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Abstract
Agile Micro-Aerial-Vehicles or MAVs are required to operate in cluttered, un-

structured environments at high speeds and low altitudes for efficient data gathering.
Given the payload constraints and long range sensing requirements, cameras are the
preferred sensing modality for MAVs.

However, contemporary approaches use stereo camera observations in 3D space
by converting disparity image to point cloud and fail to deal with excess sensor noise
at long ranges and often resort to using less noisy short range observations. The
computation burden of using rich information provided by cameras and difficulty to
deal with sensor error for obstacle sensing has forced the state of the art methods
to construct world representations on a per frame basis, leading to myopic decision
making.

In this thesis we propose a long range perception and planning approach using
stereo cameras. We propose a method to use inverse-depth based obstacle represen-
tation which is adept at using the information provided by stereo cameras and enable
to incorporate sensor noise model for probabilistic occupancy inference. Using 2D
inverse-depth or disparity images based obstacle representation, our method enables
computationally efficient, on-demand occupancy inference.

By utilizing FPGA hardware for disparity calculation and image space to repre-
sent obstacles, our approach and system design allows for construction of long term
world representation whilst accounting for highly non-linear noise models in real
time.

We demonstrate these obstacle avoidance capabilities on a quad-rotor flying
through dense foliage at speeds of upto 10m/s for a total of 1.6 hours of autonomous
flights. The presented approach enables high speed navigation at low altitudes for
MAVs for terrestrial scouting.
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Chapter 1

Introduction

1.1 Motivation
Micro-aerial vehicles have long promised to be the agile sensing platforms of the future. MAV
applications like stealth reconnaissance, search and rescue and cargo delivery etc. need fast aerial
vehicles moving autonomously in cluttered environments, at low altitudes. Hence, fast and safe
obstacle avoidance has remained an active research area. Achieving safe, autonomous, fast flight
through cluttered environments on MAVs, presents two main challenges. One is the need for
a large sensing horizon (Figure 1.1) to allow for adequate time to detect and avoid obstacles
and second is the need for fast and accurate world representation update for minimal latency in
reacting to newly discovered obstacles, (Figure 1.2).

Both of these challenges need to be addressed while keeping the sensing and computational
payload to a minimum, to allow for maximizing MAV’s flight time and agility. However, current
state of the art systems that have demonstrated reliable autonomous flights in cluttered environ-
ments have either done so through active sensors like lidars [18], sacrificing agility and range
of sensing, or have relied on monocular cameras and data driven techniques to provide proof of
concept implementation in a specific environment [7]. Both schools of thoughts have led to pio-
neering demonstrations of obstacle avoidance capabilities of MAV’s albeit at low speeds, either
due to restricted sensing range or slow world/robot state updates.

Use of a stereo camera pair offers low weight, long range sensing at the cost of increased
computation. Barry et. al [4] and Mathies et. al [16] have demonstrated obstacle avoidance
at high speeds. While [16] perform motion planning on data observed in a single frame, [4]
generate a relatively sparse map leading to a reactive behavior which is likely to be stuck in local
minima in complex environments.

Integrating multiple disparity images, generated by a stereo pair is hindered by its highly non-
linear noise model with noise monotonically increasing with distance. We propose an approach
to integrate multiple disparity images in a computationally efficient manner to allow for long
range, non-myopic obstacle avoidance using stereo data.
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Figure 1.1: Long range perception and planning is needed to avoid obstacles at long distances. The observed
building is approximately 40m away.

Figure 1.2: Low latency perception and planning is needed for low altitude high speed reactive navigation for
MAVs. The robot makes a turn to go to the goal point and avoids the immediately seen obstacle. Obstacle is marked
in red ellipse.
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1.2 Contribution of the thesis
Our main contributions are -
• A principled application of disparity expansion as suggested by Mathies et. al [16] through

incorporating a sensor error model and explicitly using two disparity images to create a
front and back mask for obstacles.

• A principled approach to fuse information from multiple disparity images for probabilistic
occupancy inference.

• System design and real-world demonstration of high speed (10m/s) obstacle avoidance in
dense foliage, at heights as low as 1m AGL(above ground level).

1.3 Outline of the thesis
The thesis is structured as follows, Chapter 2 presents a short summary of the related work.
Section 4.1 describes the overview of our planning algorithm. Chapter 3 describes various parts
of the obstacle perception and Chapter 4 describes the planning algorithms in detail. Chapter 5
describes the MAV system on which the algorithm was tested with experimental results.
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Chapter 2

Background

2.1 Related Work

Recently many research groups have started investigating vision-only obstacle detection and
avoidance. Most approaches generate point clouds from disparity images and fuse with point
clouds from other sensors such as lasers. Appropriate fusion of multimodal sensory data is still
a work of active research. Most prevalent approach has been to generate 3D evidence grids or
occupancy grids to determine occupancy and to check for collision [13], [1].

Working with 3D gridmaps is both memory intensive for large occupancy maps and requires
more computation for registration of data and book keeping when scrolling or moving the grid
along with the robot. Trade-off between high resolution gridmaps vs grid size is another rea-
son why occupancy grids usually cannot be used to map a large volume with higher accuracy.
OctoMaps [15] have recently become popular due to their efficient structure for occupancy map-
ping. However, due to excess noise in stereo sensor generated data at long ranges, often a smaller
map is maintained and full stereo sensor data is not used.

Gohl et. al [10] proposes to use a spherical coordinate based gridmap suitable for stereo
sensors. However every disparity map has to be converted to 3D point cloud before being injected
into the 3D gridmap and hence it also suffers from the problem of computationally expensive step
of conversion to 3D point cloud and subsequent map warping or scrolling as the robot moves.

A pushbroom stereo scanning method is proposed in [4] for obstacle detection for MAVs
flying at high speeds. As the robot moves, disparity measurements equal to a fixed value are
collected to generate a map of the environment. This allows significant speed-up in map building
as a disparity is only generated if there is a correspondence in right image at predefined disparity
from the left image. Since the collected disparity measurements are at a fixed distance, usually
not very far to obtain reliable measurements from stereo camera, it is only suitable for short
distance detection and reactive planning.

We base our work on [16] which proposed a Configuration-Space (C-Space) expansion step
to apply an extra padding around disparities based on robot size. The method in [16] works when
planning in spaces where the stereo system disparity is not very noisy i.e. in close range making
the planning system myopic in nature and prevents long planning horizon. Another drawback
of this approach is that it only concerns with closest detections and disregards any information

5



available beyond closer detections.
Although cameras provide rich information about the environment, the aforementioned ap-

proaches fall short of utilizing this rich information and there is a need to find an obstacle repre-
sentation that is both, suited to vision sensing modality and efficient to process the rich data.

6



Chapter 3

Disparity Space Perception

As discussed in the previous chapter, there is a need to find an obstacle representation that is both,
suited to vision sensing modality and efficient to process the rich information we propose a 2D
inverse-depth or disparity image based representation. Since we represent obstacles as a set of
images itself, it serves as the closest data structure to a camera image. Also, 2D representation is
quick for inference as lookup is a simple pixel access. This chapter discusses in depth and reasons
about why this approach is suitable. We also reason about why there is a need to maintain a local
map and propose a solution to maintain a spatial memory as the robot navigates through the
environment.

3.1 Local Perception & Planning

We use disparity image or inverse depth image for obstacle representation as it naturally captures
spatial volume according to the sensor resolution [10]. This representation is befitting for noisy
stereo data as explained in Section 3.1.1. We employ C-space expansion where the original
disparity image is expanded, allowing us to treat the robot as a point when doing collision checks
during planning [16].

Our method incorporates a stereo sensor error model and allows us to reason about space
behind obstacles. We use an additional padding in disparity both in front and behind obstacles.
This padding varies from 3σ for close obstacles to 1σ for far obstacles, where σ is the standard
deviation of disparity error and the multiplier is represented by λ in later sections. By varying
λ we ensure safe planning at short range and a more optimistic planning at long range. This
enables the deliberative planning required for exploration tasks.

3.1.1 Disparity error and its effects

Disparity is a measure of the proximity of an obstacle. We can derive how close the obstacle is
in depth using triangulation in stereo vision as follows.

z =
bf

d
(3.1)
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Figure 3.1: Disparity vs Depth (blue) and probability distributions are shown in red and green. Red and Green
PDF in disparity are same and easy to model but their corresponding Red and Green PDF in range vary and difficult
to model. Hence we use inverse depth space to represent obstacles. Also, disparity i.e. inverse range captures space
at multi-resolution suitable for registration of stereo sensor data.

Where, z is the depth of a pixel(u, v) with disparity d, b is baseline and f is the focal length in
pixels.

The actual 3D point can be derived as

P (x, y, z) = (uz/f, vz/f, z) (3.2)

The accuracy of the stereo setup is drastically affected as the disparity decreases. The error in
depth increases quadratically with depth as shown in equation(3.5). Differentiating equation(3.1)
wrt d

∂z

∂d
= −bf

d2
(3.3)

∂z = − z
2

bf
∂d (3.4)

∂z ∼ z2 (3.5)

Disparity error is primarily caused due to correspondence error while matching pixels along the
epipolar line. It can be modelled using a Gaussian pdf. Assuming correspondence error during
disparity computation has a std deviation σ = 0.5pixels, we define the Gaussian pdf N (d, σ2).
Figure 3.1 shows how this Gaussian pdf in disparity results in a difficult to model pdf for error
in depth with an elongated tail on one side and a compressed tail on the other. This motivates to
use disparity image space domain directly for occupancy inference rather than resorting to depth
or 3D domain. In next Section3.1.2 we empirically determine the sensor error and derive the
inverse sensor model.
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3.1.2 Estimating disparity error

In stereo vision the stereo camera geometry is used to compute the inverse depth or disparity to
a seen object in left and right image. There is an error when computing this disparity in pixels
given some disparity computation algorithm. We want to model this error in disparity by setting
up an experiment.

We want to find a probability distribution of disparity error given a disparity image and some
ground truth. To this end we generate disparity using the FPGA based solution [17] and the
ground truth is obtained by placing a chequered/chess board pattern in front of the sensor. Using
the metric information of the corners on the board and by detecting those corners in the image we
can obtain the pose of each corner with respect to the camera which can be used as ground truth.
Corresponding to each corner pixel the disparity is sampled. We collect several such samples
and generate a histogram of disparity error. Figure 3.2 shows the setup at a distance of 2.5m.
Data was sampled at various other distances as discussed in the next section.

Figure 3.2: Experiment setup to collect data for error modelling. The point cloud at bottom shows the ground
truth points in blue and sampled points in pink. The small sized red point cloud is the disparity generated point
cloud.

3.1.3 Disparity error modelling

Based on the above experiments we obtained following results:
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Figure 3.3: Disparity Error profile at 2.5m from stereo sensor.

Figure 3.3 shows the disparity error histogram on left and the fitted Gaussian pdf on normal-
ized histogram. It can be seen that a simple Gaussian fits well with a standard deviation σ = 0.23
pixels at a depth of 2m.
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Figure 3.4: Disparity Error profile at 3.8m from stereo sensor.
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Figure 3.4 shows similar results but at approximately twice the depth i.e. at 4m. It also fits
the Gaussian pdf with same standard deviation. This means in disparity space the fitted Gaussian
does not change or the change is not significant as we will see in upcoming results.

Disparity Error Histogram

0 1 2 3 4 5

disparity error

0

0.05

0.1

0.15

0.2

0.25

no
rm

al
iz

ed
 d

en
si

ty

(a) Disparity error histogram

Disparity Error PDF

 = 1.09
 = 0.15

0 1 2 3 4 5

disparity error

0

0.5

1

1.5

2

2.5

3

de
ns

ity

10 5

density
pdf

(b) PDF for disparity error

Figure 3.5: Disparity Error profile at 10.0m from stereo sensor.

Figure 3.5 shows the histogram of disparity error and the fitted Gaussian distribution. Here
we see some departure from previous results but this can be attributed mostly to human error
because the ground truth had to be collected manually as the pattern was too far to be detected
automatically by the chessboard detector.
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Figure 3.6: Disparity Error profile produced by moving stereo sensor about 2.0m away from the chessboard
pattern.

Figure 3.6 shows the results with the pattern being moved around in front of the sensor. This
also shows similar results to the first two experiments.

Note: In all distributions there is a constant mean of error and this can be attributed to
discrepancies in the chess board itself. It was difficult to keep the board rigid and not flex. This
must lead to the error in computation of the ground truth itself.

After conducting these experiments we obtain the σ of disparity error that can be used for the
Gaussian sensor error model.
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3.1.4 Configuration-Space expansion

(a) Obstacles at different depths (b) Ideal metric expansion

(c) Disparity expansion with sensor noise (d) Expanded C-Space

Figure 3.7: C-Space expansion illustration: (a) Shows two obstacles at different depths and (b) shows their
metric expansion using a fixed robot radius. (c) shows expansion after incorporating stereo sensor error model. (d)
illustrates how different areas are inferred as occupied, free and unknown or occluded.

Configuration-Space is the domain in which collision checking for planning tasks is done. Usu-
ally for 3D navigation C-Space can be a 3D gridmap. C-Space expansion is required to represent
obstacles such that a single point state query can be used for collision checks. Occupancy grids
have been the default methods for registration of sensor data and C-Space expansion for oc-
cupancy inference. Usually point clouds are used to populate occupancy grids but point cloud
generated using disparity images are highly uncertain at greater depths and hence occupancy
grid based representation is infeasible. Moreover, 3D occupancy grids require a huge amount of
memory to capture the planning workspace and hence fail to incorporate long range measure-
ments available from stereo sensors. To overcome this limitation we use disparity images and
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Figure 3.8: Disparity expansion shown as point cloud. The pink and red point cloud represent the foreground and
background disparity limits.

apply disparity expansion step. Figure 3.7 shows a 2D illustration of what is meant by disparity
expansion. Figure 3.7(a) shows two obstacles at different depths. Figure 3.7(b) shows how an
ideal metric expansion would look like given the robot radius for expansion. The dark red circles
represent the robot. Figure 3.7(c) shows hows this expansion is affected if there is sensor mea-
surement noise. Figure 3.7(d) shows the final expanded C-Space that will be used for planning.
The algorithm is explained in section 3.1.5.

3.1.5 Disparity expansion

In this section we explain the step of C-Space expansion as applied to disparity images. This step
allows us to capture the volume occupied by an obstacle using two surfaces represented by two
disparity images. These images represent front and back surface limits of the reported disparity.
Each pixel in these two images effectively captures the range of disparity based on robot size and
the sensor error model as shown in the Figure 3.1. This process can be divided into two steps.
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Figure 3.9: Shows the pixel-wise expansion of a point obstacle according to robot size.

The first step expands disparities along the image XY axis Figure 3.9 i.e. an obstacle at
some pixel (u, v) after inflation occupies a manifold of pixels from [u1, u2] and [v1, v2]. This is
achieved by traversing through the image row-wise first and then column-wise. This is similar
to [16] but we also incorporate sensor error. We omit the steps required to generate the look-up-
table (LUT) to map u → [u1, u2] given disparity d and v → [v1, v2] given disparity d. Reader is
advised to refer [16] for generation of the LUT, but unlike looking up for the raw disparity value
d from table we look up for (d+ λσ), where λ is the sigma multiplier dependent on the range as
discussed previously in Section 3.1.

The second step expands disparities to get new values for front and back images using equa-
tion(3.6). These images represent the maximum and minimum disparities for every pixel respec-
tively.

z =
bf

d

df =
bf

z − rv
+ λσ

db =
bf

z + rv
− λσ

(3.6)

Where rv is the expansion radius based on robot size, df and db are the computed front and back
disparities which encompass the obstacle. As shown in illustration on left side of Figure 3.8, the
red area around the original disparity of obstacle is the padding generated in the expansion step.
This padding is based on the robot size and sensor error model.

Our approach uses the LUT as shown in Algorithm(1) which takes the original disparity
image D as input and processes it to generate the expanded frontal and back disparity images
Df and Dg respectively. The function expand(d) implements equation(3.6) with λ = 0 and
rv = 0 to prevent double expansion in depth. The function connectedComponent() searches
for minimum disparity connected to the maximum disparity over steps of provided range (set to
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a multiple of robot radius). This helps to find an obstacle bounding volume. We do not want to
use the minimum disparity in a window as that can be located very far with no connection to the
actual obstacle and hence the connectedComponent() step is required.

Algorithm 1: Disparity Expansion Algorithm
Input: Disparity image D
Output: Expanded disparity images: Df , Db
for v = 1 : Height(D) do

for u = 1 :Width(D) do
d̂ = ceil(D(u, v) + λσ)

[u1, u2] = LUT (u, d̂)
V = D(u1 : u2, v) // Get vector of disparities
df = expand(max(V ))
db = expand(connectedComponent(df , range))
for i = u1 : u2 do

Df (i, v) = max(df , Df (i, v))Db(i, v) = min(db, Db(i, v))
end

end
end

Algorithm(1) does row-wise expansion and its result is then subject to column-wise expan-
sion in a similar fashion with λ and rv set to default values when using expand() function. The
expanded disparity images constitute a single snapshot volumes occupied by obstacles. Fig-
ure 3.10 shows some examples of expansion result.

To maintain a spatial memory we create a pose graph consisting of multiple expanded dis-
parity images as described in the following section.

3.1.6 Pose graph of disparity images
A single observation is often not enough to construct a reliable occupancy map, hence several
observations are fused into a local map enabling local spatial memory. Moreover, stereo cameras
only observe the environment in the overlapping field of view. Hence, a spatial memory is
required to create a local map of the environment as the robot moves in it. We propose to use a
pose-graph of our disparity image based representation to maintain a spatial memory. A pose-
graph can further benefit from a simultaneous localization and mapping solution to correctly
register the observations and later use to generate a global occupancy map. In this thesis we are
not concerned with generation of a global map but it should be noted that it is possible using this
approach. The motivation to maintain spatial memory of the previously seen environment as the
vehicle is moving using a pose graph is because of the following reasons:

1. Previously seen obstacles might not be visible in the current image.

(a) The stereo sensor has a minimum range dependent on maximum perceivable dispar-
ity.

(b) Obstacles get occluded in different views.

(c) The field of view is limited.

2. Maintain a pose graph of disparity images (measurements) with nodes at regular intervals
of distances and angles as shown in Figure 3.11.

3. Allows occupancy inference using multiple measurements.
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(a)

(b)

(c)

Figure 3.10: Left to right: Original Image, disparity around cropped part of image, Frontal Expansion result.
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Figure 3.11: Pose Graph of expanded disparity images. Dashed path shows robot motion and stored nodes in the
graph are shown as triangles. Nodes are stored at intervals of distance and orientation.

Algorithm(2) shows how we construct this graph. Each node in the graph is comprised of

Algorithm 2: Pose Graph Algorithm
Input: Df , Dg , Pose,Ngraph, γd, γψ
Output: Pose Graph of Expanded disparity images: Graph
Tws ← Pose
Node = createNode(Tws , Df , Db)
if Graph.size() == 0 then

Graph.push front(Node)
Graph.push back(Node)

end
PrevNode = Graph.begin()
pos err = distance(Pose, PrevNode)
ang err = angle(Pose, PrevNode)
if pos err >= γd‖ang err >= γψ then

if Graph.size() == Ngraph then
Graph.pop back()

end
Graph.push front(Node)

end
Graph.pop back()
Graph.push back(Node)

the following:
1. Df

2. Db

3. Tws which is the transform between the processed sensor measurement(Df , Db) and world
frame.

The algorithm takes as input the current robot position Pose, processed disparity images
Df , Db, maximum number of nodes Ngraph and two tolerance parameters γd, γψ for position and
angular displacement respectively. The constructed graph is used to project a given world point
into all node images and do occupancy inference. Occupancy inference using the set of disparity
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images in the graph is explained in subsequent section.

3.1.7 Occupancy inference

Occupancy inference is the method to derive occupancy of a volume using all the observations
or evidence we have. This is a widely studied topic and is often not a trivial problem. [20]
Chapter-9 explains this in detail.

Evidence grids or occupancy maps are the practical methods to allow fusion of different
measurements taken over time and build an occupancy grid map. Occupancy in an evidence grid
is determined using log odds update. Each cell in the grid map represents the summation of log
odds of the probability of occupancy given the measurements z1, ..., zt:

odds(mx,y,z|z1:t) =
p(mx,y,z|z1:t)

1− p(mx,y,z|z1:t)
(3.7)

wheremx,y,z is a binary variable indicating whether the cell with coordinates (x, y, z) is occupied
and p(mx,y,z|z) is the probability of occupancy based on the inverse sensor model. By applying
Bayes rule and using Markov assumption this simplifies to an additive update when using log-
odds.

L(mx,y,z|zt) = Lt−1 + log
p(mx,y,z|zt)

1− p(mx,y,z|zt)
(3.8)

By maintaining a pose graph of expanded disparity images, we can also take advantage of
similar fusion without building an occupancy grid which are not suited for stereo data as dis-
cussed previously. We devised an occupancy inference method by fusing information from all
the images in the graph using the stereo sensor error model. Next section will discuss this in
more detail.

3.1.8 Probabilistic inference in disparity space

We want to formulate a probabilistic inverse sensor model for the stereo sensor used. To this end
let us define some desirables from such a model.

1. Probability Mass: We want the sensor model to return a probability of obstacle presence
over a range of disparity that represents the volume of the robot in disparity space.

2. Optimistic in occluded space: We want the model to to be more optimistic about oc-
cupancy in occluded areas to allow for deliberative planning as in exploration planning
scenarios.

We use the Gaussian sensor error model as explained earlier and make the following analysis.
Figure3.12 shows how the occupied volume changes in disparity space given a fixed size robot.
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Figure 3.12: Probability mass (shown in blue area) occupied by a robot of radius 0.5m at a distance of
50m(3.5px) and 5m(35.6px). As the distance increases or disparity decreases the probability mass occupied by the
robot varies.
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Figure 3.13: Probability Mass of occupancy, given a robot at disparity d pixels. This curve is used to compute the
log-odds to infer occupancy.

Based on this, Figure 3.13 shows the probability mass as a function of inverse depth or
disparity. It is clear that for high disparity or low range the probability of occupancy given a
measurement is very high and drops quickly after a certain disparity. This is because for the
same Gaussian distribution at different disparities the actual range of disparity that the robot
would occupy falls drastically.

However, it is computationally expensive to obtain such a probability using a CDF function
online. Hence, we want to find a function that closely resembles this curve. In next section we
introduce a confidence function which we use online for occupancy inference instead.
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3.1.9 Confidence function for inference in disparity space

For occupancy inference using log-odds we need an inverse-sensor-model. Moreover, for a stereo
camera sensor and a given robot radius we need to be able to compute probability mass given
the inverse-sensor-model. It is difficult to compute this probability mass online as it requires
integration of inverse-sensor-model pdf over the robot radius. Although we can pre-compute
this probability mass and use approximation such as piece-wise linear interpolant as a function
of disparity but we propose a new confidence function which is inexpensive to compute online.
Given the standard deviation of correspondence error σ, we compute confidence of a disparity
state in the following manner.

C(d) =
(d− σ)

d
(3.9)

Confidence measure from equation(3.9) gives us a measure of how much can we trust a given
disparity for occupancy inference.
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Figure 3.14: Disparity vs Confidence plot obtained from equation (3.9). This is inexpensive to compute online
compared to computation of probability mass which involves integration of inverse-sensor-model over robot radius.

Figure(3.14) shows how this measure relates to disparity.
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Figure 3.15: Occupancy update comparison between log-odds and proposed confidence inference. Confidence
based occupancy update is more conservative in nature and will lead to detection of an obstacle using fewer obser-
vations. Hence, this function is pessimistic about free-space and ensures an obstacle will be detected in all cases
when log-odds also detects an obstacle.

Since we are interested in occupancy inference we compare the occupancy update using the
log-odds probabilistic inference and the proposed confidence inference method. Figure(3.15)
shows the plot of occupancy update using the two methods.

The confidence function is more conservative in nature when doing occupancy update at
longer ranges. Hence, it can be said if the probabilistic inference would update a state as occupied
the proposed confidence function will also mark it as occupied. It can be seen that at long range or
low disparity, uncertain measurements have low confidence and update the occupancy with lower
values. We further discount measurements that mark an area safe or potentially safe(occluded) by
0.5 to be more conservative about clearing areas previously marked occupied. It should be noted
that the potentially safe areas are behind obstacles and have lower disparity state, hence their
contribution to occupancy clearance is less due to lower confidence value. In our experiments
we get the final occupancy measure by projecting a world point P using equation(3.10) and
equation(3.2) in disparity images of all nodes in the graph and accumulating the occupancy cost
according to Table(3.1):

3.1.10 Collision checking
Collision checking is used to plan a new path and to validate if an existing path is safe to follow.
Collision checking is performed using the following mapping of a 3D world point P to image
pixel I with disparity ds:

P (x, y, z)↔ I(u, v, ds) (3.10)

A state is in collision if the occupancy measure as shown in equation(3.11) crosses a pre-
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Table 3.1: Occupancy update

Check Remark occupancy cost occ(ds)
ds > df(u, v) safe −0.5 C(ds)

1−C(ds)

ds < df(u, v)

and obstacle C(ds)
1−C(ds)

ds > db(u, v)

ds < db(u, v) potentially safe −0.5 C(ds)
1−C(ds)

defined threshold γ.

Occupancy =
∑
nodes

occ(ds) (3.11)

Occupancy ≥ 0.0 (3.12)

If the occupancy for a state is below the threshold, we consider that state as not occupied by
an obstacle.
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Chapter 4

Planning

4.1 Planning Pipeline
Mathies et. al [16] presented an approach to use disparity images generated by a stereo pair for
obstacle avoidance. In this approach the occupied pixels in the disparity image obtained from
the stereo pair are expanded to account for robot’s size. The expanded disparity images are used
as a spatial representation to plan collision free paths.

Figure 4.1: Planning pipeline based on inverse depth obstacle perception. The frontal expansion and back expan-
sion are shown in pink and red point cloud around the original point cloud of pole. Planned path around the pole is
also shown with the current robot position circled in green.

We use the a similar algorithm to expand the disparity images but adapt the expansion step
through the inclusion of the observation noise model in the disparity expansion which is more
suited for real-world stereo-sensor returned data. Furthermore, we compute two image expan-
sions; frontal and back to probabilistically capture the occupancy region. Figure 4.1 shows how
the two images capture the pole obstacle. The frontal expansion is shown in pink point cloud
and the back expansion in red. We also improve the path planning by using multiple disparity
images to infer occupied volumes. The use of multiple disparity images allows the planner to
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reason about long range obstacles. The improved expansion algorithm and multi-image occu-
pancy inference are presented in section 3.1.10. Furthermore, all the planned paths end at hover
position with zero velocities ensuring safety of the vehicle. Figure 4.1 briefly shows the planning
pipeline.

We explored two types on planners both with their own advantages and disadvantages.
1. Sampling based Planner:

2. Trajectory Library based Planner:
Both are discussed in the next sections.

4.2 Sampling Based Planner
We first chose to use a sampling based planner as such a planner finds a plan from start position
to goal position. Using such a planner we can examine how the disparity space representation of
obstacles holds for long range end-to-end planning.

We use a sampling based planner, BIT* [9] to draw samples in 3D space which are checked
for collision as described in 3.1.10. The output is a collision free path connecting start to goal
state.

In our experiments we found that disparity images fluctuate around obstacle edges leading
to unwanted replanning due to the current plan being in collision. To remedy this we used two
threshold values. A lower value γlow is used during planning to find a path i.e. obstacles are
observed sooner even at long distances and hence a more conservative path is obtained. A higher
threshold value γhigh is used to check the current plan for collision and do replanning in case of
collision. The advantage of using two threshold values is that an initial plan is found using a more
conservative occupancy map while the replanning is done using a more reliable occupancy map.
The reliable occupancy map is not affected by fluctuations in the disparity maps. The thresholds
are chosen such that collisions at close range are always detected but have great advantage to not
force replanning due to less reliable and fluctuating observations at long range when planning
paths to longer distances. In our experiments we have planned paths at distances longer than
100m (Figure 5.10). Figure 4.1 shows a planned path that avoids a pole obstacle. This path is
sent to the motion controller of the vehicle.

In environments which are densely populated with obstacles, sometimes it can take too long
to find a smooth path connecting the start state to goal state. This can become a critical aspect
when trying to avoid obstacles reactively and simultaneously finding a full path to a goal located
far from robot or start position. So, we also tested the disparity-space representation for collision
checking using a trajectory library based planner as discussed in the next section.

4.3 Trajectory Library Based Planner
Trajectory or manoeuvres libraries have been widely used in the robotics community to solve
high dimensional control problems such as grap selection or for trajectory set generation for
mobile robot navigation [8],[19],[5],[11],[6]. The motivation to use a prior set of libraries is that
they effectively discretize a large control or planning space and enable good performance within
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Figure 4.2: 2D Trajectory Library

Figure 4.3: Example of 3D Trajectory Library used on the robot. The Axes represent the robot, red is forward
x-axis and blue is down z-axis.

possible computational limits. All candidates in the library are evaluated at runtime and one is
chosen if success is achieved or some cost function is minimized. However, the performance is
hugely affected by the size and content quality/coverage of the library. Size refers to the number
of candidates that can be evaluated during runtime and quality or coverage refers to dispersion
of the candidates [12]. The main advantage of using such libraries is that they are guaranteed to
be dynamically feasible and hence allow smooth motion or manipulation.
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4.4 Motion Control

Figure 4.4: Motion control block diagram. The planner sends out a list of waypoints consisting of 3D positions,
heading and a desired velocity to the velocity controller. The velocity controller generates a new velocity command
to be able to track the path with the desired velocity and sends it out to the flight control unit(FCU). The FCU on our
system is capable of receiving velocity commands and does the final task of generating necessary motor commands.

We developed a path tracker similar to [14]. It takes the current trajectory and uses feed-forward
velocities specified in the trajectory and generates final velocity and heading rates for the low
level velocity controller. The low level velocity controller runs on the quadrotor’s flight control
unit as shown in Figure 4.4.

Figure 4.5: Vehicle Pitch when accelerating to a speed of 4m/s during one of the trials. The vehicle levels out in
pitch quickly with a low offset from horizontal as the desired speed can be reached soon. This allows the cameras
pitched 15◦ down to observe the space in front of the robot for discovery of obstacles.

Figure 4.6: Vehicle Pitch when accelerating to a speed of 10m/s during one of the trials. The vehicle takes a long
time to level in pitch and there is a higher offset in pitch from the horizontal after reaching the desired speed. This
often leads to very late discovery of obstacles as the cameras are unable to see directly in front in the direction of
motion.
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Figure 4.5 and Figure 4.6 show how the vehicle pitch behaves as the desired speed is changed.
The plots show data from real obstacle avoidance runs. It can be noted there is a higher constant
offset from level pitch angle as the desired speed increases. On our system as explained in 5.1
the stereo cameras are pitched down at an angle of 15◦ and this lead to difficulties in detection of
obstacles at long range in 10m/s obstacle avoidance runs.

Next section provides further details on how the motion controller works.

4.4.1 Trajectory tracking
A path, P ∈ N × R3 , is defined by a sequence of N desired waypoints, xdi and desired speeds
of travel vdi along path segment Pi connecting waypoint i to i + 1, as depicted in Figure4.7. Let
ti be the unit tangent vector in the direction of travel along the track from xdi to xdi+1 , and ni be
the unit normal vector to the track. Then, given the current position x(t), the cross track error ect
and along track error rate ėat are,

ect = (xdi − x(t)) · ni
ėct = −v(t) · ni
ėat = vdi − v(t) · ti

Only along track error rate is used to track the path so that the resulting controller does not at-
tempt to catch up or slow down for scheduled waypoints,but simply proceeds along the track
matching the desired velocity as closely as possible. A trajectory tracking controller was imple-
mented by closing the loop on along track velocity and cross track error.

Figure 4.7: Vehicle path definition. While the quadrotor travels along segment Pi from waypoint xd
i to xd

i+1 , it
applies along track and cross track control inputs uat and uct to follow the path segment [14].

The cross track acceleration act,i at waypoint xi = (xi, yi) is a function of the velocity vct,i
at xi and the radius of curvature ri ,

act,i =
v2i
ri

Constraining the cross track acceleration to be of magnitude less than amax results in a maximum
allowable velocity vi,allow at xi ,

vi,allow ≤
√
amaxri

This way a speed limit is imposed between every waypoint.
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Chapter 5

Results

5.1 System

Tegra TK1 QuadCore ARM

Odroid ARM

Gigabit Network Switch + Wifi

Stereo Pair

Color Camera

FPGA: Stereo

TimeServer

IMU

Figure 5.1: Quadrotor platform used for experiments: equipped with stereo camera sensor suite and onboard
ARM computer

We test our algorithms on-board an autonomous UAV system, see Figure 5.1. The base platform
is an off-the-shelf quadrotor vehicle retrofitted with in-house developed sensing and computing
suite designed for semantic exploration. The sensor suite consists of a monochrome stereo cam-
era pair, a monocular color camera, an integrated GPS/INS unit and a barometer. The stereo
camera pair provides 640 × 480 resolution disparity image at 10 fps for the obstacle avoidance
and 3D mapping systems. The central camera is operated at a lower frame rate, to provide high
resolution color imagery for the semantic perception system. All cameras are forward-facing,
tilted downwards at 15◦, an orientation well suited for low-altitude (< 40m) operation. The
GPS/INS system and the barometer are used for state estimation.
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Figure 5.2: The system architecture diagram shows the hardware and software components and data exchange.
The software components with red border are not my contributions as a part of this thesis.

Figure 5.2 shows the high level system diagram and architecture. All computation for au-
tonomous operation is performed onboard. To this end we equip the MAV with two embedded
ARM computers; one of them is devoted primarily to planning tasks, while the other is devoted
to perceptual tasks. In addition, we use a specialized FPGA processor [17] for stereo depth
computation. The computers are networked through high-speed ethernet.

5.2 Visualization: Obstacle grid map generated using inverse-
depth representation

Following are some visualizations of the perception algorithm and generated plans. Figure 5.3
to Figure 5.6 show the projected plan (green path) and projected occupancy map (height colored
voxels) in the camera on top left, current disparity image on top right and 3D visualizations on
bottom with first person view on left and top down view on right. The blue arrow/axes shows
robot pose, green arrows show the keyframe pose in the disparity graph and the RGB ball shows
the goal. The small points represent the noisy point cloud generated using the disparity image
colored by height. The voxel grid map is produced by uniformly sampling a 100× 100× 20m3

volume centred at robot with 0.5m resolution. For clarity voxels close to ground have been
removed. This is only for visualization purpose and does not need to be produced for onboard
planning.
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Figure 5.3: Straight path under a tree.

Figure 5.4: Planned path to a location not in current view. The spatial memory using disparity graph allows to
plan to locations not in current view.
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Figure 5.5: Initial plan to right hand side street seen in the camera.

Figure 5.6: Replanned path upon entering the street as more information in fused into the map.
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5.3 Experiments

Figure 5.7: Marked area of the location where experiments were carried out. Various start and goal locations
are shown in green and red star markers respectively. Runs were conducted between random pairs of the start-goal
locations and sometimes by creating a sparse waypoint list using the marked goals.

We conducted most of the experiments in the highlighted area shown in Figure 5.7. Some of the
features of region were narrow trails, dense foliage and varying height tree line, all of which made
for challenging and interesting obstacles. Tests involved manual take-off and sending a list of
sparse global waypoints to the obstacle avoidance system with the desired velocity. Sparse global
waypoints allowed obstacle avoidance system to plan around obstacles determining vehicles path
and safety. Table(5.1) lists the values we used for conducting the experiments.
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Table 5.1: Parameters Used

Parameter Value
Baseline: b 0.35m

Focal length: f 514.17 pixels
Correspondence error: σ 0.5

Connected component range: range 2rv
Robot radius: rv 1.5m

Lenient Occupancy Threshold: γhigh 1.8
Strict Occupancy Threshold: γlow 0.9

No. of nodes in Pose graph: Ngraph 10
Displacement between nodes: γd 1.5m

Angle between nodes: γψ 30◦

5.4 Results
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Figure 5.8: Time profile of expansion step on a Jetson TK1 SoM.

Figure 5.8 shows the time taken to process a single disparity image to compute the frontal and
back expansions using Algorithm(1) on the onboard ARM computer. In our experiments we
used CPU version at 320× 240 resolution because the GPU was used for semantic classification
algorithm as concurrent part of the experiments. A pose graph using Algorithm(2) was created
and used for collision checks using equation(3.11). Using our approach a single occupancy
inference and collision check takes on average only 4µs.

Figure 5.9 and Figure 5.20 show the overall time taken to find a new path. It can be seen for
10m/s runs maximum of 198ms were used, given there was a path. This is undesirable and will
be discussed further in Section 5.4.2.
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Figure 5.9: Time Profile for sampling based planner approach on Jetson TX2. This plots the maximum time taken
given there is a path.

5.4.1 4m/s Runs

Figure 5.10(a) Shows planned path going through two low height trees. The top left is the dis-
parity image with left camera image shown on top right. The point cloud is only for visualization
purpose and the trees are marked in red ellipses. Although the trees are not completely visible in
the current disparity image, they are still a part of obstacles as they were seen at previous robot
positions and hence stored in the pose graph. Without the pose graph these trees would have been
invisible to the robot. Thus the pose graph helps in keeping memory of obstacles which were
seen previously but can’t be observed as they exceed the limit of maximum possible disparity
after robot motion.

Figure 5.10(b) shows the previous path was replanned and pushed up as more observations of
the bushes/trees are made at long range are marked as obstacles at approximately 30m distance
from the robot. This was possible due to fusion of occupancy using several disparity images in
the pose graph.

Figure 5.10(c) emphasises the advantage of planning in disparity space at long distances. At
greater distances the point cloud is very noisy but we are able to get some information about
occupancy by using all the sensor data. While occupancy grids would have huge impact, both
memory wise and computationally to use all this data, our approach is able to incorporate all the
information using minimalistic image space representation and do better occupancy inference.

Figure 5.11 shows the reactive nature of our approach. For this experiment the robot was
allowed to find a plan outside the sensor’s field of view and was given a goal point in right
direction. As the robot follows the plan and turns right, an obstacle obstructing its path is detected
and a new plan avoiding it is generated. This happened at a speed of 4m/s hence implying our
approach quickly reacts to newly seen obstacles. Figure 1.2 shows the third person view of the
same run.

Using the parameters specified in Table 5.1, if the robot moves 15m maintaining 10 nodes
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(a) Planned path(green) between low trees highlighted in red ellipses.

(b) Replanned(green path) as more observations are made, marked in red ellipse.

(c) Long range planning horizon. The point cloud shows the noisy measurement
but even noisy information allows to infer occupancy at long distances.

Figure 5.10: Point cloud is shown at the bottom in all three figures for reference. Point cloud is colored by height
in (a) & (b) and by actual intensity in (c). 38



Figure 5.11: Reactive Planning at 4m/s: Top image shows the robot has planned to go right with unseen obstacle
marked in red ellipse. Bottom image: after banking right an obstacle obstructs the previous plan and a new plan
avoiding it is generated.

and assuming a maximum of only 100m depth (1.79pixel disparity) per image our approach
uses approximately 38% of the memory required by a gridmap of cell size 1m3 covering the
same volume. This is the case when using a gridmap of large cell size meaning a very coarse
resolution. For a better resolution gridmap will require even more memory.

More than 100 runs were executed with approximately 1.6 hours in autonomous mode, cov-
ering a cumulative distance of approximately 1.5Km. The maximum speed was capped at 4m/s.
Our approach allowed us to plan to distances greater than 100m as shown in Figure 5.10(c). Av-
erage distance to goal was 36m. The standard deviation of length of planned paths from straight
line paths was on average of 1.38m with a maximum of 30m. This shows that in most cases
planned paths were close to a straight path but with slight deviation to avoid obstacles.
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5.4.2 10m/s Runs

Tegra TX2 QuadCore ARM

Stereo Pair

Color Camera

FPGA: Stereo

TimeServer

IMU

GPS

Figure 5.12: Quadrotor platform used for 10m/s runs: equipped with stereo camera sensor suite and only one
onboard ARM computer. This helped in significant weight reduction of about 33%, from 1.2Kg to 0.8Kg.
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Figure 5.13: 10m/s run 1 showing the distance to closest obstacle in current view, current speed and current time
to collision to the closest obstacle.
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Figure 5.14: 10m/s run 2 showing the distance to closest obstacle in current view, current speed and current time
to collision to the closest obstacle.
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Figure 5.15: 10m/s run 4 showing the distance to closest obstacle in current view, current speed and current time
to collision to the closest obstacle.
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Figure 5.16: 10m/s run 5 showing the distance to closest obstacle in current view, current speed and current time
to collision to the closest obstacle.
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Figure 5.17: 10m/s run 6 showing the distance to closest obstacle in current view, current speed and current time
to collision to the closest obstacle.

Figure 5.13 to Figure 5.17 show plots for the distance to closest obstacle in the current field of
view of the sensor during the run. The time to collision plots show the time to collide with the
closest obstacle if the robot were to fly in the direction of the obstacle. It can be seen that the
time to collision is high in beginning and then falls because the robot flies to longer distances and
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mostly looking down at nearby obstacles not necessarily on the flight path. The speed plots show
that the robot flies at the maximum set speed of 10m/s. Some speed plots do not end at zero
velocity because when the robot almost reached the goal which was usually located far from the
flight operator and hence had to take manual control. The plots only show data for autonomous
modes only.

Figure 5.18: 10m/s Obstacle avoidance. Top shows the camera view with projected tracked paths and the
occupancy map. Occupancy is colored by height. The Occupancy map is the overall result and was not available to
the robot during runs.

Figure 5.18 Shows a different set of five runs made at 10m/s with first two plans being taken
over by the safety pilot as the robot avoided the obstacles too aggressively. The next three runs
were manually overridden upon reaching the goal. The goal was given 100m ahead of current
robot position. We ran into a few issues with these runs as discussed below.

The vehicle takes long time to reach a speed of 10m/s and is constantly pitched down at
an angle more than 20◦ for over 4sec as shown in Figure 4.6. Also for scouting application we
already have the sensor boom looking down at an angle of 15◦. Due to this for a long period of
time as the vehicle is accelerating, hardly any new information is observed when flying straight
ahead. The current horizontal field of view is 64◦. Under such scenario we are almost looking
3◦ below the horizon and hence the robot either perceives new information only upon getting too
close to obstacles or if happens to pitch up. Figure 5.18 shows one short run where it successfully
avoided the obstacle almost 10m before. This is also partially responsible for higher plan times
as shown in Figure 5.9 as the obstacle gets too close and it takes longer to find a path in close
proximity to the robot.
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The other problem we faced was that the vehicle is still heavy to aggressively follow the
planned path. In the same short run as discussed above, the generated path avoids the obstacle
much early but the robot due its inertia while flying at 10m/s gets closer to obstacle before
steering away.

5.4.3 Trajectory Library based planner runs

Tegra TX1 
QuadCore ARMStereo Pair

IMU

Figure 5.19: A smaller quadrotor platform used for experiments: equipped with stereo camera sensor suite and
onboard ARM computer

We test our algorithms on-board an autonomous UAV system, see Figure 5.19. The base platform
is an off-the-shelf quadrotor vehicle retrofitted with in-house developed sensing and computing
suite designed consisting of a stereo camera pair an integrated GPS/INS unit. The stereo camera
pair provides 640 × 512 resolution image which is used to compute a disparity image at 10 fps
for the obstacle avoidance. All computation for autonomous operation is performed onboard.

Table 5.2: Parameters Used

Parameter Value
Baseline: b 0.17m

Focal length: f 514.17 pixels
Correspondence error: σ 0.5

Connected component range: range 2rv
Robot radius: rv 0.5m

Lenient Occupancy Threshold: γhigh 1.8
Strict Occupancy Threshold: γlow 0.9

No. of nodes in Pose graph: Ngraph 10
Displacement between nodes: γd 1.0m

Angle between nodes: γψ 30◦
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Figure 5.20: Time Profile for trajectory library based planner approach on Jetson TX2.

We conducted indoor and outdoor experiments using a set of trajectory library. Tests involved
autonomous take off, navigate to pre-fixed well separated global waypoints and finally land.
Table(5.2) lists the values we used for conducting the experiments. Figure 5.20 shows the affect
on compute times on varying the size of candidates in the trajectory library.

Most runs were conducted between the speed of 2m/s to 3m/s. During the Robotics Week,
2017 at RI-CMU more than 100 runs were conducted in front of public with no failures. The
speed was restricted to 2.5m/s.

Figure 5.21 shows the setup. The Start and Goal are separated by 10m with a curvy con-
structed obstacle path.

44



Start

Goal

Figure 5.21: Demo setup for Robotics Week, 2017 at RI-CMU. The Start is on left and Goal is 10m away on
right with several obstacles restricting a direct path, hence forming a curvy corridor to follow. We did more than
100 runs with no failures at 2.5m/s

5.5 Limitations
In this section we discuss some limitations of the disparity based obstacle representation.

1. Overriding: Currently we only expand the obstacles seen closer and thereby obstacles
that are already seen will not be correctly expanded. Figure 5.22 illustrates this issue.
The problem is the obstacle is seen in the original disparity image but since only a frontal
expansion and a connected component back expansion disparity image are maintained in
our representation, we have to drop the already seen obstacle which is not connected to the
obstacle seen closer to the sensor. We can address this issue by atleast using four layers of
expanded images to completely capture the information available in one disparity image
frame.

2. Expansion Outside FOV: This is caused due to fixed size expanded disparity image also
illustrated in Figure 5.22. This causes obstacles seen at the border of the current image
not getting expanded outside the image size. Unlike the previous issue where some infor-
mation is dropped, this issue is more due to the fixed size image data-structure. One way
to address this issue can be to dynamically change the size i.e. width and height of the
expanded disparity images to completely expand obstacles seen on edges. However, we
will need to be careful about the camera intrinsics for the new adaptive image size.

The following Figure 5.22 illustrates this.
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Figure 5.22: Black is obstacle and red is expansion. The two limitations of closer obstacle expansion overriding
the backward obstacle expansion and expansion restriction to within FOV are shown.
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Chapter 6

Conclusion & Future Work

6.1 Conclusions
We have presented an approach and a system design that allows high speed, non-myopic obstacle
avoidance. We demonstrated the system flying at 10m/s in dense foliage while relying on stereo
image data for modeling the world. To our knowledge it is the first one to do so.

Figure 6.1: Shows an octomap built using full stereo point cloud projected on google-map of RI-CMU.

Figure 6.2: Shows a voxel map generated using our approach projected on google-map of RI-CMU.

The key factor that enables our system to perform safely at high speeds in highly cluttered
environments is integrating multiple stereo sensor frames in real time while reasoning about the
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related highly non-linear noise model to generate a world representation in inverse depth space.
The current state-of-the-art methods e.g OctoMaps fail to properly incorporate complete stereo
camera data as apparent from Figure 6.1 while our method performs much better as shown in
Figure 6.2 in context of obstacle mapping.

Using FPGA hardware for disparity calculation, combined with fast disparity expansion al-
lowed us to limit our computational burden. This allowed the system to share computation with
classification and state estimation tasks.

We believe that our approach is suitable for small MAVs with limited payload carrying capa-
bilities to enable good obstacle avoidance performance.

6.2 Future Work
The current disparity space representation lacks an explicit model of unknown space, rendering
the system vulnerable to collision whilst operating in environments with complex geometries.
We are currently working on this issue by performing disparity space expansion over multiple
layers by extending the disparity expansion step from two: front and back surface layers to four,
to account for the limitation discussed in Figure 5.22. Figure 6.3 illustrates this.

Currently our occupancy inference uses a confidence based metric instead of computing the
probability mass for faster computation. We should be able to get better results by using the
probability mass by approximating it using a piecewise linear interpolant.

The current pose graph only maintains spatial memory and we would extend it to have some
temporal decay to forget non-static obstacles that happened to be a part of a keyframe. The
other extension could be to improve the previous keyframes using current observations until next
keyframe is captured.

To guarantee vehicle safety we will employ emergency maneuver libraries [3] in conjunction
with active control of heading along the lines of the sensor planning approach suggested in [2].
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Figure 6.3: We can use four channel image instead of current two channels to address the limitation shown in
Figure 5.22
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