing CoBot’s path the verbalization algorithm takes as input the route plan which
is a set of nodes, user preference in terms of verbalization space parameters, and an annotated
map of the environment which is annotated with landmarks. First, the algorithm decides on
what language to use depending on the user’s preference, for example, locations in terms of
coordinates or landmarks. Then, the algorithm labels each of the nodes in the route plan with
information about the point, for example, the distance traveled or the landmark nearby. The
algorithm uses language corpus to label the nodes. The language corpus contains phrases to use
to describe the path, for example, it contains names and locations of landmarks, and phrases
like ’right turn’ and ’left turn’ to describe the geometry of the route plan. Then, based on the
user’s preference the algorithm selects the portion of the path or combines nodes in the path into
segments. Finally, we generate natural language descriptions by combining the labels in each
segment.

We demonstrate verbalization to describe CoBot’s route in our building for twelve multi-
floor and single floor navigation tasks. We also compare the variation in the explanation for the
routes as the user preference varies. Verbalization, as we have described so far, can be difficult to
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implement for a new and large environment because of having to annotate the data. In the next
part of the work, we make verbalization scalable by using automatic annotation, as we describe
below.

1.2 Automatic Annotation for Verbalization
As we described above our verbalization algorithm requires grounding robot’s data to natural
language phrases. We initially introduced verbalization using manual groundings. But, manually
grounding the data is clearly not scalable. For example, the verbalization on CoBot depends
on the annotated map of its environment to relates its travel route with landmarks, creating an
annotated map for a large environment every time a robot changes its environment is not scalable
and practical.

Recent applications of automatic annotation are in map building and particularly semantic
maps in robotics. Most works in robotics [15, 32] involve creation of a framework to incorporate
a learned classifier to enhance a map with semantic information using robot’s perception. Some
works also incorporate probabilistic modeling [36] and human-in-the-loop methods [14, 33] to
eliminate errors due to imperfect perception and inference. Non-robotics application of auto-
mated perception includes geographic map building and video annotations [1, 16].

Automatic annotation takes the robot’s execution data as input and tags them with natural
language phrases automatically. We can do automatic annotation using techniques like statistical
modeling and pattern recognition. For example, to tag the speed of the robot at each instance
during its task with a descriptive phrase like fast or slow, we can use simple thresholding to tag
the speeds into one the categories fast or slow, and thereby automatically annotating the speed.
The threshold can be found modeling the speed of the robot using its previous task loggings.

In our work, we use automatic annotation for generating explanations. We use a deterministic
approach to automatically find which floor the robot has entered without a human’s help. We
demonstrate automatic annotation by using a deep neural network (DNN) to find which floor the
CoBot is in after reaching a new floor via an elevator. We achieve floor identification using an
RGB camera mounted on the robot and DNN based scene recognition module we developed. We
have evaluated our identification module and obtained perfect results in a newly collected testing
dataset. The testing dataset was obtained while the CoBot is performing multi-floor navigation
tasks. With this specific example, we demonstrate that we can leverage similar techniques to
make verbalization scalable. CoBot can use the label of the floor generated from the identification
module to generate explanations or descriptions of its actions.

When robots explain their actions, they are trusted more by people around and using them.
As a first step toward making robots explainable, we make the floor identification module we
used for demonstrating automatic annotation explainable, as we describe below.

1.3 Explaining Robot’s Actions
The field of explainable artificial intelligence is quite new, so there is a limited work on gener-
ating natural language explanations for classifiers. One common approach to generating model-

3



agnostic explanations for a classifier is learning an interpretable model based on the predictions
of the original model [3, 39, 42]. Some of these work try to explain the classifier in terms of a
subset of input features [39] and do not focus on the interpretability of these features or gener-
ating natural language explanation like us. The work in Hendricks et al. [18] uses description
of the classes to train a network to produce explanations for classification of different species
of birds. This process is not practical when there are no descriptions for the classes like in our
work.

In our work on verbalization, we have described a robot’s actions like narrating what path it
took to reach its current place. Explanations are different from descriptions in that in explanations
we describe the reason why the robot took that path. For example, for a robot’s path, a description
can be ‘I reached here via the Fifth Avenue’ while an explanation can be ‘I arrived here via the
Fifth Avenue because it was the shortest path.’

We generate an explanation for the module’s classification of images by grounding the im-
portant regions in the image to natural language phrases. First, to explain a decision by any
module, we need to find what part of the input has influenced or most influenced the decision.
We identify important features for the DNN’s classification using deep visualization techniques
or importance functions.

Next, similar to the step in verbalization, we need to ground the important regions with
natural language tags. We generate groundings for the important regions in the image by using a
separate image based object detection network, once again leveraging the concept of automatic
annotation. We demonstrate our explanation generating technique by generating an explanation
for all the classes the floor identification module is trained on.

In the last part of the work, we contribute metrics for comparing different deep visualization
techniques.

1.4 Evaluating Importance Functions
Finding important features for a classification task is a well-researched concept, but its extension
to DNNs has only recently received attention. Deep visualization techniques [20] specialize
in finding relative importance of each pixel in the image for a convolutional neural network’s
classification. Although several techniques have recently been [20, 37, 56] have been developed
for deep visualization, the evaluation of these methods is generally qualitative [52, 56] or use a
human study [37]. The qualitative and human assessments are not only subjective but also do not
provide a way to measure how relevant an important region really is for the classifier.

The output of the importance functions or a deep visualization technique, acting on a classi-
fier, taking an image as input is generally a heat map containing relative importance of each pixel
in the image for the particular classification. We developed two metrics Simple Confidence Gain
(SCG), and Concise Confidence Gain (CCG) for comparing the visualization techniques. Strictly
speaking, our metrics compare the relative importance of different regions in the image for the
classification. We use the metric to compare deep visualization techniques by first creating the
regions of high importance by segmenting the heat map outputted by each of the visualization
techniques. Then, we compare between the regions of high importance outputted from different
visualization techniques using our metrics.
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Both of our metrics work on the principle of comparing the increase in accuracy brought
by the important regions to a baseline image. Baseline image is a transformed version of the
original image in which the classifier is not confident in its prediction. By adding the important
pixel regions to this baseline image, in our first metric SCG, we measure the effective increase
in confidence of only the important pixels and normalize the increase by the confidence of the
original image. CCG - aims to ensure that the new image formed by adding the important pixels
to the baseline image is classified correctly. Additionally, CCG takes into account the size of the
region to reward the smallest region of most informative pixels.

We discuss more on the comparison between the metrics and present extensive evaluation
and show consistent results in comparing three deep visualization techniques on two different
datasets.

1.5 Contributions

• We introduce verbalization as the process of converting or narrating robot experiences via
natural language. To vary the narrations according to the user’s preference, we introduce
the verbalization space, which has a set of predefined orthogonal axis or parameters to
modify the robot’s experience data according to the needs of the user. We demonstrate
verbalization for describing CoBot’s [46], our mobile service robot, task execution path.
We also demonstrate the ability of verbalization to personalize the explanation according
to user’s preference by comparing the explanations generated as we vary the parameters in
verbalization space.

• Developed a deep neural network based scene recognition module using an RGB camera
mounted on CoBot to identify which floor CoBot has entered after exiting the elevator. We
have evaluated our identification module and obtained perfect results in testing.

• We propose using automatic annotation to solve unscalability of our verbalization, as it
requires manual annotation of robot’s data. We demonstrate the use of automatic annota-
tion for verbalization using the floor identification module to find and label which floor the
CoBot has entered.

• We have developed two metrics Simple Confidence Gain (SCG), and Concise Confidence
Gain (CCG) for comparing the different image region’s importance for a classification.
SCG measures the increase in network’s confidence brought by the various parts of the
image for the classification, while CCG looks at the density of information in the parts
according to the classifier. Using the metrics, we show consistent results in comparing
three deep visualization techniques on two different datasets.

• Proposed a method to generate an explanation for an image based scene classification net-
work. The technique we developed uses both the important regions for the classification
found using a deep visualization technique and the objects in the important regions. We
find the labels of the object by using another classifier again using the concept of auto-
matic annotation. We demonstrate the method by generating explanations for the floor-
identification classifier.
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Room 1

Room 6

Room 3

Room 2

Room 4

Start

EndRoom 5

Robot

Figure 1.1: Example of a mobile service robot’s navigation task

1.6 Illustrative Example
To better understand our contributions, let us consider the example shown in Figure 1.1. In the
example, the robot– red triangle, is completing a navigation task of reaching end point from
the start point. For describe the path, the verbalization algorithm takes as input the robot’s map
annotated with landmarks as shown in the Figure 1.1, robot’s navigation route plan shown as
green dotted line and robot’s execution data.

The verbalization algorithm for the example task without taking user’s preference into con-
sideration might produce the following description after completing the task.

‘I started near Room 1, took a right turn near Room 2, took a left turn near Room 5,
went by Room 3, and reached end point near Room 6.’

The verbalization, when combined with verbalization space to describe the robot’s route for
a user who wants a summary, will change the narration to

‘I started near Room 1 and reached end point near Room 6.’

We will go into details of how the verbalization algorithm works in their respective chapter.
Let us assume that the robot incorporates an image based scene recognition module like

our floor-identification module. We can use the recognition module to annotate the map with
landmarks labels like Room 1, as shown in the Figure 1.1 automatically.

As an example for our technique to explaining the scene recognition classifier, assume that at
the robot’s position shown in the Figure 1.1, the robot sees the image as shown in Figure 1.2(a) in
its camera. Using the recognition module let us also assume that the robot can classify the image
correctly as the scene near Room 5. Our explanation generation module takes into consideration
the importance heat map Figure 1.2(c), and the objects in the image Figure 1.2(b), as groundings
to produce the following output as explanation

I am near Room 5 because I see furnishing at right bottom, I see chair at right bottom,
I see chair at center, I see pot at left top,

for why it thinks it is near Room 5.
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(a) (b) (c)

Figure 1.2: Example for explanation generation module for scene recognition classifier (a) orig-
inal image captured by the robot near Room 5, (b) object predictions or language groundings on
the image, (c) importance heat mask for the image
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Chapter 2

Verbalization

In this chapter, we introduce verbalization as the process of converting or narrating robot experi-
ences via natural language. A robot that verbalizes its experiences could help each of the above
example users resolve questions they have about autonomous robot behavior.

We also contribute the concept of the verbalization space to represent ways in which ver-
balizations may vary for different reasons, including user preferences and needs. We define our
verbalization space across three orthogonal parameters that prior research has indicated per-user
needs or preferences over [9, 13, 44]. The first parameter, abstraction, varies the vocabulary and
concepts used in the narrative from concrete robot concepts, such as distances, speed, and time to
abstract concepts, such as hallways, rooms, landmarks. Second, specificity varies the total num-
ber of concepts or words used in the summaries, allowing the robot to generate single-sentence
general, or multi-sentence detailed, narratives. Finally, locality varies the particular parts of the
experience that the narration focuses on, from the global path to a local region or landmark of
interest. Our verbalization space is general and can be extended to many other parameters.

We first formalize the concept of verbalizing experiences, as well as each of the parameters
of our verbalization space with a focus on navigation tasks. We contribute our algorithm for
generating narratives using the three verbalization space parameters, and we provide examples
of how to combine these parameters. Our algorithm can be adapted to use other natural language
generation techniques or verbalization space parameters. Finally, we demonstrate the use of our
verbalization space to narrate our mobile robot’s experiences through our building, and validate
that it generates narratives of different abstraction, specificity, and locality.

2.1 Related Work

Prior work in automatically generating explanations or summaries of planned behavior can be
roughly divided into three categories: 1) intelligibility or explanation of machine learning algo-
rithms, 2) summarizing perceived behavior, and 3) generating directions for humans to follow.

As machine learning gains popularity in many different applications, much human-computer
interaction research has focused on ways machine learning applications can intelligibly explain
their reasoning algorithms to users (e.g., for context-aware systems [13]). HCI intelligibility
studies have focused on ways that users can query applications for information or explanations
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(e.g., [27]) as well as how those explanations can affect users’ mental models of how the applica-
tions work (e.g., [24, 25]). The studies find that explanations increase trust of machine learning
applications [12] as well as improve users’ mental models. Due to the success of intelligibility
across many applications, intelligibility toolkits have been implemented for consistency of expla-
nation across different machine learning algorithms [26]. While prior work shows that varying
the focus of explanations is important and useful to users, no one implements it.

Another growing area of research is in summarizing or generating narratives of perceived be-
havior. For example, RoboCup soccer commentators aim to use the input of simulated RoboCup
games [48] or live RoboCup games [45] to generate realtime summaries of the actions in the
games. Activity recognition algorithms and natural language generation have also been used
to produce annotated accounts of wartime exercises [29], video conferencing sessions [49], and
sports games [2]. While some work generates a variety of summaries to maintain human interest
(e.g., [45]), the work does not vary the length or depth of summaries as we do.

Finally, and perhaps most closely related to our work, GPS applications (e.g., [4]) and robot
applications (e.g., [9, 21, 44]) are automatically generating navigation instructions and dialog for
people to follow and understand. In the prior work, a path is converted into language and ideally
presented in an easy-to-understand yet accurate way for the person to follow it seamlessly every
time. While these navigation directions do not vary in the language used, recently [9] found that
navigation directions should 1) provide differing levels of specificity at different locations in the
route and 2) use abstract landmarks in addition to more concrete details. Similarly, prior work on
human direction givers shows that humans do not generate the same directions for every person
[30].

We note that none of the prior work focuses on summarizing both perception and plans of a
robot or other autonomous vehicle. And while the prior work extensively documents the need for
parameterized summaries, none of the prior work, to our knowledge, measures those parameters
and contributes an algorithm for actually varying them. In this work, we first contribute ver-
balization as a method of summarizing what robots actually experience. Based on the findings
from prior work as well as the needs of our robots’ users, we then propose and formalize our
verbalization space that represents the variability in narratives, and we provide an algorithm for
generating variable verbalizations of route plans.

2.2 Route Verbalization
We define verbalization as the process by which an autonomous robot converts its own expe-
rience into language. In this work, we consider mobile navigation experience in the physical
world, and verbalize what the robot experienced while traversing its route. We define route ver-
balization as the process by which an autonomous robot converts its own route experience into
language. A robot can generate route verbalizations mentioning the planned route that will be
traversed or the route that has been traversed (i.e., a narrative in the future tense is equivalent to
GPS driving directions, while a narrative of the past traversed route describes the actual experi-
ence). At this time, we do not distinguish between the future and past tenses, exemplifying the
applicability across language generation domains.

We first define simple route verbalizations over common robot map and route representa-
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tions. Then, we describe our annotations to the map and route to accommodate the variation in
verbalization that humans require.
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Angle turned at each
point plus the to-
tal distance and time
taken for each edge
of route
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countered on the
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Table 2.1: Narrated information depends on preferred Verbalization Space parameters. Informa-
tion for AbstractionA and Specificity S are shown assuming Locality L is Global. For a different
Locality, a subset of the route is generated, and the information provided is computed in terms
of the subset.

2.2.1 Robot Map and Route Plan
We define an indoor mobile robot’s map M = 〈P,E〉 as set of points p = (x, y, b, z) ∈ P repre-
senting unique locations (x, y) in our buildings b for each floor z and edges e = 〈p1, p2, d, t〉 ∈ E
that connect that connect two points taking time t to traverse distance d.

The points on the map are annotated with semantic landmarks represented as room numbers
(e.g., 7412, 3201) and room type (office, kitchen, bathroom, elevator, stairs, other). Points could

Figure 2.1: Robot route plan (green lines), nodes {S,P1,...P6}, Starting node S, and finish node
P6.
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be annotated with additional information, including the occupants of the office or the names of
laboratory spaces (e.g., as in [40]). We also maintain lists of corridors and bridges as points
that reside within them (e.g., “7400 corridor” contains office 7401, office 7402, office 7404, etc.
and the “7th floor bridge” contains other 71, other 72, etc.). Some points may not appear in any
corridor or bridge list if they are in open areas, and some points may reside in two hallways if
they occur at hall intersections.

Using our map, our route planner produces plans as trajectories through the environment
composed of:
• a starting point S,
• a finish point F ,
• an ordered list of intermediate waypoints W ⊂ P , and
• a subset of straight line edges in E that connect S to F through W .

Our planner labels waypoints as turning points representing the only places the robot turns after
traversing straight edges. Figure 2.1 shows a route plan, the starting point S, and finish point
F = P6, as the destination of a task requested by a user. The figure shows turning points
W = {P1, P2, P3, P4, P5}, connected by straight line edges (as pictured in green).

2.2.2 Simple Route Verbalization

Using the map and route plan described above, a simple route verbalization algorithm could
interleave turn angles at each point p and distances traversed for each edge e between waypoints.
For the route depicted in Figure 2.1, this simple route verbalization algorithm would produce:

I went straight for 8.5 meters and turned left, then straight for 24.9 meters and turned
left, then straight for 3.62 meters to reach the destination.

While this verbalization successfully describes the robot’s route, different people in the en-
vironment may be expecting more or different information to be provided. For example, we as
robotics researchers could be interested in the exact (x, y, b, z) coordinates of the points where
the robot turns. Other people in the environment may find landmarks such as room numbers to
be useful. We next describe the use of our semantic annotations within our verbalization space.

2.3 Verbalization Space

We represent the variations in possible narratives of the same route as the verbalization space.
Each region of the verbalization space represents a different way to generate text to describe the
route plan. A user may specify their personalized preferences for verbalization within this space,
or the preferences may be inferred from some other source. Our verbalization space contains
three orthogonal parameters – abstraction, locality, and specificity – that are well-documented as
personal preferences in the literature (e.g., [9, 13, 44]). Our verbalization space is general and
could be extended to include more parameters as needed.
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2.3.1 Verbalization Space Definitions

Table 2.1 details the way we instantiate verbalizations for specified parameters (a, l, s) ∈ (A,L, S).
Abstraction A: Our abstraction parameter represents the vocabulary or corpus used in the

text generation. In the most concrete form (Level 1), we generate text in terms of the robot’s
world representation, directly using points (x, y, b, z) from the route plan. Our Level 2 derives
turn angles and uses expected or actual traversal time and distances from the points and edges
in the plan. Level 3 abstracts the angles and distances into right/left turns and straight segments.
And finally, in the highest level of abstraction, Level 4 contains the semantic annotations de-
scribed above.

Locality L: Locality describes the segment(s) of the route the user is interested in. In the
most general case, the user is interested in the route through the entire Global Environment
including all buildings and floors. However, an office occupant may only be interested in a
particular predefined Region of the route composed of multiple points in the maps (e.g., we
limit our regions by building b or building floor b, z). Finally, the occupant may specify a single
particular point or landmark for the robot to summarize its route around (e.g., a constant distance
around the 8th floor kitchen or Office 4002).

Specificity S: Specificity indicates the number of concepts or details to discuss in the text:
the General Picture, the Summary, and the Detailed Narrative. The General Picture contains the
most general description of the robot’s route, namely the start and finish points (or landmarks),
the total distance covered, and/or the time taken (see Table 1). Our Summaries contain this same
information for the subroute on each floor of each building. The Detailed Narrative contains a
description of each edge of the robot’s route.

Next we describe how these verbalization space parameters are used to generate verbalization
text.

2.3.2 Variable Verbalization Algorithm

The Variable Verbalization (VV) algorithm pseudocode is presented in Algorithm 1. The algo-
rithm directly translates the robot’s route plan into plain English given the map and the incor-
porated annotations described above. It takes as input a route, a verbalization space preference
verb pref = (a, l, s) ∈ (A,L, S), and a map of the environment with locations labeled as above.
It starts by choosing what corpus (Level 1-4) to use when generating utterances depending on
abstraction preference a (Line 2). Then, the VV algorithm annotates the given route by labeling
each point with landmarks and corridor/bridge names using the map (Line 3).

Once the route is annotated with relevant locations, the algorithm extracts the subset of the
route that is designated as relevant by the locality preference l (Line 4). We subset Regions by
building and floor and Landmarks by a threshold distance around a given point. Both of these
subset types can be directly computed from our point representation - Regions using b, z and
Landmarks using a distance function around x, y for the given building/floor. The output of this
step is another annotated route that is a copy of the route if l=Global Environment. Otherwise,
the output is a subset of the route with a new start and finish point.

Using the subset route, the VV algorithm then computes route segments to narrate with re-
spect to the specificity preference s (Line 5). If the specificity preference is a General Picture,
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Algorithm 1 Variable Verbalization Algorithm
Input: route, verb pref, map Output: narrative

//The verbalization space preferences
1: (a, l, s)← verb pref

//Choose which abstraction vocabulary to use
2: corpus← ChooseAbstractionCorpus(a)

//Annotate the route with relevant map landmarks
3: annotated route← AnnotateRoute(route, map, a)

//Subset the route based on preferred locality
4: subset route← SubsetRoute(annotated route, l)

//Divide the route into segments, one per utterance
5: route segs← SegmentRoute(subset route, s)

//Generate utterances for each segment
6: utterances← NarrateRoute(route segs, corpus, a, l, s)

//Combine utterances into full narrative
7: narrative← FormSentences(utterances)

our algorithm computes the required abstraction information for a single route segment from S
to F . For Summaries, it computes one route segment for each floor of each building and then
computes the relevant abstraction information for those segments. In Detailed Narratives, all
edges are included in the narrative.

The Algorithm then translates the route segments from Line 5 into plain English using the
corpus vocabulary from the annotated map and template sentences (Line 6, examples described
next). Finally, after the sentences have been generated for each route segment, the VV algorithm
stitches them together (Line 7). The final narrative is returned as the output of the function.

In the next section, we describe our implementation of our algorithm on our mobile robot
and its routes.

2.4 Mobile Robot Route Verbalizations
Our mobile service robot plans and executes tasks autonomously in our buildings [5, 6], such
as accompanying visitors to their meetings and carrying objects to offices [46]. It regularly
interacts with humans in the environment through dialog and symbiotic interactions to ask for
help [34, 35, 40]. We found many different people in our environment are interested in what
our robot is doing and experiencing as it acts. We as researchers tend to be interested in high
specificity, detailed narratives about the global environment. Other people may be interested in
narratives about their own office locations at a general picture level. The Variable Verbalization
algorithm is implemented on our robot and allows each person to receive a personalized narrative
based on their priorities and interests.

We first describe our annotated map and corpus for verbalizations that are input into our
Variable Verbalization algorithm. Then, we describe two narratives based on different verbal-
ization space preferences for the same route. Finally, we test our algorithm on different routes
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Elevator
3rd Floor map 7th Floor map

Figure 2.2: Top: Example of our mobile robot’s multi-floor plan in our building (blue walls,
green route, red connects elevator between floors). Bottom: Images of our robot navigating the
route. The robot (1) starts at Office 3201, (2) travels down the 3200 corridor, and turns right to
(3) reach the elevator. Once it (4) reaches the 7th floor, it (5) travels straight across the bridge,
(6) turns left at the kitchen, (7) travels down the 7400 corridor, and then (8) makes its first right
to Office 7416.

through our building to demonstrate how the number of words and numbers changes with each
instantiation of our verbalization space.

2.4.1 Robot Map and Language Corpus

Our robot’s environment includes three buildings connected by bridges. Each floor of each build-
ing has its own coordinate system. The individual floor maps are linked to each other via the ele-
vators and bridges, so that the robot can use multiple floors while planning and executing. The set
of all floors and all buildings is defined as our map M . Our map contains points p representing
any arbitrary location on the map. Points can be labeled as landmarks representing specific room
numbers and room types including office, lab, kitchen, bathroom, elevator, stairs, printers, and
other. We also maintain lists of corridors and bridges as outlined above. Given any two points,
start S and finish F , our route planner computes a set of edges and waypoints to travel from S to
F .

Our corpus of landmarks on the map (exerpt below) is used for Level 4 of our Abstraction
parameter. Our other corpora for our other levels of abstraction are much smaller and include
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(x, y) “points”, “angle” degrees, distance in “meters”, “left turns”, “right turns”, and “u-turns”.

. . . . . .

Office-3201(x, y,Gates, 3rd floor)
Bathroom-3(x, y,Gates, 3rd floor)
Stairs-34 (x, y,Gates, 3rd floor)
Kitchen-71 (x, y,Gates, 7th floor)
Office-7401(x, y,Gates, 7th floor)
Office-7412(x, y,Gates, 7th floor)
. . . . . .

2.4.2 Route Experience Variable Verbalization
Using our map, our mobile robot plans routes between points in our building. Figure 2.2 Top
shows one example route (in green) from the 3rd Floor Office 3201 to the 7th Floor Office 7416
in our Gates building. We have labeled in black our annotations over the map including the
corridors, the elevators, a bridge, and a kitchen. Figure 2.2 Bottom shows a visual depiction
of the robot traveling along this route. We demonstrate two variations of verbalizations for the
route.

Example 1: Long, Detailed Verbalization

With our map and corpus, we consider the preference:
(Level 4, Global Environment, Detailed Narrative)

that represents a researcher in our lab who wants a detailed description of what happens on each
edge of the robot’s route. We will review our algorithm’s analysis of the route plan to generate a
verbalization fitting this preference.

Choose Abstraction Corpus: Because the abstraction level preference is Level 4, the VV
algorithm chooses the large corpus of room numbers, room types, and corridors and bridges for
its language model.

Annotate Route: Next, the input route is annotated with these landmarks from the corpus.
In this case, the VV algorithm labels starting point Office-3201; the points leading to the elevator
are Corridor-3200; the elevator on the 3rd floor is labeled Elevator-31 and similarly the 7th floor
is labeled Elevator-71; points on the bridge are Bridge-7; the Kitchen-71 is labeled; the hallway
points are labeled Corridor-7400; and finally the finish point is Office-7416.

Subset Route: The researcher is interested in the Global Environment Locality, and thus the
route is not subsetted.

Segment Route: The researcher would like s =Detailed Narrative. Our algorithm merges
all same-labels, resulting in seven route segments. We write segments in terms of their meaning
here because there are too many points to enumerate; the robot maintains the list of points on the
route.{

s1: Office-3201, s2: Corridor-3200, s3: Elevator,
s4: Bridge-7, s5: Kitchen-71,
s6: Corridor-7400, s7: Office-7416

}
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Narrate Route: Our algorithm’s ability to narrate a route depends on filling in templates
matching different route segments. We manually created the following templates for Level 4
abstractions. We note next to the D whether the type of landmark is specific (e.g., the template
must be filled in by a corridor, bridge, etc.), and we note with a slash that the choice of verb
is random to prevent repetition by replacing the verbs with a synonym (e.g., [45]). We have
similar templates for other abstraction levels that include distances and time to complete the
route segments.
• “[I]N [visited/passed]V the [ ]D:room”
• “[I]N [took]V the elevator and went to the [ ]D:floor”
• “[I]N [went through/took]V the [ ]D:corridor/bridge”
• “[I]N [started from]V the [ ]D:start”
• “[I]N [reached]V [ ]D:finish”
Using the templates, the VV Algorithm generates utterances for each of the segments.

s1: “I started from Office 3201”,
s2: “I went through the 3200 corridor”,
s3: “I took the elevator to the seventh floor”,
s4: “I took the 7th floor bridge”,
s5: “I passed the kitchen”,
s6: “I went through the 7400 corridor”,
s7: “I reached Office 7416”,

Form Sentences: Finally, the algorithm combines the sentences with “then”s (more complex
concatenation could be used):

I started from office 3201, then I went through the 3200 corridor, then I took the
elevator and went to the seventh floor, then I took the 7th floor bridge, then I passed
the kitchen, then I went through the 7400 corridor, then I reached office 7416.

Example 2: Short Overview Verbalization

To contrast the long detailed landmark-based narrative, a short verbalization can be achieved
with preference

(Level 2, Gates 7th Floor Region, General Picture)
Here, a person accompanying the robot wants to know how far they traveled only on the 7th floor.
The VV algorithm first annotates our entire route with abstraction Level 2, adding distances to
the edges in the route between each pair of points. Since the required locality is Region, the
algorithm subsets the route containing only the required Gates 7th floor points. As the specificity
is General Picture, a single route segment is generated as the combination of all edges from the
new 7th floor start node S to the finish node F . The route is annotated with the total distance and
time taken for the route. Next the algorithm narrates the route using the template “[I]N [traveled]
[x] meters in [t] seconds on the [ ]D:floor”. Finally these utterances could be combined (not
necessary here) to form the final narrative:
I traveled 56.18 meters and took 75 seconds on the 7th floor.
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Figure 2.3: Average number of words generated.

Figure 2.4: Average number of numbers generated.

2.4.3 Validation

Given the well-documented need for verbalizations, we focus our experiment on whether we
succeed at varying our verbalizations based on those needs. We randomly generated 12 multi-
floor routes in our Gates building and 12 single-floor routes, ran the VV algorithm over the route
plans, and analyzed the content of the 36× 24 verbalizations that were generated.

Figure 2.3 shows the average number of words for two of our parameters: abstraction and
specificity. There are many more words in Detailed Narratives (55-104 words) compared to
Summaries (14-21) or General Pictures (10-18). We note that the number of words is nearly the
same for Summaries and General Pictures. Because our VV in CoBot creates one phrase per
floor of the building for Summaries, it generates the same narrative as the General Picture for
single-floor navigation routes. Given that half of our routes are single-floor, the average number
of words for Summaries is similar to that of General Picture rather than Detailed Narratives.

Additionally, there are more words generated for Summary/General Picture Level 4 Abstrac-
tion than Level 3 or 2. This is due to the landmark descriptions that are more verbose than the
time and distances reported. In contrast, for Abstraction Level 4, there are no numbers in most
of our narratives as the landmarks are entirely made up of words (Figure 2.4). The exception is
Level 4 Abstractions with Detailed Narratives, which do include office numbers.

The addition of the locality parameter reduces the overall number of words and numbers but
shows the same patterns. As the narratives become more focused around a region and then a land-
mark, there are fewer route segments to describe. We conclude that overall we do successfully
vary narratives within our verbalization space.
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2.5 Summary and Conclusion
It is hard, if not impossible, for humans to understand the experience of an autonomous mobile
robot. In this chapter, we have contributed a novel approach to capture verbalization by a robot
as a way for the robot to narrate its experience in natural language. Our mobile robot translates
its route experiences in into verbalization utterances. We contribute the verbalization space as
a formalization of multiple levels of detail in which narrations can be generated. We introduce
different axes of the space to represent different dimensions of verbalization, namely abstraction,
locality, and specificity, though the space can be extended.

The verbalization algorithm takes as input the route plan which is a set of nodes, user prefer-
ence regarding verbalization space parameters, and an annotated map of the environment. First,
the algorithm decides on what language corpus to use depending on the user’s preference. Then,
the algorithm labels each of the nodes in the route plan with information about the point and con-
verts them to natural language phrases using the language corpus. Finally, based on the user’s
preference the algorithm selects a portion of the path or combines certain nodes in the path into
segments, and generate a natural language description for the user by combining the labels in
each of the segment.

The approach we present aims at being applicable beyond mobile robots to other planning
algorithms, allowing language to be adjusted to the desired levels of detail. For autonomous vehi-
cles, we can imagine using a new map and semantic landmark labels with our same verbalization
space and the same verbalization algorithm to produce narrations of driven routes. Autonomous
vehicles would reason over points in GPS space, and use landmarks such as buildings, roads,
and street signs to create a variety of narrations. Other intelligible machine learning applications
could also produce new formalisms for the verbalization space to produce variable narrations.

We demonstrate the use of verbalizations on our mobile service robot. We present two exam-
ples of narrations corresponding to different points in the verbalization space for one multi-floor
route through our building environment. Then, we validate on 24 routes that a variety of narra-
tions that can be generated from any single plan. Future work will focus on studying techniques
for the personalization of verbalization preferences among our building occupants.
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Chapter 3

Automatic Annotation for Verbalization
and Classifier-Based Evaluation of Image
Feature Importance

In the previous chapter, we generated descriptions for robot’s path by grounding the locations in
the map manually. It is clearly inefficient and not realistic to ground the map or data from the
robot completely by hand. For example, the verbalization on CoBot depends on the annotated
map of its environment to relates its travel route with landmarks, creating an annotated map for
a large environment every time a robot changes its environment is not scalable and practical.

In this chapter, we discuss automatic annotation for verbalization to avoid manual label-
ing. We demonstrate automatic annotation by automatically finding and labeling which floor the
CoBot has entered after exiting the elevator using the data that CoBot potentially captures along
its path traversal. We predict the identity of the floor using the camera mounted on CoBot, with
a deep learning based scene recognition classifier and use that floor label in the verbalization
algorithm to generate descriptions. Currently, the CoBot relies on symbiotic autonomy [46], i.e.,
it uses help from people near by to find if it has arrived on the right floor. We would also need to
ask for floor information during verbalization. However with this specific example, we demon-
strate that we can leverage automatic techniques to make verbalization scalable and reduce the
need for human help.

Another interesting question to ask is what part of an explanation is most important, as we can
use the important parts to avoid excessively long verbalizations. Because we focus on explaining
image classification, we also find features in the image that made the scene recognition classify
the image into a particular class. In the next chapter, we will describe our approach to explaining
the classification. In this chapter, we first explain the first step - to identify the important regions
or features in the image responsible for the classification. Since we use deep learning-based
scene recognition for automatic annotation, we will focus on finding important features of im-
ages within deep learning algorithms. We have developed metrics to compare between different
important regions found using different methods.

This chapter is organized into two parts. In the first, we describe the out floor identification
module implemented in the CoBot and thus demonstrating the automatic annotation. Then we
discuss the importance function and the metric we developed to evaluate the function. Related
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work, experiments and the results for each of the parts are discussed in their corresponding
section.

3.1 Automatic Annotation for Verbalization

Automatic annotation is a well-researched concept which uses different modeling techniques to
classify or label data. In this work, we look at the application of automatic annotation to tackle
the problem of unscalability of verbalization due to manually-generated groundings between
robot data and English words. With execution data already collected from the robots current
perception systems, we can utilize statistical modeling or pattern recognition to annotate that
data with natural language labels automatically. And, we can generate groundings for different
types of data from the robot like camera, laser scanner or odometry. For example, to tag the
speed of the robot at each instance during its task with a descriptive phrase like fast or slow, we
can use a simple threshold to label the speeds into one the categories fast or slow, and thereby
annotating the speed. We can find the threshold by modeling the speed of the robot using its
previous task loggings.

In this work, to demonstrate the use of automatic annotation in verbalization, we have used
image based scene recognition using the camera mounted on the CoBot. We use a deterministic
approach to automatically find which floor the robot has entered without a human’s help, i.e., we
do not use probabilistic modeling of labelings. The annotation module finds which floor CoBot
is currently in after it exits the elevator using a deep learning based scene recognition network.

There has been a tremendous advancement in the performance of image recognition using
deep convolution networks (CNN) [23]. CNNs also lead to better performance in both indoor
and outdoor scene recognition tasks. In this work, we frame the problem of finding which floor
the robot is on as a scene recognition problem. After exiting the elevator, CoBot takes a picture
of the scene outside the elevator to find which floor it is currently on and classifies the image into
one of the floors its floor detector CNN was trained on.

The scenes outside the elevator on all the floors are similar regarding the objects present in
them. And since the scene is static except for people in them, the classifier during training is
prone to overfitting. To avoid overfitting we chose to use a CNN based on Siamese architecture
[11], because it has been shown to perform well in one-shot learning problems [22] and so can
make the network explore the input space more.

We have evaluated our floor-identification module and obtained perfect results in a newly
collected testing dataset. The testing dataset was obtained while the CoBot is performing multi-
floor navigation tasks. With this specific example, we demonstrate that we can leverage similar
techniques to make verbalization scalable. CoBot can use the label of the floor generated from the
identification module to generate explanations or descriptions of its actions. We have discussed
the related work, network architecture and results for automatically annotating the robot’s floor
in this section.
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3.1.1 Related Work

Some of the recent applications of automatic annotation in artificial intelligence are in building
robot’s semantic map [15, 32, 36] and to annotate the perception data [1, 16]. Using a 2D laser
range sensor and a mobile robot [15] builds semantically annotated maps. The work compares
a hand-crafted and a learned classifier to generate indoor maps and enhance them with semantic
information. Thus the work generates semantically annotated maps. Pronobis and Jensfelt [36]
proposes a system to build a probabilistic representation to estimate room labels along with the
room’s properties like room size and the objects in them. Pronobis and Jensfelt [36] mainly
focuses on automated perception and inference.

Hansen et al. [16] deals with automatic annotation of humans in the surveillance videos. The
work annotates each human in the video with their color of the clothing, the height, and focus of
attention. The height and the focus of attention are estimated using 3D geometry and changes in
the intensity of the person. Alexanderson et al. [1] has developed a method to segment and label
gestural units automatically from a stream of 3D motion capture data obtained from a Microsoft
Kinect. The models use a 2-level Hierarchical Hidden Markov Model to model gestural flows.

Relying on fully automated annotation is error prone due to the various reasons like limita-
tions of sensors and inaccurate inferencing module, these limitations can be overcome by using
the human in the loop methods [14, 33]. Diosi et al. [14] makes the user and the system to build
contextual topological maps interactively. In Nieto-Granda et al. [33] a user guide supports the
robot in the process of associating spatial regions to semantic labels using a probabilistic model,
by instructing the robot in selecting the labels. In our work, we use a deterministic approach to
automatically find which floor the robot has entered without a human’s help.

3.1.2 Annotating CoBots Paths with Floor Labels

When a robot navigates across many floors of a building or multiple buildings, one major chal-
lenge that it has when exiting the elevator is localizing itself to determine which floor it is cur-
rently on [46, 47]. To train a scene recognition classifier for finding which floor the CoBot has
reached via elevator, we have collected the Building-Floor dataset.

Building-Floor

We collected a Building-Floor dataset in one of our Gates-Hillman buildings. Each image con-
tains the scene just outside the elevator from six different floors of the building, ref Figure 3.1.
The goal of the classifier trained on this dataset will be to find which floor the image belongs is
taken from. Since the robot cannot change floors other than by taking the elevator, the elevators
are the only locations where we need to classify which floor the robot is on.

For each of the floors in the building, five images were taken at a particular location that
our robot stops at after exiting the elevator. To simplify the analysis all the images were taken
at the same time of the day, and the effects of people moving around in the building are not
considered. The training data consists of three images, and the remaining two images form the
verification dataset. As the scene does not change a lot in theory one image is enough to be able
to train and obtain good performance, but in practice this is not true, so we use three images
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Figure 3.1: Sample of images from the Floor detection dataset. Each image belongs to a different
floor.

to avoid overfitting and capture some variation in the scene. Testing data collected separately
consists of five images from each of the floor taken at similar day time and setting as the training
dataset. The newly collected testing dataset was obtained while the CoBot is performing multi-
floor navigation tasks.

Network Architecture

Our training network of nine layers followed the AlexNet [23] in a modified Siamese architecture
proposed in Sun et al. [43], Zheng et al. [53], which combined the identification– Softmax, and
the verification loss– Contrastive, for better performance, refer Figure 3.2. Our main reason for
combining identification and verification loss with a pre-trained network is to reduce overfitting
which could happen when the complexity of network is higher than the data. During training,
the first seven layers of our network were initialized from Places205-AlexNet which was trained
in the Places205-Standard dataset and provided by the authors [54]. The remaining two layers
were trained from scratch. During training contrastive loss was utilized in the eighth layer which
is a dense layer of 1000 units, while the softmax loss was employed in the ninth layer.

3.1.3 Results and discussion

Our network can classify all the images in the testing dataset correctly. The approach we have
taken to classify each of the floors using a DNN based network is currently a popular method and
can be easily scaled to accommodate more classes. Increasing the number of classes the network
can classify can be done by just increasing the number of units in the final layer of the network,
but the network will have to be trained from scratch following the procedure we have outlined in
this document.
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Figure 3.2: Architecture of modified Siamese network used for training floor identification clas-
sifier

We believe the high performance of our network is because the training and testing images
were taken in similar setting and that the inter-class variation is quite high in the dataset. Another
important reason for the good performance of our floor identification module is the use of the
Siamese architecture during training. Siamese architecture by its nature increases the network’s
ability to maximizes inter-class variability while minimizing intra-class variability.

From the demonstrations of floor recognition, we can see that it is possible to use automatic
annotation to label many other data from CoBot.

For example, if we want the CoBot to describe the crowdedness of its path, we can count the
people it sees and then based on the number of people in a segment of the path we can classify
it as crowded or not. CoBot can use this tagging while verbalization to describe the task. The
CoBot using our floor-identification the CoBot, after finding which floor it is currently on, can
decide on next stage of its task plan. If the CoBot has reached the correct floor, then it proceeds
to execute the remaining part of its task plan after updating its map with the one identified using
our floor-identification module, or it uses the elevator again to try and reach the correct floor.

3.1.4 Summary and Conclusion
In the previous chapter, we introduced verbalization with manual groundings of data with natural
language phrases, this made it difficult to scale. To solve this problem, we propose automatic
annotation of the data using techniques like machine learning. We demonstrate automatic an-
notation with a particular problem of annotating which floor our mobile service robot CoBot, is
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currently in after exiting the elevator. We have created and trained a DNN based classifier to
identify which floor CoBot has reached after exiting the elevator. The network uses modified
Siamese based architecture during training and uses both the contrastive and the identity loss.

We have described our training methodology and the dataset in this work. With this specific
example, we provide a demonstration of how to create an automated annotation system and thus
scale verbalization. We have evaluated our identification module in a newly collected testing
dataset obtained while the CoBot is performing multi-floor navigation tasks. Our network was
able to classify all the images in the testing dataset correctly.

3.2 Classifier-Based Evaluation of Image Feature Importance
There has been a tremendous advancement in the performance of deep neural networks (DNNs),
specifically in the task of image recognition using deep convolution networks (CNNs) [23]. Be-
cause of this, there is much interest in understanding how these complex networks work. A
variety of visualization techniques have been proposed to indicate which pixel features are most
important for CNNs to determine their classification prediction on a given image (e.g., K. et al.
[20], R. et al. [37], Zintgraf et al. [56]). For example, K. et al. [20] uses the gradients to determine
which pixels are important. Zintgraf et al. [56] proposes an occluding the image systematically
with a Gaussian square patch and observing the confidence scores to determine the important
pixels in the visualization.

With such different algorithms to determine pixel importance, we are interested in comparing
the regions that each one finds and evaluating which are best. Most current techniques to eval-
uate visualizations are qualitative [52, 56] or use a human study [37] and determine which most
appeal to people. While these studies successfully determine the best methods for displaying
important pixels, they do not compare which algorithm finds more important pixels with respect
to the predicting CNN. Recently, a quantitative method was proposed to perturb a random subset
of important pixels and then reevaluate the perturbed images to observe how the prediction con-
fidence changes [41]. However, the non-determinism in the perturbations could introduce new
artifacts in the image which might confuse the classifier rather than measure confidence.

In this work, we propose two new quantitative deterministic metrics for evaluating the rel-
evance of an important region. Like Samek et al. [41], our metrics also measure the classifier
confidence of the important region. However, we compare the increase in accuracy to a baseline
image rather than the decrease in accuracy by perturbing the pixel values. Our baseline image
is not confident in its prediction. By adding the important pixel region to this baseline image, in
our first metric Simple Confidence Gain (SCG), we measure the effective increase in confidence
of only the important pixels and normalize the increase by the confidence of the original image.
Our second metric - Concise Confidence Gain (CCG) - aims to ensure that the new image formed
by adding the important pixels to the baseline image is classified correctly. Additionally, CCG
takes into account the size of the region to reward the smallest region of most informative pixels.

Using these new metrics, we contribute comparisons of three different algorithms for finding
important regions of images - occluding patches [51], gradients of the class score with respect to
the image [20], and Contrastive-Marginal Winning Probability (C-MWP) [52] - on two different
datasets - Place365 [55] and our own dataset containing images of various floors in our build-
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ing. In addition to contributing a metric to compare importance functions, we also contribute
a technique and evaluation procedure to find most concise pixel regions by combining multiple
important regions together. Our results indicate that the most important pixels according to our
metrics are those that different algorithms can all agree on. We conclude that our measures of
important pixels can be used in conjunction with subjective measures of human preferences to
evaluate new importance measures and visualization techniques.

3.2.1 Related Work
A variety of deep visualization techniques have been developed to understand CNNs (e.g., K.
et al. [20], R. et al. [37], Zintgraf et al. [56]). We roughly divide these techniques into two cat-
egories - class model visualization and image specific visualization. Class model visualizations
such as K. et al. [20], Yosinski et al. [50] aim to understand how the neurons in the network
contribute to the classification. Image specific visualization techniques aim to find what features
the CNNs have learned to look for in each image [20, 37, 51, 52, 56].

In our work, we focus on evaluating image specific visualizations for the important features
that they highlight. We refer to their feature-finding algorithms as importance functions. For
example, K. et al. [20], Zhang et al. [52] have developed error backpropagation-based techniques
to find the importance of different regions of an image for a prediction by computing gradients
with respect to the image. The work has been extended to evaluate activations of particular
neurons rather than pixels in images. Zeiler and Fergus [51] have developed a technique for
sensitivity analysis by occluding patches in the image. [56] has also created a procedure for
finding importance function using occluding patches. While we evaluate our new metrics on
three importance functions K. et al. [20], Zhang et al. [52], Zintgraf et al. [56], it can be applied
to any techniques that find features that are important to classifiers.

There are relatively few evaluation techniques for comparing these importance functions. R.
et al. [37] use human studies to compare different importance function’s ability to discriminate
between classes. Human studies only evaluate the quality of the function’s visualization from
a human’s point of view, and do not give any measure of how well the function has captured
what the network has learned. Samek et al. [41] proposes an algorithm to objectively evaluate
importance functions by randomly perturbing a small region around the important pixels of the
image and observing the confidence scores from the classifier. They do this random perturbation
sequentially in order of importance for 100 relevant pixels. The confidence scores during the
process are then used for comparing different importance functions. However, since the work
randomly perturbs the pixels of the images it could introduce new artifacts in the image which
might confuse the classifier. We also propose objective metrics to compare importance functions
by observing the confidence changes on a classifier. Our proposed metrics are comparatively
faster than the prior approach 1:100 times - and are deterministic.

3.2.2 Importance Functions
We assume that a CNN classifier C outputs p(I = y|w), the probability of an image I ∈ [0, 1]c∗N

with c channels (i.e., 3 for R,G,B) and N pixels having classification y given the trained weights
w. For clarity, we will refer to the ith pixel in the image as I[i]. Given C and I , an importance
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function determines the pixels that have the largest impact on the classifier for predicting it as
y. The output of these importance functions is a heat map H ∈ [0, 1]N containing relative im-
portance of each pixels in the image. A variety of importance functions have been proposed for
explaining the classification predictions of CNNs. In this section we introduce the three visual-
ization techniques we use as a feature importance functions in our work - occluding patches occ
[51], gradients of the class score with respect to the image grad [20], and Contrastive Marginal
Winning Probability C-MWP [52].

Occluding Patches (occ)

A gray square patch of a fixed size called an occlusion mask is used to systematically occlude
parts of the input image and the confidence scores in these images are used to find the heat map.
The idea behind the approach is if a key feature in an image gets occluded, then the classifier’s
confidence will fall. The algorithm first creates a visibility mask V as the inverse of the occluded
patch:

V [i] =

{
0 if I[i] is occluded
1 otherwise.

By weighing the non-occluded regions of the image by their classifier accuracy, the highest
confidence regions are those that are most important in the heat map H:

H = 1−
∑J

j=1 p(Io,j = y|w) ∗ Vj
J

(3.1)

where Io,j is the jth occluded image and J is the number of images generated by systematic
occlusion. Note that the heat map H is a function of the size of the occluding patch, so we
can evaluate different sized patches to understand how their resulting heat maps change our
importance measures.

Gradients (grad)

The heat map H , for the gradient visualization technique represents the magnitude m of deriva-
tive of the classification confidence with respect to the image. The magnitude of ith pixel mi

represents the sensitivity of the network’s prediction to the change in that pixel’s value.

mi =
∂p(I = y|w)

∂I[i]

We expect that the probability scores are more sensitive to the change in values of the important
features than others. In the case of a multichannel image– c > 1, only the maximum absolute
value of the gradients for each pixel across all color channels are considered:

H[i] =

{
|mi| if c = 1
maxc|mi| otherwise.

Note that since the gradients are pixel-wise importance values for the image, the heat map is
generally of high entropy thus lacks continuous important image regions.
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Contrastive Marginal Winning Probability (C-MWP)

The work models the top-down attention (importance function) of a neural network classifier,
using probabilistic WTA formulation [19]. The WTA identifies the neurons that are relevant
to the task in a particular layer using the backpropagation technique Excitation Backprop that
computes the Marginal Winning Probabilities (MWP). After identifying the relevant neurons,
we compute the most relevant neurons’ corresponding receptive field and the generate the heat
map for the image.

The MWP map’s discriminative ability can be improved by backpropagating contrastive sig-
nals to produce Contrastive-MWP maps. Contrasting signals for the image belonging to class
A, is the difference in the gradients of A classifier and not A classifier. C-MWP is able to
achieve better discriminative visualizations than MWP. The heat maps generated at higher-layers
generally have lower spatial accuracy than the ones from lower-layers, so our implementation
(described in Section 5) selects a lower-layer to form the heat map.

3.2.3 Analyzing Important Features

Given an image and classifier that determines what the image contains, our goal is to understand
which pixels of the image are most important to its classification. Because different algorithms
may determine that different pixels are important, we are interested in finding a measure of
goodness to compare different classifier’s important regions. Prior work has focused on allowing
users to rate visualizations overlayed on the image as a measure of goodness. In contrast, we
propose to reduce variability in subjective preferences by instead utilizing the classifier itself as
our measure. This proposal also captures the relevance of the important regions to the classifier
which is not captured in the human studies. We compare the goodness of different important
regions based on how they affect the classifier accuracy as well as the size of the important
region.

Problem Formulation

In the previous section, we provided some examples of importance functions importance(I, C)
that take as input an image I and a classifier C and output a heat map H ∈ [0, 1]N that contains a
measure of the relative importance of each pixel. The map will have higher values for those pix-
els, which are considered important and lower values otherwise. Note that different importance
functions may output different heat maps. The heat map can be visualized on top of the image to
allow a user to see the relative importance of each pixel. For example, Figure 3.3(c) shows the
visualizes the heat map for image in Figure 3.3(a).

While the heat map is useful for visualization, we propose the use of a binary mask as shown
in Figure 3.3(d), that signifies whether each pixel is important or not. A mask M ∈ {0, 1}N is
created such that each pixel i takes value:

M [i] =

{
1 if important
0 otherwise.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.3: (a) is the original image, (b) is the base image obtained from using Gaussian kernel
Gk, and (c) is the heat map obtained using C-MWP, where red and blue represents the most and
the least important pixels. (d) is the mask obtained after thresholding the heat map (c) for top
ρ=5% pixels, and (e) is the mask obtained after growing the regions of the mask in (d). (f) and
(g) are the hybrid images created using mask in (d) and (e) respectively using the base image (b).
(h) is the hybrid image obtained using mask in (d) and a base image obtained using zeros kernel
Zk.

In this work, we use thresholding over H– segmenting top ρ % elements, to determine im-
portance but other techniques such as graph cut [10] could also be used.

We propose the creation of a hybrid image IM,K as shown in Figures 3.3(f) and 3.3(h) that
contains the important pixels indicated by M and less informative remaining pixels. The clas-
sification accuracy of the hybrid image reflects only the contribution of the important pixels. In
order to create the hybrid image, we first create a base image IK which represents the image I
altered using a kernel function K. The kernel is chosen such that it renders the pixels compar-
atively less informative for classification. In this work, we have explored two such kernels: a
Gaussian kernel Gk, which blurs the image refer Figure 3.3(b), and a zeros kernel Zk, with zeros
in its all element values. The hybrid image IM,K is then created using the original image I , the
mask M and the base image IK such that:

IM,K [i] =

{
I[i] if M [i] = 1

IK [i] otherwise.

Next, we propose two measures of confidence gain to reflect the improvement in the classifier’s
confidence when the base image p(IK |w) is converted to the hybrid image p(IM,K |w).
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Metric: Simple Confidence Gain (SCG)

The Simple Confidence Gain (SCG) measures the ratio of the improvement in accuracy of the
base image to the hybrid image containing only important features compared to the improvement
in accuracy of the base image to the original image. Note that we assume that the kernel is
predefined and the same for all compared masks M .

SCG(I, IK , IM,K) =
p(IM,K = y|w)− p(IK = y|w)
p(I = y|w)− p(IK = y|w)

(3.2)

A value of SCG close to 1 indicate that the masked pixels contribute highly to the classifier
accuracy. Values close to 0 indicates that the mask has little contribution.

Metric: Concise Confidence Gain (CCG)

The Concise Confidence Gain CCG is a modified version of SCG. It improves upon the SGC in
two ways. First, it requires the important region to produce an accurate classification. Second, it
measures the conciseness of the important region necessary to classify the image correctly.

The idea is to increase the region under the mask M to form a new accurate mask AM as
shown in Figure 3.3(e), such that the classifier predicts the class y of the hybrid image IAM,K

correctly as shown in Figure 3.3(g). It should be noted that there are many ways of increasing the
size of the mask. For example, we can simply construct a new mask from the heat map with an
increased threshold ρ. In this work, we have chosen to grow the mask using the dilate operation
which enlarges the boundary regions of the foreground pixels. With the new hybrid image the
CCG metric is calculated as: CCG(I, IK , IAM,K) =(

p(IAM,K = y|w)− p(IK = y|w)
)
∗N(

p(I = y|w)− p(IK = y|w)
)
∗ AAM

(3.3)

where AAM −
∑

iAM [i] is area of the image masked by Mf . We note that two different masks
that are originally the same size need not be the same after dilation. The dilated area depends on
the geometry of the mask, so we divide the relative confidence by the ratio of the area of the new
accurate mask AAM to the size of the image I (N ).

High values of CCG reflect more important masked regions compared to the those with lower
values. Additionally, because CCG divides the relative confidences by their areas, CCG also val-
ues the conciseness of the mask. The complete algorithm for finding CCG is shown in Algorithm
2.

Combining Important Features

We hypothesize that combining the features from each individual importance functions can im-
prove the conciseness of the most important region. In particular, we propose that the most
important region is located at the intersection of the individual important regions. Pixels that
several different functions can agree are important are likely to be the most discriminative and
will have higher values of our CCG metric compared to the regions found by individual impor-
tance functions.
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Algorithm 2 Procedure for calculating CCG
Input: Heat map H , Image I , Kernel K, Mask percent ρ, classifier parameters w, Image class y
/* Creating the mask */
M ← GetBitMask(H, ρ)
/* Creating the base image */
IK ← TransformImage(I, K)
/* Loop until prediction matches the correct class */
repeat

IM,K ← CreateHybrid(M, I)
/* Prediction for the hybrid image */
predicted class = Classify(IM,k, w)
/* Break if the predicted the correct class */
if predicted class == y IAM,k ← IM,k

/* finding Area of the mask */
AAM ← TotalNoElements(M)
break

end if
/* Grow the mask */
M← DilateGrow(M)

until
CCG← Compute with Equation 3.3

There are many different ways to find the intersection of important regions. For example, it
is possible to directly add two heat maps and then segment it to generate a new mask. In this
work, we take the intersection of the masked regions. These small sets of important features can
also be used as an explanation to people when the individual importance functions are complex
for example when the classification task is scene recognition.

3.2.4 Experiments

In order to evaluate our metrics and our algorithm for combining important features together, we
performed experiments on several different datasets and the three importance functions described
in Section 3. We will first describe our datasets and the corresponding CNNs that we have used
in our experiments. Then, we present our experiments for evaluating the important features
using our proposed measures. Finally, we demonstrate our metrics on combinations of important
features.

We have considered two datasets - Building-Floor refer Section 3.1.2, and Places365-Standard
[55] for our evaluations. We chose to test our algorithms on scene recognition data because the
images are complex yet, there are few classification labels.
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SGC CCG
Floor Places365 Floor Places365

ρ Config Gk Zk Gk Zk Gk Zk Gk Zk

10 43 34 31 23 114 98 93 77
occ 50 28 38 22 21 103 96 85 82

100 36 27 18 18 105 94 81 80
25% 0 46 24 39 19 113 70 110 82

grad 2 61 31 43 20 107 74 112 88
5 57 30 44 25 116 88 116 90

C-MWP 71 39 50 37 120 113 137 115
10 25 22 20 16 161 132 103 88

occ 50 16 19 14 13 135 136 96 86
100 20 22 11 12 119 113 91 84

5% 0 18 22 26 14 163 70 128 83
grad 2 35 28 29 15 237 98 128 94

5 31 22 28 18 189 122 130 96
C-MWP 40 22 27 21 208 162 162 125

Table 3.1: Average SCG values (*100) for individual masks with 25% and 5% top pixels. C-
MWP performs best (bold) in almost all datasets, base image kernels, and values of ρ.

Places365-Standard

The Places365-Standard dataset [55] contains images from 365 categories for scene recognition.
It contains scenes from both indoor and outdoor locations. We used the Places365-AlexNet
model provided by the authors in our work on this dataset, which was trained using∼1.8 million
images. For our testing, we selected 200 random images from the dataset.

Experimental Procedure

We evaluated the three importance functions described in Section 3.2.2. For occ, the heat map
generated will be a function of the size of the occluding patches. Hence we evaluated the algo-
rithm as we also varied the size of the occluding patches ∈ {10, 50, 100} pixels. In the case of
grad, since the heat map generated is of high entropy we dilate the heat map 0, 2, and 5 times
with a 3x3 kernel. Dilating smoothens the heat map and improves the continuity of important
regions as shown in Figure 3.4. For C-MWP, we use the output from the pool2 layer for both of
the networks as we lose the spatial accuracy at higher layers. For our C-MWP implementation,
we used the source code provided by the authors.

Given the heat maps generated by each importance function, we then created the masks using
simple thresholding to ensure that a certain percentage (ρ = 5% and 25%) of the top features
are consistent across tests. To create the base images, we used two different techniques - a
Gaussian kernel Gk of size 17*17 for creating the blurred base images and a zero kernel Zk to
substitute black for the non-important pixels. While finding the accurate hybrid image between
each iteration, we grow the regions of the mask using a 3x3 dilate operation. When testing
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Figure 3.4: The image masks for the (top) occ importance function and (bottom) grad importance
function generated with the parameters ρ=25% and with dilation = {0, 2, 5} respectively for one
image from the Building-Floor dataset (left three images) and one image from the Places365
dataset belonging to the class amusement station (right three images).

Figure 3.5: A side by side comparison of occ (patch size = 10), grad (dilation = 5), and C-MWP
respectively on an image from the Building-Floor dataset and the Place365 dataset (ρ=25%).

the combinations of the importance functions, we evaluated all pairs on both datasets, namely
grad+occ, C-MWP+grad, and C-MWP+occ. For the experiments combined with occ, we have
fixed the size of the patch to be 10, and for grad, the number of dilating operations is 5.

During the experiments, the cases where p(I = y|w) − p(IK = y|w), and p(IM,k = y|w) −
p(Ik = y|w) are less than zero are not considered, as it violates our assumption that the kernel
function renders the pixels less informative for the classifier. An example for such a case could
be a dark image belonging to the class night, using a zero kernel Zk will make it the best image
for the class. During CCG calculation, we also fix the maximum number of times a region can be
grown to 50, and we ignore the cases when it exceeds this margin. This is to avoid the growing
mask from using other important features that were not captured by their importance function.

3.2.5 Results and Discussion

Comparing Importance Functions

The quantitative results of the evaluation of the individual importance function’s masks are shown
in Table 3.1. The masks obtained from the variation of occ and grad on one image from each
dataset are shown in Figure 3.4(top) and 3.4(bottom). A side by side comparison of the mask
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Figure 3.6: A side by side comparison of the three pairs of importance functions (grad+occ,
C-MWP+grad, and C-MWP+occ respectively) on an image from the Building-Floor dataset and
the Place365 dataset (ρ=25%).

SCG CCG
Floor Places365 Floor Places365

ρ Importance Gk Zk Gk Zk Gk Zk Gk Zk

best single 71 39 50 37 120 113 137 115
grad+occ 25 30 20 15 223 139 122 89

25 C-MWP+grad 43 32 28 16 239 169 155 122
C-MWP+occ 29 30 17 13 225 171 154 114

best single 40 28 29 21 237 162 162 125
grad+occ 6 18 7 9 209 166 133 103

5 C-MWP+grad 16 22 11 9 330 230 186 137
C-MWP+occ 7 15 4 5 249 269 179 133

Table 3.2: Average SCG and CCG values (*100) for all combinations of importance functions
with 25% and 5% top pixels. The best single importance value is also included (the bold value
from each column of Table 1). Patch size for occ is 10, and number of dilate operations for grad
was 5.

obtained for occ with patch size = 10, grad with number of dilations=5, and C-MWP are shown
in Figure 3.5.

Among the variation of occ, we find that the patch size of 10 on an average performs better
than 50 which is better that 100. With the patch size of 10, the mask tends to be spread throughout
the image compared to 100, refer Figure 3.4(top). This is because the importance function rates
all pixels covered by large occlusion patches as important when only a small area under the
occlusion is actually important. A patch size of 10 occludes the smaller important features ”are
more concise” and hence better capture what the network has learned.

Similarly for grad, dilating the region 2 and 5 times performs as good or better than not
dilating the heat map. As can be seen in Figure 3.4(bottom), when the important features are
too small (as with 0 dilation), the mask has high entropy and this makes the hybrid image not
informative enough for the classifier.

Comparing the three importance functions, C-MWP outperforms the other two by a signifi-
cant margin, followed by grad and then occ. The result matches the conclusion in Zhang et al.
[52], which compares C-MWP and grad qualitatively and shows that the former is able to pro-
duce better localization of objects. However, our technique does not require human evaluation
for similar results. We conclude that our metric compares importance functions objectively and
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indicates high values when the important regions lead to higher classifier accuracy.

Effect of varying threshold

We varied the percentage of the top pixels considered important while generating the mask, as
5% and 25%. We find that SCG values for 25% are higher that for 5%, and CCG values for 5%
are greater that 25%. This is expected, as when the percentage decreases the size of important
regions decreases but since only the top pixels are retained, their quality increases. Selecting
values of ρ for future evaluations of importance functions should take this tradeoff into account.

Analyzing combination of important functions

The quantitative results for the combination of importance function’s masks are shown in Table
3.2 and the masks are visualized in Figure 3.6. Considering only the average CCG values, the
combination of two importance functions performs much better than the individual ones, as pre-
dicted. However, their average SCG values are much less than the individual ones, the reason
being the SCG measure considers only the amount of information gained and not the density or
conciseness of the features like CCG.

There are far fewer discriminative features in the combined masks (Figure 3.6) compared
to the individual ones (Figure 3.5). This result is most apparent in the Building-Floor dataset,
where the combined masks have captured the glass door and the hallway behind it while the
individual masks have captured other features as well. Upon human inspection, we agree that
the glass door is the most discriminative feature of that image and of the floor because there are
other floors with the similar wall, carpet, and hallways, but not a glass door (see Figure 3.1 for
examples of each floor). Similarly, in the image from the Places365 dataset, we can see that
the individual visualizations capture additional features that are not relevant to the class of the
image– bus station, but the combinations have captured only the features that are on the bus.

Among the combinations of the three importance functions considered C-MWP+grad per-
forms better than C-MWP+occ by a small margin. And, both C-MWP+grad and C-MWP+occ
outperforms grad+occ by a large margin. This reflects our result in the previous subsection
which shows that C-MWP performs the best followed by grad. We can conclude that combining
different importance functions results in a more concise region of important features, which can
be beneficial for preventing information overload to humans for visualization as well as finding
the most discriminative pixels for classification.

3.2.6 Summary and Conclusion
There has been much interest in how image recognition especially using deep convolution net-
works (CNNs) works. Prior work to visualize important regions of images that are most dis-
criminative for classification have been largely subjective, depending on humans to rate the vi-
sualizations. In this work, we contribute two objective metrics– SCG and CCG, for finding how
important a region of an image is for a classifier. Both metrics compare the accuracy improve-
ment of the important region over a baseline image. Our CCG metric also takes into account the
conciseness of the region as well as requiring the classifier to classify the image accurately.
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We have used these metrics to compare three different visualization techniques on two scene
recognition datasets. Our results on the relative performance of these techniques correlate with
the qualitative results provided in [52]. However, our results do not require a human to rate the
visualizations. We also show that the new metrics can be used to find the best hyperparameter (ρ)
for the visualization techniques. Finally, we motivate the need for combining different visualiza-
tion techniques by demonstrating using our metric that taking an intersection of their important
regions results in a more concise set of better discriminative features than the individual ones.
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Chapter 4

Explaining the Robot’s Actions

In the previous part of our work, we use verbalization to describe a robot’s actions like narrating
what path it took to reach its current place. In this chapter, we look at explaining a robot’s actions.
Explanations are different from descriptions in the sense that in explanations, we describe the
reason why the robot took that path. For example, for a robot’s path, a description can be ‘I
reached here via the Fifth Avenue’ while an explanation can be ‘I arrived here via the Fifth
Avenue because it was the shortest path.’

When robots explain their actions, they are trusted more by people around and using them.
As a first step towards making robots explainable, we make the floor identification module that
we used for demonstrating automatic annotation explainable, as we describe below.

We propose a new method to explain an image based classifier used for scene recognition to
the people in natural language. The algorithm we develop in this chapter creates groundings for
the explanation automatically. Our approach to generating an explanation to the classification
consist of the following steps:
• Identify the important regions in the input space for the classification
• Extract explainable features from the identified important regions
• Generate an explanation using the features

First, to explain a decision by any module, we need to find what part of the input has influenced or
most influenced the decision. We identify important features for the DNN’s classification using
deep visualization techniques or importance functions. Next, similar to the step in verbalization,
we need to ground the important regions with natural language tags. We generate groundings
for the important regions in the image by using a separate image based object detection network,
once again leveraging the concept of automatic annotation. Finally, similar to our variable ver-
balization algorithm, using all the explainable features we generate natural language sentences.
We demonstrate our explanation generating technique by generating an explanation for all the
classes the floor identification module is trained on.

We start by describing some of the related works and a brief background for the proposed
algorithm. In Algorithms section, we describe the algorithm for generating the explanation for a
scene recognition classification followed by the details of our implementation for generating an
explanation for CoBot’s floor recognition network. Finally, we analyze the results and discuss
the future work.
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4.1 Related Work
The field of explainable artificial intelligence has only recently started getting attention from the
research community. In this work, since we only look at explaining a machine learning based
classifier we will limit our discussion to the same. Finding the important features or feature size
reduction [7, 8] in the context of machine learning are well-researched areas. But these work
does not focus on generating an explanation or making them interpretable, as our work focuses
on generating explanations we will not discuss these topics either.

A common approach to generating model-agnostic explanations for a classifier is learning an
interpretable model based on the predictions of the original model [3, 39, 42]. In Ribeiro et al.
[39] the authors explain the classification of any model by learning a separate sparse linear model
that locally approximates the original model to explain its decisions. The work demonstrates
explaining text models. However, it is unclear on how to extend this approach to domains such
as images or tabular data. The work also does not focus on generating explainable or making the
locally learned model understandable to humans.

Hendricks et al. [18] focuses on generating textual explanations for fine-grained classification
of 200 bird species using deep network from their images. The explanations are generated using
ResNet [17] features extracted from the entire image, and the explanations are conditioned both
on the image and the class predictions. The explanation generation module is trained on the
bird’s descriptions. While such an approach might be possible for cases where the vocabulary
and type of explanations are similar within and across classes, this will not generalize to other
scenarios.

An architecture for querying the robot’s data and answering the questions from the user has
been discussed briefly in Lomas et al. [28]. The demonstration focusses on a simple example
as a proof-of-concept, and the generalization of the querying or answering mechanism have not
been discussed.

Our work focuses on generating an explanation for image based scene classifiers. Our ap-
proach for generating explanations does not require any training descriptions since we use the
objects in the scene to describe it.

4.2 Background
To recap on the notations and definitions we introduce again some of the term we describe
in previous chapters. Let classifier C output p(label = y|I, w), the probability of an image
I ∈ [0, 1]c∗N with c channels (i.e., 3 for R,G,B) and N pixels having classification y given the
classifier’s weights w. For clarity, we will refer to the ith pixel in the image as I[i]. Given C and
I , an importance function determines the pixels that have the largest impact on the classifier for
predicting it as y. The output of these importance functions is a heat map H ∈ [0, 1]N containing
relative importance of each pixels in the image.

Let H be the importance heat map for the classifier C, classifying a given image I belonging
to class y, into class. We find the important features for the classification by segmenting the heat
map to get a binary heat mask M . We generate the mask by segmenting top ρ% of the pixels
from H .
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In this work, we use the gradient based importance function [20] we discussed in the previous
section. To recap, the heat map H , for the gradient visualization technique represents the mag-
nitude m of derivative of the classification confidence with respect to the image. The magnitude
of ith pixel mi represents the sensitivity of the network’s prediction to the change in that pixel’s
value.

mi =
∂p(I = y|w)

∂I[i]

We expect that the probability scores are more sensitive to the change in values of the important
features than others. In the case of a multichannel image– c > 1, only the maximum absolute
value of the gradients for each pixel across all color channels are considered:

H[i] =

{
|mi| if c = 1
maxc|mi| otherwise.

When a robot navigates across many floors of a building or multiple buildings, one major
challenge that it has when exiting the elevator is localizing itself to determine which floor it is
currently on [47],[46]. We collected a Building-Floor dataset in one of our university buildings.
Each image contains the scene just outside the elevator from six different floors of the building.
The goal of the classifier trained on this dataset will be to recognize which floor the image
belongs to.

For each of the floors in the building, five images were taken at a specific locations that our
robot stops at, with slight variation in position. To simplify the analysis all the images were
taken at the same time of the day, and the effects of people moving around in the building are not
considered. The training data consists of three images, and the remaining two images form the
testing dataset.

In order to classify the floor for each image, we chose to use a CNN based on Siamese archi-
tecture [11] C, because it has been shown to perform well in one-shot learning problems [22].
Our training network of nine layers followed the AlexNet [23] in a modified Siamese archi-
tecture proposed in [43, 53] , which combined the identification– Softmax, and the verification
loss– Contrastive, for better performance. Our main reason for combining identification and ver-
ification loss with a pre-trained network is to reduce overfitting which could happen when the
complexity of network is higher than the data. During training, the first seven layers of our net-
work were initialized from Places205-AlexNet which was trained in Places205-Standard dataset
and provided by the authors [54]. The remaining two layers were trained from scratch. During
training contrastive loss was utilized in the eighth layer which is a dense layer of 1000 units,
while the softmax loss was employed in the ninth layer. During testing, our network was able to
classify all the images in the dataset correctly.

4.3 Algorithm
In this section, we describe the algorithm we propose to generate the explanation for scene recog-
nition task. First, we generate explainable features that are important for the classification using
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a separate object detector and an importance function. As described earlier we define explainable
features as the features that can be grounded using natural language. Then we create a class-wise
explainable feature for each class using the image in training dataset. Finally, we generate an
explanation for a given image by using the corresponding class-wise features and the explainable
features of the given image. We describe our algorithm in detail in the following subsections.

4.3.1 Generating explainable features
Using an image-based multi-object detectorD, we find a set of objects {o0, ...ol} in the image and
their corresponding bounding boxes {(xmin0, xmax0, ymin0, ymax0), ... (xminl, xmaxl, yminl, ymaxl)}.
We then create explainable features for the whole image using the detected object ids oi and their
corresponding location in the image. To allow some spatial invariability in the position of the
detected objects, we discretize the image into g grids and use the grid index gId of the detected
object’s center as a proxy to their location in the image. The explainable features E for an image
is of the form { (gId0, o0), ...(gIdl, ol)}.

An image taken by the robot during its tasks may contain objects that are not related to the
scene. To avoid the objects that are not related to the scene we filter the explainable features of
the objects that are not in the most important region of the scene. For example, a dog might have
wandered into kitchen space, since the scene belongs to the kitchen category the dog will not be
considered as an important feature by the network. We remove features in E with objects having
less than a threshold ratioOvr, of their bounding box overlapping with the importance heat mask
M .

Another way in which we filter unrelated features in E by removing features containing
objects in rejection corpus Or. The objects in the corpus are generally not present in the area in
which the robot operates in, or containing objects that are not preferred in our explanation. We
construct Or by examining the corpus of objects D is capable of labeling. After applying the
filters discussed above, we get relevant explainable features Er, for I . We apply filters to E as:

Eb = {ei |
sum(M [xmini : xmaxi, ymini : ymaxi])

(xmaxi − xmini) ∗ (ymaxi − ymini)
> Ovr, ∀ei ∈ E}

Er = Eb \ {ei | oi ∈ Or, ∀ei ∈ E}

where M[x1:x2, y1:y2] is a submatrix of M with (y2-y1) rows and (x2-x1) columns, it con-
taining elements from M in x1 to x2 columns and y1 to y2 rows. Summarizing, we generate Er

for I with the following steps:
• Find the class y, the test image belongs to using C
• Compute heat mask M using the importance function
• Using D, g, Or and M generate relevant explainable feature for the image Er

4.3.2 Class-wise explainable features
We then consider a second training set for identifying class-wise explainable feature Ec,r. This
training set can be same as the training set used for training the classifier C. Ec,r contains a set
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of explainable features for each class, it can be considered as a definition of the classes. Given a
set of training images, there are multiple ways to generate Ec,r. In this work, we construct Ec,r

by simply taking a class-wise union of Er for all the training images.
In this work, we assume that the C, importance function and D are good enough to produce

unique class-wise explainable features, i.e., all the classes are distinguishable by using only their
explainable feature. We use Ec,r as a dictionary of features defining the class.

4.3.3 Generating explanations
For a given test image It, belonging to class yt, we generate relevant explainable features Er,t

as described above. Then, we create the class specific explainable features Es,r,t by considering
both the class-wise explainable features Ec,r[yt] for yt, and Er,t. Again, there are multiple ways
of generating Es,r,t given Ec,r[yt] and Ert, in this work we take intersection between them to get
Es,r,t.

Finally, we use grounding and template based natural language generation to convert Es,r,t

to natural language explanations. We convert each of the features to natural language phrases
using a set of groundings. The groundings for the object labels oi are themselves. For the grid id
gIdi, the groundings are related to their spatial location, for example for g=3 the grounding for
gId=(0,2) can be ‘far right’ and for gId=(1,1) can be ‘center.’

4.4 Experiments
In our experiments, we used Yolo9000 [38] as our multi-object detector D, we used the network
weights trained and provided by the authors. Yolo9000 uses a hierarchical tree classification
which is built using WordNet [31] concept.

D uses hierarchal classification and the level of hierarchical in the detection is controlled by
a threshold th,D and a separate threshold which controls the threshold for the bounding box tb,D.
D traverse the tree down, taking the highest confidence path at every split until we reach the
threshold thD and we predict that object class. The hierarchical nature of the classification leads
to some objects labeled as instrumentality, things or matter, Or is constructed using these labels.
Our rejection corpus for the building-floor detection dataset is:

Or = {‘home appliance’, ‘living thing’, ‘container’, ‘artifact’, ‘person’, ‘conveyance’, ‘bot-
tle’, ‘instrumentality’, ‘whole’, ‘deep-freeze’, ‘electric refrigerator’, ‘machine’}

In our work, we use the building-floor detection dataset to explain the floor classification.
The training set for the building the class-wise explainable features are the same as the training
set for the scene classifier. For more details on the dataset refer Section 3.1.2. We have used
a grid size g=3. This leads us to the groundings like ‘top’ for (0,1), ‘top right’ for (0,2), and
‘center’ for (1,1) gIds.

The heat map generated from the gradient visualization technique is generally of high entropy
thus lacks continuous important image regions, hence we dilate the heat map 2 times with a 3x3
kernel. Dilating smoothens the heat map and improves the continuity of important regions.
In our experiments we use the following values for the hyper parameters:
• th,D = 0.7
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Figure 4.1: Example for generating Er (a) original image belonging to floor 3 of floor-detection
dataset, (b) D predictions on the image, (c) heat mask M using gradient visualization technique,
and (d) discretization of image into 9 grids.

• tb,D = 0.1
• Ovr = 0.5
• ρ = 0.5

4.5 Results and Discussion

To consider an example for generatingEr for an given image let us consider an example shown in
Figure 4.1 (a). For the original image Figure 4.1 (b) shows the object detection results generated
using D, (c) importance mask for the classification of the image to class floor 3, and (d) shows
the discretization of image into grids. E produced by using the discretization and output from D
is:

[‘(0,1), electric refrigerator’ ,‘(1,1), pot’, ‘(2,1), person’, ‘(2,1), living thing’, ‘(2,1), fur-
nishing’, ‘(0,1), pot’, ‘(2,1), chair’, ‘(1,1), chair’, ‘(1,1), seat’, ‘(1,1), instrumentality’, ‘(2,1),
container’]

In our work, to generate E we group object ids belonging to similar labels for example,
‘seat’ and ‘chair’ are grouped to form a single label ‘chair’, and we discard the repeated features.
Applying the filters to E as described in the algorithms section we generate Er as:

[‘(1,1), pot’, ‘(2,1), person’, ‘(2,1), furnishing’, ‘(0,1), pot’, ‘(2,1), chair’, ‘(1,1), chair’]
As described above we generate Er for all the images in the training dataset and combining

the features class-wise using union operation to generate class-wise features Ec,r. The class-wise
features for the building-floor detection dataset is:
• floor 2 : []
• floor 3 : [‘(1,1), pot’, ‘(2,1), person’, ‘(2,1), furnishing’, ‘(0,1), pot’, ‘(2,1), chair’, ‘(1,1),

chair’]
• floor 4 : [‘(1,1), furnishing’]
• floor 5 : [‘(2,1), chair’, ‘(2,2), furnishing’, ‘(2,2), chair’, ‘(1,1), furnishing’, ‘(1,1), table’,

‘(1,2), chair’, ‘(2,1), furnishing’, ‘(1,1), chair’]
• floor 6 : [‘(2,1), furnishing’, ‘(2,1), chair’, ‘(2,1), pot’, ‘(1,1), person’, ‘(2,1), sofa’]
• floor 7 : [‘(2,1), pot’]
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Figure 4.2: Testing images belonging to (a) floor 3, (b) floor 5, and (c) floor 6

For the test images in Figure 4.2, we generated Er as described above. We then create
Es,r,t for the images using the corresponding class-wise features from Ec,r as described in the
algorithms section by taking intersection between them. Es,r,t for test images in Figure 4.2:
• floor 3: [‘(2,1), furnishing’, ‘(2,1), chair’, ‘(1,1), chair’, ‘(0,1), pot’]
• floor 5: [‘(2,2), chair’, ‘(2,1), chair’, ‘(2,1), furnishing’]
• floor 6: [‘(2,1), pot’, ‘(2,1), sofa’]
We have used grounding ‘left’, ‘center’ and ‘right’ for x coordinate and ‘top’, ‘center’, and

‘bottom’ for y coordinates in gId. The corresponding explanation using a simple template based
natural language generation is:

• floor 3: I am in floor 3 because I see furnishing at right bottom, chair at right bottom, chair
at center center and pot at left top.

• floor 5: I am in floor 5 because I see chair at right bottom, chair at right bottom and
furnishing at right bottom.

• floor 6: I am in floor 6 because I see pot at right bottom and sofa at right bottom.

In the case of training floor-detection dataset the class-wise features are unique and hence
passes our assumption needed for generating the explanations. It is possible that the object
detector is not good enough in some situations leading to many empty class-wise features. For
floor-detection dataset the Ec,r for ‘floor 2’ is empty but since no other class is empty, having no
explainable features can be considered unique.

In our experiments in the test dataset in two images from ‘floor 7’ the object detector could
not detect objects, and hence contains empty features in Er and Es,c,r. The algorithm is able to
explain all other images in the testing dataset.

4.6 Summary and Conclusion

We have developed an algorithm for generating an explanation for scene recognition task in natu-
ral language. We demonstrate our algorithm on the classifier which identifies the floor the CoBot
is currently on. We first, identify important features for the DNN’s classification using deep vi-
sualization techniques or importance functions. Then, we ground the important regions in the
image with natural language tags using a separate image based object detection network, once
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again leveraging the concept of automatic annotation. We demonstrate our explanation generat-
ing technique by generating an explanation for all the classes the floor identification module is
trained on.
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Chapter 5

Conclusion

We have contributed a novel approach– verbalization, to describe robot’s actions and experience
in the natural language. We generate explanations while being able to capture all the possible
variation in the narration using verbalization space. We demonstrate the use of verbalizations on
our mobile service robot CoBot, to describe its route experiences. We validate on 24 routes that
a variety of narrations that can be generated from any single plan using our algorithm.

Our verbalization used manual groundings of data with natural language phrases; this made it
difficult to scale. To solve this problem, we propose automatic annotation of the data. We demon-
strate automatic annotation for verbalization with a particular problem of annotating which floor
our mobile service robot CoBot, is currently in after exiting the elevator. We have created, trained
and evaluated a DNN based classifier to identify which floor CoBot has reached after exiting the
elevator. With this specific example, we provide a demonstration of how to create an automated
annotation system and thus scale verbalization.

We contribute two objective metrics– SCG and CCG, for finding how important a region of an
image is for a classifier. Both metrics compare the accuracy improvement of the important region
over a baseline image. Our CCG metric also takes into account the conciseness of the region as
well as requiring the classifier to classify the image accurately. We have used these metrics
to compare three different visualization techniques on two scene recognition datasets. We also
show that the new metrics can be used to find the best hyperparameter (ρ) for the visualization
techniques. Finally, we motivate the need for combining different visualization techniques using
our metrics.

In our final contribution, we have developed an algorithm for generating an explanation for
scene recognition task in natural language. We demonstrate our algorithm on the classifier which
identifies the floor the CoBot is currently on. We first, identify important features for the clas-
sification and by grounding the important regions in the image with natural language tags using
a separate image based object detection network. We demonstrate our explanation generating
technique by generating an explanation for the floor identification task.
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Chapter 6

Future Work

A potential avenue for extension of our work on automatic annotation for verbalization is in cre-
ating a system for using many annotation modules for annotating different types of robot’s data.
The system needs to incorporate human-in-the-loop techniques to avoid errors due to limitations
of the annotation modules. In the case of floor-identification module, extensions are required to
the dataset to accommodate variability due to people and lighting conditions.

Extensions to the work on explaining scene recognition network can be testing the algorithm
in other scene recognition dataset and improving the explainable features generation process.
The feature generation process can be improved by using a probabilistic features vector for class-
wise features, i.e., instead of taking a union of all the features in the training set we can create
a distribution over all the possible features. Another easy and intuitive way to improve the
generation of explainable features can be using the absence of a feature as a feature. For example,
say class A’sEc,r is presence of feature 1 and 2, class B’sEc,r is presence of feature 1 and absence
of 2 and class B’s Ec,r is presence of feature 2 and absence of 1, differentiating between these
classes requires us to use the absence of a feature as a feature.

In our work on explaining robot’s actions, we have used the class-wise explainable features as
only as a means for an explanation, but as we described earlier, it can act as a dictionary defining
the class itself. Hence, another interesting line of work is combining both the confidence of the
classifier and the similarity vector between E and Es,c,r to predict the classification. We can also
use the discrepancy between the classifier and the similarity vector between E and Es,c,r for an
image to raise doubts or uncertainty about the robot’s location.

Extending verbalization to describe explainable feature can be another future line of work.
We can generate explanations from a given explainable features more flexibly through verbaliza-
tion. By defining new verbalization space dimension, we can personalize explanations as per the
user’s preference as we did while verbalizing the path of CoBot.

The metrics we have developed for the deep visualization technique tell us how good the
visualization technique is for the classifier. We can also use the metric to ask the reverse question,
i.e., use the metric to train the classifier for a particular visualization technique.
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