
Flying Like a Pilot in Wind: Smooth
Trajectory Optimization in a Moving

Reference Frame
Vishal Dugar

CMU-RI-TR-17-50

July 2017

Robotics Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements
for the degree of Master of Science.

Keywords: Autonomous aerial vehicles, motion planning, trajectory optimization, wind

Abstract
A significant challenge for unmanned aerial vehicles capable of flying long dis-

tances is planning in a wind field. Although there has been a plethora of work on
the individual topics of planning long routes, smooth trajectory optimization and
planning in a wind field, it is difficult for these methods to scale to solve the com-
bined problem. In this thesis, we address the problem of planning long, dynamically
feasible, time-optimal trajectories in the presence of wind (which creates a mov-
ing reference frame). Additionally, we attempt to solve for trajectories that exhibit
features similar to the flight profiles of human pilots.

We present an algorithm, κITE , that elegantly decouples the joint trajectory op-
timization problem into individual path optimization in a fixed ground frame and a
velocity profile optimization in a moving reference frame. The key idea is to derive
a decoupling framework that guarantees feasibility of the final fused trajectory. Our
results show that κITE produces high-quality solutions for planning with a full-size
helicopter flying at speeds of 50 m/s, handling winds up to 20 m/s and missions over
200 km. We validate our approach with real-world experiments on a full-scale heli-
copter with a pilot in the loop. Our approach paves the way forward for autonomous
systems to exhibit pilot-like behavior when flying missions in winds aloft.

iv

Contents

1 Introduction 1
1.1 Notation . 3

2 Background 5
2.1 Architecture . 5
2.2 Related Work . 6

3 Flying Like a Pilot 9
3.1 Frames of Reference . 9
3.2 Optimal Speed Profiles . 11
3.3 Optimal Turn Profiles . 11
3.4 Takeoff and Landing . 12

4 Problem Definition 15
4.1 Model and Dynamics . 15
4.2 Inputs and outputs . 16
4.3 Optimization Problem . 17

5 Enroute Flight - κITE 19
5.1 Motivation . 19
5.2 Overview . 19
5.3 Phase A . 21
5.4 Phase B . 24
5.5 Phase C . 25
5.6 Phase D . 26
5.7 Takeoff . 27
5.8 Landing . 27

6 Results 29
6.1 Simulation Results . 29

6.1.1 Solution Quality . 29
6.1.2 Scalability and versatility . 31

6.2 Experimental Results . 33
6.2.1 Setup . 33

v

6.2.2 Performance In Wind . 33
6.2.3 Online Re-planning . 34

7 Discussion and Conclusion 39
Appendices . 40

A Curvature Bounds 41
A.1 Deriving bounds for curvature . 41

A.1.1 Time vs spatial derivatives . 41
A.1.2 Curvature bound . 41
A.1.3 Curvature derivative bound . 41
A.1.4 Curvature double-derivative bound . 42

Bibliography 43

vi

List of Figures

1.1 A modified Bell 206 serves as one of our autonomous helicopter test platforms. . 1
1.2 A helicopter crash in Fiji. A strong gust of wind destabilized it as it attempted to

land. 2

2.1 The motion planning architecture. 5

3.1 Frames of reference . 10
3.2 Desired airspeed profile in the presence of wind while the helicopter is turning.

Note how the airspeed remains constant while the groundspeed changes as the
helicopter turns. 10

3.3 . 11
3.4 Executing turns in wind. 12

4.1 The trajectory optimization problem. 16

5.1 Overview of κITE . 20
5.2 Bank and bank-rate profiles for two turns parameterized using curvature splines.

Note the transitions in and out of maximum bank. 23
5.3 Takeoff profiles with varying aggressiveness. Note that the axes are not at the

same scale. 28
5.4 Landing profiles with varying glide slopes. Note that the axes are not at the same

scale. 28

6.1 Comparing the spatial, roll, speed and acceleration profiles of κITE (top) with
the baseline (bottom). Corridors are highlighted in yellow, and limits are repre-
sented by red lines. A blowup of (bottom left) the spatial profiles (top left) shows
κITE in black and the baseline in red. 29

6.2 Demonstrating the importance of wind-cognizance in the trajectory planning
stage. (a) compares the spatial profiles of wind-aware κITE (black) with a wind-
agnostic variant of κITE (red) in the presence of a 20m/s wind along the x-axis.
A feedback controller used to follow both trajectories in this wind violates roll
and roll-rate limits (b) with the wind-agnostic trajectory. (c) shows how the naive
baseline (right) has to slow down to execute feasible turns in this wind regime,
while κITE (left) is still able to maintain high speeds. 30

vii

6.3 A ∼ 290 km trajectory computed by κITE . The problem has both long route
segments and short segments with closely spaced turns, as the cutout shows.
κITE ’s solution structure allows it to efficiently deal with such problems. Again,
the corridor is highlighted in yellow. 32

6.4 Our autonomous helicopter test platform. The laser sensor is visible at the nose
of the vehicle. 33

6.5 Results from a test conducted on our full-size helicopter with a ∼ 20 knots wind
blowing towards 270◦N. (a) shows the complete trajectory overlaid on a map
along with the mission waypoints; (b) shows the XY spatial profile of the trajec-
tory (left), along with the vertical profile (right). Waypoints are shown in blue,
the start point in green and the final point in black. This is a complete trajectory
from takeoff to landing. The safe flight corridor has not been shown due to scale. 34

6.6 Speed, heading and roll profiles for the flight test shown in Fig. 6.5. (a) shows the
commanded airspeed, commanded groundspeed and the measured groundspeed.
Note that in the absence of wind, airspeed and groundspeed would be equal; (b)
shows the commanded and executed heading profile (left), along with the crab
angle necessary for maintaining heading in the given wind environment (right);
(c) shows the commanded roll and roll-rate profile for the entire trajectory (left),
with a magnified view from a section of the trajectory (right). The roll limits are
represented by the dashed red line. 35

6.7 Results from another test flight in the presence of a a ∼ 19 knots wind blow-
ing towards 80◦N. Once again, we compare commanded airspeed, commanded
groundspeed and measured groundspeed (left), and commanded and measured
heading (right). 36

6.8 Results from a flight test showing online re-planning when the measured wind
changes from 38 knots, 170◦N to 16 knots, 90◦N (a) shows a plot of wind speed
and direction estimated in real-time with an on-board pitot tube; (b) shows the
full trajectory from start (green) to goal (black) for a moment when the mea-
sured wind is 38 knots along 160◦N (left), and compares spatial profiles of a turn
under the two wind regimes; (c) compares the commanded airspeed (left) and
commanded crab angle (right) for the two wind regimes. 37

viii

List of Tables

1.1 Notation . 3

2.1 Comparison of planning approaches . 7
2.2 Comparison of planning approaches (continued) 8

6.1 Execution times (in ms) of all the stages of κITE 31

ix

x

Chapter 1

Introduction

Figure 1.1: A modified Bell 206 serves as one of our autonomous helicopter test platforms.

There has recently been extensive research on unmanned aerial vehicles (UAVs) such as heli-
copters and fixed-wing aircraft that can travel large distances [1, 9, 15, 27, 37]. The commercial
success of such systems depends heavily on their ability to produce high-performance flight pro-
files that optimize time while strictly adhering to constraints imposed by the control system,
flight dynamics and performance charts [12, 29]. In conjunction with these requirements, these
systems must be cognizant of the effect of wind on flight profiles [12, 26, 33, 34]. We there-
fore address the problem of planning time-optimal trajectories that are dynamically feasible in a
moving reference frame, and remain in a specified safe flight corridor.

Consider the problems faced by the autonomous helicopter shown in Fig. 1.1 when planning
in a moving reference frame. Planning a dynamically feasible path in this frame results in a
drifting ground frame path that might violate the safe flight corridor. On the other hand, if

1

Figure 1.2: A helicopter crash in Fiji. A strong gust of wind destabilized it as it attempted to land.

planning is done in the ground frame, the dynamics constraints are no longer stationary and vary
along the path. Failing to account for wind during planning can lead to trajectories that exceed
control margins, which can result in a catastrophic failure - an example is shown in Fig. 1.2,
where a manned helicopter crashed in Fiji due to gusty winds. In addition to wind, the other
main challenges are satisfying non-holonomic constraints due to vehicle dynamics and scaling
to large distances - these systems must often operate over mission lengths exceeding 200km.
This results in a complex multi-resolution, non-convex planning problem. It is also important
for the solution to resemble the flight profiles of human pilots, especially in cases where these
unmanned systems carry human passengers. Finally, the optimizer is required to have near real-
time behavior. The need to re-plan a trajectory potentially extending over hundreds of kilometers
online (within a minute or two) can be caused due to change in wind conditions or high-level
mission requirements.

We present an algorithm, κITE (Curvature (κ) parameterization Is very Time Efficient) [10]
[11], to efficiently solve this optimization problem. We summarize the key ideas behind the
effectiveness of the algorithm as follows –

1. We decouple the trajectory optimization problem into a path optimization problem in
ground frame and velocity optimization in airframe. This decoupling is done in such a
way so as to ensure that when the individual outputs are fused together, the trajectory is
guaranteed to be feasible.

2. We use an efficient piecewise curvature polynomial parameterization to solve the path
optimization problem that can scale with distance and waypoints.

2

3. We use a two-step velocity profile optimizer to solve efficiently for a coarse profile and
subsequently refine it with piecewise velocity polynomials.

1.1 Notation
We make use of the following notation throughout this text.

Table 1.1: Notation

Symbol Description Symbol Description

x x-coord in air frame xg x-coord in ground frame
y y-coord in air frame yg y-coord in ground frame
φ roll in air frame φg roll in ground frame
ψ yaw in air frame ψg yaw in ground frame
v airspeed vg groundspeed
a acc in air frame ag acc in ground frame
j jerk in air frame jg jerk in ground frame
σ traj in air frame σg traj in ground frame
ξ path in air frame ξg path in ground frame
s arc distance τ index

3

4

Chapter 2

Background

Mission Global
Planner

Local
planner Trajectory

Figure 2.1: The motion planning architecture.

2.1 Architecture
Our work falls into the realm of generating kinodynamic trajectories with non-holonomic motion
constraints [22], [21]. The motion planning architecture that we use is shown in Fig. 2.1, where
a mission representing an initial obstacle-free configuration of waypoints and safe corridors is
passed to a global planner. The global planner outputs a complete (from start to goal), dynam-
ically feasible trajectory lying within the safe corridors, and a local planner attempts to follow
this trajectory up to a horizon while avoiding obstacles that may suddenly appear. The focus of
this work is on the global planner.

Our choice of architecture, combining a global planner with a local planner, is driven by the
need to reason about long horizons. Large aerial vehicles such as helicopters and fixed-wing
aircraft often fly very long distances, and it is important to have some feasibility guarantees on
the entire trajectory even before the aircraft takes off. For instance, let us consider the helicopter
shown in Fig. 4.1. This helicopter must fly from start to goal in the presence of wind, while
remaining within the safe flight corridor at all times. If the trajectory planner were to plan to a
limited horizon (say, until the first turn), there would be no guarantee that the helicopter would
be able to feasibly execute the second turn given its state at the end of the first turn. Similarly,
changing wind conditions might make landing at the touchdown point completely infeasible. It
is therefore important for the trajectory planner to reason about the entire route, and not just a
portion of it. The global planner can also satisfy higher-level requirements such as pilot-like
behavior. This global planner feeds into a local planner (say, a sampling-based planner) that

5

attempts to follow this trajectory while avoiding obstacles. This allows us to efficiently decouple
the problem of reasoning globally about the entire route from local requirements such as avoiding
sudden obstacles, and works well in our experience from real-world flight tests. Expecting a
single planner to reason both about global feasibility and higher-order (e.g. pilot-like flight)
requirements, as well as avoiding obstacles locally, proves to be intractable to solve in quick
time, especially for long missions.

2.2 Related Work
Nonholonomic trajectory generation is a hard problem, and can generally only be solved ap-
proximately using prior assumptions that depend on the environment and dynamics. Leveraging
intelligent prior assumptions, however, allows us to find high-quality (albeit suboptimal) solu-
tions in quick time. One of these priors relates to the structure of the solution, especially for
curvature-constrained systems. Continuous curvature systems have previously been tackled by
[13], [31]. In this thesis, we build on the use of curvature polynomials in [20] for parameterizing
turns. Apart from this, local optimization techniques such as [30], [18], [32] have also been used
for generating trajectories, especially in the context of manipulators. State lattice techniques
[28], [23], [25] have found success in planning trajectories for mobile robots, but they require
careful tuning in terms of the resolution, lattice design and the search algorithm.

The problem of generating feasible trajectories for UAVs has previously been explored in the
literature. [2] builds on the Dubins solution and uses fixed-radius arcs to link straight segments
with constant speed. [17] proposes an online, corridor-constrained smoothing algorithm that uses
B-spline templates to generate paths, but not time profiles. Sampling-based techniques like [14],
[19] are quite popular, but do not scale well with problem size. There has also been some work
that deals with trajectory optimization in the presence of wind. The classic Zermelo–Markov–
Dubins problem has been studied in [3], [34] and [4] to characterize optimal solutions, but they
use sharp turns and constant speed, neither of which are practical. [26] also uses a bounded
turning radius assumption to yield minimum-time trajectories with constant speed. [35] uses
a bounded roll-rate to construct smooth, continuous-curvature paths between two states in the
presence of wind. However, it again assumes constant speed and does not provide a mechanism
to extend the method to variable-speed trajectories. Tables 2.1 and 2.2 summarize the different
approaches to this problem.

Since practical trajectory planning problems are extremely hard, it is often necessary to de-
couple the problem into an initial path-finding stage and a subsequent velocity-optimization pro-
cess ([6], [5], [16]). We use concepts from previous work done on optimizing velocity profiles
given a fixed path and a finite set of velocity bottlenecks ([24], [36]) to compute time-optimal
velocity profiles.

6

Table 2.1: Comparison of planning approaches

Planning
approach

Feasibil-
ity

Time optimality Long-horizon
reasoning

Time
efficiency

En-
code
pilot-
like

behav-
ior

κITE (our
approach)

Guaran-
teed to be
dynami-
cally and
spatially
feasible

Sub-optimal in
time

Reasons about
complete
trajectory

Near
real-time

Easy to
encode
pilot-
like

behav-
ior

Sampling-
based
techniques
(e.g. [14],
[19], [16])

Non-
trivial to
compute
feasible
connect

functions
in wind

Sub-optimal in
finite time

Can reason about
complete

trajectory, but
very difficult to
scale to large

horizons in quick
time

Efficient for
smaller

horizons, but
large search

time for
longer

horizons

Non-
trivial

to
encode
pilot-
like

behav-
ior

Lattice-
based
techniques
(e.g. [28],
[23], [25])

Non-
trivial to
compute
feasible
lattice

edges in
wind

Sub-optimal in the
anytime setting;
optimal if given

enough time,
assuming sufficient

lattice resolution

Can reason about
complete

trajectory, but
very difficult to
scale to large

horizons in quick
time

Efficient for
small

horizons, but
large search

time for
longer

horizons

Non-
trivial

to
encode
pilot-
like

behav-
ior

Trajectory
optimiza-
tion
ap-
proaches
(e.g. [30],
[18], [32])

Non-
trivial to
guarantee
feasibility
in wind

Locally optimal
with a good

initialization. One
approach could be
to use κITE as the

initializer.

Can reason about
complete
trajectory

Can be
efficient with

good
initialization

Non-
trivial

to
encode
pilot-
like

behav-
ior

7

Table 2.2: Comparison of planning approaches (continued)

Planning
approach

Feasibility Time op-
timality

Long-horizon
reasoning

Time
effi-

ciency

Encode pilot-like
behavior

UAV
planning
in wind
(e.g. [4],
[26], [35])

Feasible
under a

constant-
speed

assumption

Optimal
turns

under a
constant
speed as-
sumption

Constant speed
assumption

does not work
for planning

complete
missions

Turns
can be
effi-

ciently
gener-
ated

Non-trivial to emulate
pilot-like behavior,

especially with
constant speed and

sharp turning-radius
assumptions

Using a
con-
troller/filter
on an
initial
guess (e.g.
[8])

Feasible over
short

horizons,
assuming
controller

accounts for
wind

Sub-
optimal in

time

Non-trivial to
guarantee

feasibility over
long horizons

Quick
to

com-
pute

Can emulate pilot-like
behavior if it can be

encoded in the
controller

8

Chapter 3

Flying Like a Pilot

Consider a human helicopter pilot - he or she optimizes an unknown cost function while flying,
balancing time efficiency and smoothness while attempting to remain safe at all times. While
it is impossible to pin down this cost function exactly, we have obtained a fair idea through our
conversations with test pilots, examining flight logs and by studying the aviation literature [12].

3.1 Frames of Reference

Aerial vehicles fly in air, which is often moving with respect to the ground (wind). Similar to
moving across a river, this moving air introduces a new, moving frame of reference that must be
dealt with. Thus, planning a helicopter’s trajectory must occur over the two frames shown in Fig.
3.1–
• An earth-fixed ground frame, G, and
• an air-frame, A

For the sake of simplicity, let us assume that wind is directed along the +ve x-axis. In this
situation, the speed of the vehicle in the two systems is related by the following-

vg = v + vw (3.1)

The ground-referenced velocity is therefore the vector summation of the air-referenced ve-
locity and the wind velocity (measured with respect to the ground frame). While a lot of the ex-
position here will assume a constant wind directed along the x-axis, all the methods can trivially
be extended to the more realistic scenario where wind varies along the length of the trajectory.
The implementation of the algorithm that runs on our test platform relies on a wind estimator
function that returns estimates of the wind speed and direction along the trajectory. The only
constraint placed on the wind estimate is that it should have a finite third derivative, since the
final trajectory is required to be bounded in jerk (the third derivative) as well.

9

vg

vw

va

X

Y

!g

!

AG

Figure 3.1: Frames of reference

Figure 3.2: Desired airspeed profile in the presence of wind while the helicopter is turning. Note how the airspeed
remains constant while the groundspeed changes as the helicopter turns.

10

3.2 Optimal Speed Profiles
As outlined in the previous section, aerial vehicles such as helicopters must deal with two frames
of reference - the airframe and the groundframe. Consequently, both the airspeed (in the air-
frame) and the groundspeed (in the ground-frame) are important quantities. The aviation com-
munity cares a lot about the airspeed, since most of the vehicle’s dynamic limits are defined with
respect to the airspeed. For instance, the amount of torque available to a helicopter for climbing
directly depends on its airspeed. As a result, it is essential to respect dynamic limits on air-
speed and its derivatives. Furthermore, pilots prefer to maintain smooth airspeed profiles, where
smoothness has two aspects-
• Respect limits on acceleration and jerk.
• Maintain constant airspeed if possible, even when turning in the presence of wind, as

shown in Fig. 3.2.

3.3 Optimal Turn Profiles

(a) Profiles of turns extracted from flight data. The plot on the left shows spatial (Y vs X) profiles, the plot
in the middle shows roll vs time, and the plot on the right shows roll-rate vs time.

(b) Spatial and roll profiles for a single 90◦ turn.

Figure 3.3

Similar to an automobile driving on a freeway, smooth turns are critical to the flight perfor-

11

mance of helicopters and fixed-wing aircraft. Turns bring into play a lot of the dynamic limits
of these systems - airspeed, acceleration, roll and its deriavtives. They often act as bottlenecks
for speed (consider slowing a car down before a turn), and are difficult to plan in the presence of
wind (consider trying to turn a car at speed while its wheels are slipping on a muddy road). As
we will describe later, turning in wind also makes it extremely non-trivial to decouple path from
velocity, which is a staple approach to such trajectory optimization problems.

At high speeds (> 10m/s), helicopters and fixed-wing aircraft effect a heading change by
rolling (or banking; both terms are used interchangeably in this thesis). The rate of heading
change depends on the bank angle, as described in Sec. 5.3. Pilots thus prefer to maintain smooth
bank profiles, and limits on bank and bank-rate are safety-critical dynamic limits. Banking a
helicopter is akin to steering a car, in that there is a gradual transition to some fixed maximum
bank angle (equivalent to the steering angle for cars), holding the maximum bank angle for some
time, and a gradual transition back down to zero bank angle. Example turn profiles, extracted
from various flight tests and post-processed with a smoothing filter, are shown in Fig. 3.3a.
A single pilot-like turn is shown in Fig. 3.3b. Fig. 3.4 shows how a helicopter is able to
execute sharped turns when facing into the wind, and must execute shallower turns when facing
downwind. This behavior is replicated by our approach.

Figure 3.4: Executing turns in wind.

3.4 Takeoff and Landing
While the previous sections described pilot-like behavior for enroute flight, let us now consider
the constraints to be kept in mind while taking off and landing. While helicopters can be more
agile than fixed-wing aircraft, pilots do prefer somewhat similar takeoff and landing profiles for

12

(a) H-V curve

(b) Ring vortex state

13

both systems. Fig. 3.5a shows one of the important system-specific charts referred to by heli-
copter pilots while taking off and landing. The chart describes a safe height-airspeed region –
operation outside this envelope might result in catastrophic failure, and incursions into unsafe
height-airspeed regimes must necessarily be minimized. Similarly, Fig. 3.5b shows safe operat-
ing regions while landing a helicopter; once again, operation outside this region might cause the
helicopter to enter into a potentially hazardous regime known as the ring-vortex state. A pilot
attempts to respect these charts while taking off and landing.

14

Chapter 4

Problem Definition

This chapter introduces the problem more concretely, discussing the abstractions that we use.
It clearly defines inputs, outputs and constraints, sets up the overall optimization problem and
describes the system model that we consider.

We decouple the Z-axis from the X-Y plane, and solve for the Z-profile after solving for
the trajectory in X and Y. This allows us to cleanly separate turn-related constraints from climb
constraints. Available engine torque limits simultaneous vertical and horizontal accelerations,
and appropriate values for the dynamic limits allow us to solve for a Z-velocity profile indepen-
dent of the X-Y velocity profile. For simplicity of exposition, this section therefore outlines the
2D optimization problem, and a subsequent section (Sec. 5.6) describes how the Z-profile is
obtained.

4.1 Model and Dynamics
Aircraft such as helicopters and fixed-wing planes that execute coordinated turns can be de-
scribed by the fixed-wing UAV model with zero side-slip. In order to describe the dynamics of a
fixed-wing UAV in wind, we need to define two coordinate frames -A and G as shown in Fig. 3.1.
The state space dynamics are defined in A. A state space trajectory in A can be projected to G
using the wind.

Let the R7 state space defined in airframe A be X = [x, y, v, a, ψ, φ, ω]T . Let the R2 con-
trolspace be U = [j, α]T . The dynamical equations are-

ẋ
ẏ
v̇
ȧ

ψ̇

φ̇
ω̇

=

v cosψ
v sinψ
a
j

g tanφ√
ẋ2+ẏ2

ω
α

(4.1)

We impose a set of bounds on the state and control variables {vmax, amax, jmax, φmax, φ̇max, φ̈max}
(where |ω| ≤ φ̇max, |α| ≤ φ̈max).

15

Let σ (t) = {x(t), y(t), ψ(t), φ(t)} be a time parameterized trajectory defined on the time
interval [0, tf] in the airframe A. The dynamics (4.1) and limits are translated into higher order
constraints and bounds on σ (t). Without loss of generality, we assume that wind is along the
x-axis and has a magnitude vw. Let σg (t) = {xg(t), yg(t), ψg (t) , φ (t)} be the trajectory in
groundframe g. Let σg (t) = Proj (σ (t) , vw) be a projection function that is defined as follows-

ẋg(t) =
√
ẋ2(t) + ẏ2(t) cosψ(t) + vw

ẏg(t) =
√
ẋ2(t) + ẏ2(t) sinψ(t)

xg(t) =

∫ t

0

ẋg(t) dt

yg(t) =

∫ t

0

ẏg(t) dt

ψg(t) = tan−1
(
ẏg(t)

ẋg(t)

)
φg(t) = φ(t)

(4.2)

4.2 Inputs and outputs

GOAL

WAYPOINT

SAFE CORRIDOR

SMOOTH
FEASIBLE

TRAJECTORY

WIND

START

Figure 4.1: The trajectory optimization problem.

Let Vstart and Vgoal be the specified start and goal velocities. The input mission, shown in
Fig. 4.1, consists of N waypoints {w1, . . . , wN}, including the start and goal points. These
waypoints define N − 1 segments. A safe flight corridor is specified for each segment. The

16

function Ii (p) ∈ {0, 1} indicates if the x, y value of a configuration p lies in corridor i. The start
and goal positions, together with the corridors, comprise the spatial constraints. A maximum
segment velocity is specified for each segment Vst,i. If a configuration belongs to a corridor, it
must satisfy the segment velocity limit. The corridors and waypoints are either specified by a
human, or are determined by a route-planning module that is invoked prior to calling κITE .
The system’s dynamic limits, including limits on airspeed, acceleration, jerk, roll, roll-rate, roll-
acceleration, and climb-rate, are also specified as inputs. A wind estimation module reports the
3D wind conditions (speed and direction) for any x, y, z point.

The trajectory optimization module outputs a trajectory that satisfies all spatial and dynamic
constraints while attempting to be time-efficient (though time optimality is not formally guaran-
teed).

4.3 Optimization Problem
The complete optimization problem can be formally stated as follows.

min
σ(.),tf

tf

s.t

√
ẋ2(t) + ẏ2(t) ≥ vmin√
ẋ2(t) + ẏ2(t) ≤ vmax√
ẍ2(t) + ÿ2(t) ≤ amax√

...
x2(t) +

...
y 2(t) ≤ jmax

|φ(t)| ≤ φmax∣∣∣φ̇(t)
∣∣∣ ≤ φ̇max∣∣∣φ̈(t)
∣∣∣ ≤ φ̈max

Derivative
Bounds

ψ(t) = tan−1
(
ẏ(t)

ẋ(t)

)
ψ̇(t) =

g tanφ√
ẋ2(t) + ẏ2(t)

Dynamics
Constraints

√
ẋ2(0) + ẏ2(0) = Vstart√
ẋ2(tf) + ẏ2(tf) = Vgoal

N−1∑
i=1

Ii (Proj (σ (t) , vw)) > 0(√
ẋ2(t) + ẏ2(t)

)
Ii (σ (t)) ≤ Vst,i,

for i ∈ {1, . . . , N}

Route Con-
straints

for t ∈ [0, tf]

(4.3)

17

18

Chapter 5

κITE

This chapter introduces κITE , our trajectory optimization algorithm.

5.1 Motivation
The trajectory optimization problem outlined in 4.3 is non-convex and non-linear because of the
presence of roll-rate and roll-acceleration constraints, and because of the disturbance introduced
by wind. Any approach to this problem would therefore necessarily reach some local minima.
The staple approach to such problems is to first solve for a geometric path respecting spatial con-
straints, and then solve for a dynamically-feasible velocity profile. However, wind introduces a
time-dependent drift, and makes this decoupling extremely non-trivial. It is essential to guarantee
that there exists some velocity profile that can be applied to the geometric path without violating
dynamic limits. A second challenge is having to simultaneously deal with two frames of refer-
ence while satisfying constraints – dynamic limits exist in the air frame (which is moving), while
spatial constraints exist in the ground frame. Finally, the optimization procedure must run online
in near real-time to account for changing environmental and mission-related conditions.

5.2 Overview
To make the solution-search tractable, we decouple the optimization problem into a path opti-
mization and a velocity profile optimization ([6], [5], [16]). The optimization approach, summa-
rized in Fig. 5.1, proceeds in 4 stages:

1. Phase A: Path Optimization. This phase solves for a path that is guaranteed to be feasible
(in terms of dynamics and route constraints) for a range of constrained velocity profiles.
The path is parameterized as a sequence of sections which are either straight lines or arcs.
The optimizer solves for each section i independently along with a corresponding Vlim,i,
such that the section is feasible for any velocity profile limited by Vlim,i. In the interest
of time-optimality, the objective of this optimizer is to maximize the velocity limit Vlim,i
while keeping the total arclength of the section small.

2. Phase B: Velocity Optimization. This phase optimizes velocity at specific control points

19

X

Y

START

GOAL
Vlim,1

Vlim,2

V

⌧

V̂1
V̂2

V̂3

V̂4

Phase A

Phase B

V

⌧

Phase C

Wind

+
V (⌧) =

Phase DWind

⇠g (⌧)

V (⌧)

⇠g (⌧) �g (t)

(ground)

(air)

(air)

(ground)

Figure 5.1: Overview of κITE

20

at the end of the sections to minimize time. By ignoring jerk constraints at this stage
and assuming a trapezoidal velocity profile, we are able to solve this optimization very
efficiently.

3. Phase C: Velocity Spline Fitting. This phase solves for smooth velocity splines that intro-
duce jerk limits.

4. Phase D: Ground Frame Trajectory Repair. This phase combines the path from Phase A
with the velocity profile from Phase C to yield the final ground frame trajectory.

For simplicity of exposition, we drop the z coordinate from our formulation and note that the
Z-profile is solved independent of the X-Y profile while accounting for wind in a similar manner
as described in later sections.

5.3 Phase A

Let ξ(τ) = {x (τ) , y (τ) , ψ (τ)} be a path defined over τ ∈ [0, 1].
The first stage of the algorithm solves for a ground-frame path ξg(τ) = {xg (τ) , yg (τ) , ψg (τ)}, τ ∈

[0, 1] that respects corridor constraints. Path optimization is a challenging problem because of a
number of reasons - it must guarantee that the path will be dynamically feasible when the veloc-
ity profile is determined subsequently and reason about time optimality. Moreover, the presence
of wind as a forcing function breaks the necessary decoupling between path and time, and must
be dealt with in a principled manner. Our solution structure addresses these concerns.

Parameterization

Solving for arbitrary path shapes is intractable, especially with lots of waypoints and large seg-
ment lengths. We restrict our solution to the space of ground-frame straight lines ξst and arcs
ξarc with smooth curvature profiles, where the path is a sequence {ξ1st, ξ1arc, ξ2st, ξ2arc . . .}. Arc
end-points of ξiarc lie on the lines defined by (wi, wi+1) and (wi+1, wi+2) respectively. This pa-
rameterization also scales well with problem size. Instead of searching for individual points
along the path, only the arcs need to be explicitly determined, and the straight segments simply
connect their endpoints.

Arc Optimization

Arcs are determined for every ordered triple of waypoints (wi+1, wi+2, wi+3). Limits on φ (roll),
φ̇ and φ̈ become active along the arc, and must be satisfied. These constraints directly limit
the arc’s curvature κ and its derivatives with respect to arclength (κ′, κ′′). It is essential to note
that these curvature limits are not invariant - it can be shown that they also depend on airspeed
and acceleration according to the function CurvLimit

(
vmax, φmax, φ̇max, φ̈max, amax

)
(proof in

21

Appendix A):

κmax =
g tanφmax

v2max

, κ′max =
α

γ3
− β

γ2
, κ′′max =

gφ̈max

v4max(
α = gφ̇max, β = 2κmaxamax, γ =

3α

2β

) (5.1)

Solving for a curvature profile that respects these limits guarantees that the path will be dy-
namically feasible when the velocity profile is subsequently optimized with the same limits on
airspeed and acceleration, which allows us to effectively decouple solving for the path and ve-
locity in a principled way. Since these dynamic limits are defined in the air-frame, our approach
solves for these curvature profiles in the airframe and projects them into the ground-frame.

Since curvature is constrained by airspeed, arcs function as velocity bottlenecks. To enforce
time optimality, we determine the maximum airspeed at which we can perform a turn with the
least curvature, while respecting corridor constraints.

Finally, arcs are meant to carry out heading changes in the ground frame while operating in
the air frame. As an analogue, consider rowing a boat across a river to a point on the opposite
bank - the boat must necessarily be oriented such that some component of its velocity zeros out
the flow of the river. Similarly, to achieve a desired groundframe heading ψ, aerial vehicles must
be oriented at an angle ψg to counteract the effect of wind. To convert between ψg and ψ, we use
the function HeadingInAir (ψg, v, vw):

ψ = acos

(
−vw sin(ψg)

v

)
− π

2
+ ψg (5.2)

Algorithm 1 captures this process, while the following subsections explain how we determine
arcs that effect a required heading change.

Arc Parameterization

Let s be the arc-length of a path. Let ξ(s) be an arclength parameterized path. Building on [20],
each arc ξiarc is represented as a C2 curvature spline κ(s) comprising a degree-4 polynomial κ1(s),
a constant-curvature section κ2(s) = κtrans and another degree-4 polynomial κ3(s). S1

f , S
2
f , S

3
f

denote the arclengths of the three sections, and Sf denotes the total arclength. Representing arcs
using three curvature segments allows us to replicate the pilot-like behavior of transitioning into
a turn, holding a steady bank angle, and transitioning out of a turn. These curvature primitives
can be spliced together to result in more complex maneuvers. Fig. 5.2 shows an example of these
curvature-parameterized turns.

At this stage of the algorithm, we assume a constant velocity Varc,i along the arc to determine
its ground-frame shape. This velocity serves as the upper limit for this segment in a subsequent
velocity optimization. We can recover a ground-frame path ξg(s) from κ(s) using the function

22

Time (s)
0 20 40 60

B
an

k
an

gl
e

(d
eg

re
es

)

0

5

10

15

20

Time (s)
0 20 40 60

B
an

k-
ra

te
 (d

eg
re

es
/s

)

-20

-15

-10

-5

0

5

10

15

20

Bank in

Bank out

Hold bank

Hold bank

Bank in

Bank out

Figure 5.2: Bank and bank-rate profiles for two turns parameterized using curvature splines. Note the transitions in
and out of maximum bank.

CurvPolyGnd (κ(s)):

ψ(s) =

∫ s

0

κ(s)

x(s) =

∫ s

0

cos(ψ(s)) +
vw
Vlim,i

∫ s

0

ds

y(s) =

∫ s

0

sin(ψ(s))

ψg(s) = tan−1
(
ẏ(s)

ẋ(s)

)
(5.3)

It is now trivial to carry out a change of index from s ∈ [0, Sf] to τ ∈ [0, 1] by setting τ(s) =
s/Sf and obtain ξg(τ).

To solve for one of the segments of κ(s), we use CurvPoly (κ0, κf , Sf , κmax, κ
′
max, κ

′′
max):

find κ(s)

κ(0) = κ0, κ(Sf) = κf

κ′(0) = 0, κ′(Sf) = 0

κ(s) ≤ κmax, κ
′(s) ≤ κ′max, κ

′′(s) ≤ κ′′max

(5.4)

Algorithm 1, lines 4 to 15 highlight how the spline is constructed to satisfy the required ∆ψ.
We solve this problem as a Quadratic Program.

Final path and velocity limits

Once we have obtained all the arcs, we concatenate straight segments and arcs to yield the final
ground-frame path ξg(τ). Each segment also has an airspeed bound defined by the corresponding
waypoint definition for ξist, and the airspeed limit imposed by Phase A for ξiarc. We thus have a
set of airspeed limits Vlim =

[
Vst,1 Varc,1 . . . Varc,N−2 Vst,N−1

]
, that are used by Phase B.

23

Algorithm 1: ArcOpt (wi, wi+1, wi+2, vw)

1 for v ← [vmax, vmin] do
2 (κmax, κ

′
max, κ

′′
max)← CurvLimit

(
v, φmax, φ̇max, φ̈max, amax

)
3 ∆ψ ← HeadingInAir (∠(wi+1, wi+2))− HeadingInAir (∠(wi, wi+1))
4 for κ← [κmin, κmax] do
5 κ2(s) = κ
6 for S1

f ← [Smin
f , Smax

f] do
7 κ1(s)← CurvPoly

(
0, κ, S1

f , κmax, κ
′
max, κ

′′
max

)
8 if κ1(s) ∈ ∅ then
9 break

10 S3
f ← S1

f

11 κ3(s)← CurvPoly
(
κ, 0, S3

f , κmax, κ
′
max, κ

′′
max

)
12 S2

f =
∆ψ−

∫ S1
f

0 κ1(s)−
∫ S3

f
0 κ3(s)

κ

13 if S2
f ≥ 0 then

14 break

15 κ(s)←
[
κ1(s) κ2(s) κ3(s)

]
16 ξiarc,gnd(s)← CurvPolyGnd (κ(s))

17 if
i+1∑
j=i

Ij
(
ξiarc,gnd(s)

)
> 0 then

18 break

19 return v, ξiarc(s), ξiarc,gnd(s)

5.4 Phase B

Time Optimization Problem

This phase determines an optimal scheduling of speeds along a finite set of control points be-
longing to ξg(τ). The 2N − 4 control points are the start and end points of each turn segment,
which divide ξg(τ) into a sequence of straight segments ξist and turns ξiarc. We obtain the segment
velocity limits Vlim from Phase A, along with the air-frame path lengths Si for each segment. We
further assume an acceleration âmax = amax−εtol which is lower than the acceleration limit of the
system. While the current phase ignores jerk, using a lower acceleration at this stage allows us
to fit a jerk-limited velocity spline at a later stage. The optimization problem now is to determine
the control-point velocities {V̂i} which minimize time (where V̂0 = Vstart, V̂N+1 = Vgoal):

minimize
{V̂i}

tf

(
{V̂i}, {Si}, âmax

)
subject to V̂i ≤ Vlim,i

|V̂ 2
i+1 − V̂ 2

i |
2âmax

≤ Si

(5.5)

24

Algorithm 2: VelOpt(Vgoal, Vstart, {Vlim,i}, {Si}, a)

1
{
V̂i

}
← {Vstart, {Vpt,i} , Vgoal} ; V isited← {0}N+2;

2 V̂1 ← MakeFeasible
(
V̂0, V̂1, a, S1

)
; V̂N ← MakeFeasible

(
V̂N+1, V̂N , a, SN

)
;

3 V isited[0]← 1; V isited[N + 1]← 1;
4 repeat
5 i←Minimum

({
V̂i

})
s.t. V isited[i] = 0;

6 if V isited[i− 1] = 0 then
7 V̂i−1 ← MakeFeasible

(
V̂i, V̂i−1, a, Si

)
8 if V isited[i+ 1] = 0 then
9 V̂i+1 ← MakeFeasible

(
V̂i, V̂i+1, a, Si+1

)
10 V isited[i]← 1;
11 until V isited[0..N + 1] = 1;

The total time tf is defined as follows-

tf =
∑
i

ti (5.6)

Given a pair of consecutive point velocities V̂i, V̂i+1, ti can be computed according to the following-

Vmid = min

√2âmaxSi + V̂ 2
i + V̂ 2

i+1

2
, Vlim,i

 (5.7)

ti =
2Vmid − V̂i+1 − V̂i

âmax

+ (5.8)(
Si −

2V 2
mid − V̂ 2

i+1 − V̂ 2
i

2âmax

)
1

Vmid
(5.9)

Algorithm for Initialization

Algorithm 2 is used to feasibly initialize the nonlinear optimization problem above, which results
in significant improvements in convergence rates. It uses the function MakeFeasible

(
V̂1, V̂2, a, S

)
,

defined as:

V̂2 =

√
V̂ 2
1 + 2aS (5.10)

5.5 Phase C
This stage operates on {V̂i} and fits a smooth, jerk-limited spline Vi (t) between each V̂i and V̂i+1.
Vi (t) is derived by integrating a C1 acceleration spline a(t) comprising a degree-3 polynomial

25

a1 (t), a constant-acceleration section a2 (t) = atrans and another degree-3 polynomial a3 (t).
t1f , t

2
f , t

3
f denote the time spanned by the three sections, and tf denotes the total time of the

spline. Each acceleration spline segment effects a velocity change from some V̂i to V̂i+1, and is
exactly analogous in structure to the curvature spline described earlier. This allows us to simulate
a pilot-like smooth acceleration ramp-up, holding a steady acceleration and a smooth ramp-down
to achieve the desired velocity change. We omit the details of computing these splines, since they
are the same as for the curvature splines.

Once all the spline segments have been computed, they are combined to yield the final air-
speed spline V (t) , t ∈ [0, tf]. It is important to note that time has been used here merely as a
suitable parameter to compute these splines, and that it does not represent the actual time profile
of the trajectory. V (t) is thus converted to V (τ) by setting τ = t

tf
, and consistency of τ with

Phase A is maintained by construction. The next stage computes the final time-parameterized
trajectory.

5.6 Phase D
At this stage, we have a ground-frame path ξg(τ) (Phase A), a ground-referenced heading profile
ψg (τ) (Phase A) and an airspeed profile V (τ) (Phase C). We obtain a ground-referenced, time-
parameterized trajectory σg (t) according to the following-

1. Obtain a groundspeed profile:

vg(τ) =

√
V (τ)2 − v2w sin2(ψg (τ)) + vw cos(ψg (τ)) (5.11)

2. Obtain the ground-frame distance profile:

Sg(τ) = Sg(x(τ)) =

∫ x(τ)

0

√
1 + y′(x)2dx, y′ =

dy

dx
(5.12)

3. Compute the time profile:

t (τ) =

∫ Sg(τ)

0

dSg

vg(τ)
(5.13)

At this point, it is trivial to replace τ with t (τ), and obtain a time-parameterization.

4. Compute the air-referenced yaw profile:

ψ (t) = atan

(
vg(t) sin(ψg (t))

vg(t) cos(ψg (t))− vw

)
(5.14)

5. Compute the roll profile:

φg (t) = φ (t) = atan

(
V (t) ψ̇ (t)

g

)
(5.15)

26

Each waypoint also has an associated height that must be achieved. We compute the Z-profile
zg(t) using the timing information from the XY trajectory. This timing information allows to
determine the time available for carrying out height changes between waypoints. The Z-profile
is parameterized as a C2 spline divided into segments that start and end on waypoints. These
segments satisfy boundary value constraints, and also respect speed and acceleration limits.

The final ground-frame trajectory σg (t) = {xg(t), yg(t), zg(t), ψg (t) , φg (t)} is now com-
plete.

5.7 Takeoff

While κITE deals with enroute flight, takeoff and landing are special cases that are dealt with
separately.

Takeoff profiles are determined by the height-velocity (H-V) curve for the given helicopter,
an example of which is shown in Fig. 3.5a. This curve denotes a safe airspeed-height regime,
and operating outside this regime might lead to a potential crash. Pilots therefore attempt to
minimize time spent in the unsafe region of the H-V curve. Given wind conditions and an
obstacle-checking interface, we iteratively compute takeoff profiles of increasing aggressiveness
until a collision-free takeoff is found. Takeoff profiles are computed using a forward simulation
in two phases-

1. The translational lift phase, where the system builds up forward airspeed without climbing
beyond the limits of the H-V curve. This is enforced by limiting the vertical acceleration
available to the system.

2. The ascend phase, where the system has access to greater vertical acceleration. This ac-
celeration limit is determined by a dynamical model that reasons about available engine
power given operating conditions.

While the nominal takeoff profile avoids the unsafe H-V region completely, more aggressive
profiles briefly encroach into unsafe H-V regions to facilitate takeoff in more confined areas. Fig.
5.3 shows examples of such takeoff profiles. Crucially, the algorithm fails if it cannot determine
a safe and feasible takeoff profile given the wind conditions and obstacle locations. This allows
the autonomous system to abort unsafe missions without even taking off.

5.8 Landing

The H-V curve is an important constraint while landing, as is the onset of a dangerous condition
known as a vortex ring state. While landing, pilots try and maintain a nominal glide slope of
6− 12◦, where the glide slope is defined as the ratio of vertical speed to horizontal groundspeed.
The trajectory optimization procedure yields the groundspeed profile over the entire trajectory,
from the end of takeoff to the point of landing. The vertical velocity profile for the landing
segment is then computed according to the glide slope.

To ensure safety, κITE fails if the landing segment is oriented such that the wind is a tail-
wind. Aerial vehicles typically try and land into the wind, and tailwinds can lead to unstable and

27

Horizontal distance (m)
0 100 200 300 400 500 600 700

V
e
rt

ic
a
l
D

is
ta

n
c
e
 (

m
)

0

5

10

15

20

25
Takeoff profiles for varying aggressiveness

Figure 5.3: Takeoff profiles with varying aggressiveness. Note that the axes are not at the same scale.

potentially dangerous flight. Some example landing profiles with varying glide slopes are shown
in Fig. 5.4.

Horizontal distance (m)
0 200 400 600 800 1000 1200 1400 1600

V
e
rt

ic
a
l
d

is
ta

n
c
e
 (

m
)

0

10

20

30

40

50

60

70

80

90
Landing profiles for varying glide-slopes

3 deg
6 deg
9 deg
12 deg

Figure 5.4: Landing profiles with varying glide slopes. Note that the axes are not at the same scale.

28

Chapter 6

Results

We will now explore both simulation and experimental results that showcase the efficiency and
versatility of our trajectory optimization approach. We have open-sourced a MATLAB imple-
mentation of κITE at https://bitbucket.org/castacks/kite_optimizer. We
compare κITE against a baseline that uses constant-curvature arcs to turn, while trying to main-
tain as high a speed as possible without violating the roll limit.

6.1 Simulation Results

6.1.1 Solution Quality

X (m)
0 2000 4000

Y
 (

m
)

0

1000

2000

3000

4000

Time (s)
0 50 100 150 200

-20

-10

0

10

20

φ (deg) φ̇ (deg/s) φ̈ (deg/s2)

Time (s)
0 50 100 150 200

-1

-0.5

0

0.5

1

Acc. (m/s
2
) Jerk (m/s

3
)

(a)

X (m)
3000 3200 3400 3600

Y
 (

m
)

-100

0

100

200

300

400

Time (s)
0 50 100 150 200

-20

-10

0

10

20

φ (deg) φ̇ (deg/s)

Time (s)
0 50 100 150 200

-1

-0.5

0

0.5

1

Acc. (m/s
2
) Jerk (m/s

3
)

(b)

Figure 6.1: Comparing the spatial, roll, speed and acceleration profiles of κITE (top) with the baseline (bottom).
Corridors are highlighted in yellow, and limits are represented by red lines. A blowup of (bottom left) the spatial
profiles (top left) shows κITE in black and the baseline in red.

1. Respecting dynamic limits
Fig. 6.1 shows how κITE is able to respect limits on speed, acceleration, jerk, roll, roll-
rate and roll-racceleration. This is essential for stable trajectory tracking, especially in the

29

https://bitbucket.org/castacks/kite_optimizer

X (m)
0 2000 4000

Y
 (

m
)

0

1000

2000

3000

4000

5000

(a)

Time (s)
0 50 100 150 200 250 300

R
o

ll
 (

d
e
g

)

-20

-10

0

10

20

30

Wind-aware κITE Wind-agnostic κITE

Time (s)
0 50 100 150 200 250 300

R
o

ll
-r

a
te

 (
d

e
g

/s
)

-20

-10

0

10

20

30

Wind-aware κITE Wind-agnostic κITE

(b)

Time (s)
0 100 200 300

A
irs

pe
ed

 (m
/s

)

0

10

20

30

40

50

60

Time (s)
0 100 200 300 400

A
irs

pe
ed

 (m
/s

)

0

10

20

30

40

50

60

(c)

Figure 6.2: Demonstrating the importance of wind-cognizance in the trajectory planning stage. (a) compares the
spatial profiles of wind-aware κITE (black) with a wind-agnostic variant of κITE (red) in the presence of a 20m/s
wind along the x-axis. A feedback controller used to follow both trajectories in this wind violates roll and roll-rate
limits (b) with the wind-agnostic trajectory. (c) shows how the naive baseline (right) has to slow down to execute
feasible turns in this wind regime, while κITE (left) is still able to maintain high speeds.

30

presence of disturbing forces such as wind that might cause the system to exceed its control
margin and enter into a potentially hazardous state. Fig. 6.1 compares the output of κITE
with the baseline.

2. Performance With Wind
Fig. 6.2 shows a scenario where a helicopter is flying in the presence of a 20m/s wind
directed along the +ve X-axis. As Fig. 6.2(b) shows, a feedback controller that attempts
to follow the trajectory computed without taking wind into account (red trajectory in Fig.
6.2(a)) would have to exceed roll and roll-rate limits at the same airspeed. Wind-cognizant
κITE , on the other hand, generates a trajectory that is dynamically feasible in this wind
regime. One can see how κITE makes use of wind by generating sharper-looking turns
into the wind direction. Similarly, Fig. 6.2(c) shows that the naive baseline must slow
down considerably to execute dynamically feasible turns in this wind regime, while κITE
is able to maintain high speeds.

6.1.2 Scalability and versatility
κITE can handle very long routes with a variety of segment length ratios. The solution structure
is trivially able to accommodate long, straight segments, while algorithms without this structure
would struggle to compute such routes in a reasonable amount of time. Fig. 6.3 shows one such
situation, in which κITE computes a ∼ 290 km with a mixture of long and short segments.

We also tested a C++ implementation of κITE on 100 randomly generated problems across
three runs with 10, 25 and 50 waypoints respectively. Individual segment lengths range from
300m to 5000m, and are randomly chosen for each waypoint, as are the angles between seg-
ments. A pre-computed lookup table is used for quickly determining both curvature and accel-
eration spline primitives, which allows vastly improved execution times. We report the average
execution times for different phases of κITE for both runs (Table 6.1) :

Table 6.1: Execution times (in ms) of all the stages of κITE

Num Waypoints Phase A Phase B Phase C Phase D

10 203.00 93.26 0.12 1095.84
25 496.10 1054.00 0.23 1067.83
50 1241.41 4785.82 0.48 7121.01

31

X (m) ×104
2 4 6 8

Y
(m

)

×104

1

2

3

4

5

6

7

8

X (m)
4000 6000 8000 10000

Y
(m

)

×104

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

Figure 6.3: A ∼ 290 km trajectory computed by κITE . The problem has both long route segments and short
segments with closely spaced turns, as the cutout shows. κITE ’s solution structure allows it to efficiently deal with
such problems. Again, the corridor is highlighted in yellow.

32

Figure 6.4: Our autonomous helicopter test platform. The laser sensor is visible at the nose of the vehicle.

6.2 Experimental Results

6.2.1 Setup

Our algorithm is currently part of the C++-based motion planning architecture running on board
a full-scale autonomous helicopter with a human pilot-in-the-loop. The heliopter, shown in Fig.
6.4, is equipped with a scanning laser for perception, along wth inertial sensors and GPS. Its 6D
pose and velocity are estimated with the help of both GPS and inertial sensors. κITE serves as a
global planner, and computes the entire trajectory from takeoff to landing in real-time whenever
the wind conditions or mission requirements change. A local planner [7] is responsible for
following this trajectory in the nominal case, and for performing obstacle avoidance should the
need arise. The algorithm receives real-time information about wind from an on-board pitot tube,
and re-plans whenever the wind changes significantly.

6.2.2 Performance In Wind

Fig. 6.5 shows the mission waypoints and planned trajectory for a flight test performed with our
system in a ∼ 20 knots wind blowing towards 270◦N. Fig. 6.6 shows the speed (a), heading (b)
and roll (c) profiles for the same mission. The groundspeed and heading were tracked fairly well,
while ensuring that the commanded airspeed respected acceleration and jerk constraints of 0.1g.
The commanded roll and roll-rates are within the system limits indicated by the dashed red line.
The plots also indicate the direction in which the helicopter must be pointed (i.e the crab angle)
such that the desired ground-frame heading can still be maintained in the given wind regime. It
is to be noted that with zero wind, the airspeed would equal groundspeed, as would crab angle
and desired heading. Fig. 6.7 shows similar speed and heading performance plots for another
flight test with a ∼ 19 knots wind blowing towards 80◦N.

Our system has thus far been tested in 23 flights under winds upto 40 knots, where the al-
gorithm failed to compute a feasible trajectory in 3 cases. The failures were due to very tight
corridors, where the algorithm could not keep the trajectory in safe airspace under the corre-
sponding wind conditions. κITE accepts the waypoints and corridors as inputs, and does not

33

compute them.

(a)

X (m)
-4000 -2000 0 2000 4000

Y
 (

m
)

0

1000

2000

3000

4000

5000

6000

7000

Horizontal dist. (m)
2000 4000 6000 8000

V
e
rt

ic
a
l
d

is
t.

 (
m

)

0

50

100

150

200

(b)

Figure 6.5: Results from a test conducted on our full-size helicopter with a∼ 20 knots wind blowing towards 270◦N.
(a) shows the complete trajectory overlaid on a map along with the mission waypoints; (b) shows the XY spatial
profile of the trajectory (left), along with the vertical profile (right). Waypoints are shown in blue, the start point in
green and the final point in black. This is a complete trajectory from takeoff to landing. The safe flight corridor has
not been shown due to scale.

6.2.3 Online Re-planning
Give changing wind conditions or mission requirements, it is essential for the motion planning
architecture to respond and re-plan in near real-time. Fig. 6.8a shows plots of wind direction
and magnitude from one of our test flights, and compares the spatial profile of the trajectory (b)

34

Time (s)
0 50 100 150 200 250 300

S
p

e
e
d

 (
m

/s
)

0

10

20

30

40

50

60

Airspeed Des. Groundspeed Act. Groundspeed

(a)

Time (s)
50 100 150 200 250

H
e
a
d

in
g

 (
d

e
g

)

200

220

240

260

280

300

320

340

360
Planned
Actual

Time (s)
0 50 100 150 200 250 300

0

50

100

150

200

250

300

350

400
Crab Angle (deg)
Heading (deg)

(b)

Time (s)
0 50 100 150 200 250 300

-15

-10

-5

0

5

10

15

Roll (deg) Roll-rate (deg/s)

Time (s)
90 100 110 120 130 140 150

-8

-6

-4

-2

0

2

4

6

Roll (deg) Roll-rate (deg/s)

(c)

Figure 6.6: Speed, heading and roll profiles for the flight test shown in Fig. 6.5. (a) shows the commanded air-
speed, commanded groundspeed and the measured groundspeed. Note that in the absence of wind, airspeed and
groundspeed would be equal; (b) shows the commanded and executed heading profile (left), along with the crab
angle necessary for maintaining heading in the given wind environment (right); (c) shows the commanded roll and
roll-rate profile for the entire trajectory (left), with a magnified view from a section of the trajectory (right). The roll
limits are represented by the dashed red line.

35

Time (s)
0 50 100 150 200 250 300

S
p

e
e
d

 (
m

/s
)

0

10

20

30

40

50

60

Airspeed Des. Groundspeed Act. Groundspeed

Time (s)
50 100 150 200 250

H
e
a
d

in
g

 (
d

e
g

)

240

260

280

300

320

340
Planned
Actual

(a)

Figure 6.7: Results from another test flight in the presence of a a ∼ 19 knots wind blowing towards 80◦N. Once
again, we compare commanded airspeed, commanded groundspeed and measured groundspeed (left), and com-
manded and measured heading (right).

and commanded airspeed and crab angle (c) for two different wind regimes encountered during
the test - 38 knots, 170◦N and 16 knots, 90◦N. Such situations are commonly encountered when
the helicopter takes off, where the wind conditions at ground level can be quite different from
wind conditions at cruising altitude. While κITE accepts estimates of wind (say, from a weather
station) all along the mission to compute a feasible trajectory, it is essential for it to re-compute
its trajectory online when the measured wind deviates significantly from the original estimates.
In all our tests, κITE returns a solution (or failure code in the three runs mentioned above) within
5− 7s.

36

Time (s)
600 700 800 900

W
in

d
 D

ir
e
c
ti

o
n

 (
d

e
g

 N
)

90

100

110

120

130

140

150

160

170

Time (s)
600 700 800 900

W
in

d
 S

p
e
e
d

 (
k
n

o
ts

)

5

10

15

20

25

30

35

40

(a)

X (m)
-4000 -2000 0 2000 4000

Y
 (

m
)

0

1000

2000

3000

4000

5000

6000

7000

X (m)
0 200 400 600 800 1000

Y
 (

m
)

6400

6600

6800

7000

7200

(b)

Time (s)
0 50 100 150 200 250 300

A
ir

s
p

e
e
d

 (
m

/s
)

0

10

20

30

40

50

60
16 knots wind
38 knots wind

Time (s)
0 50 100 150 200 250 300

C
ra

b
 A

n
g

le
 (

d
e
g

)

260

280

300

320

340

360

16 knots wind
38 knots wind

(c)

Figure 6.8: Results from a flight test showing online re-planning when the measured wind changes from 38 knots,
170◦N to 16 knots, 90◦N (a) shows a plot of wind speed and direction estimated in real-time with an on-board pitot
tube; (b) shows the full trajectory from start (green) to goal (black) for a moment when the measured wind is 38
knots along 160◦N (left), and compares spatial profiles of a turn under the two wind regimes; (c) compares the
commanded airspeed (left) and commanded crab angle (right) for the two wind regimes.

37

38

Chapter 7

Discussion and Conclusion

We have presented κITE , a decoupled trajectory optimization approach for UAVs that computes
feasible, time-optimal trajectories while explicitly accounting for disturbance due to wind. We
have also described our approaches for takeoff and landing, resulting in a complete system that
generates trajectories from start to goal. To our knowledge, there is no other existing approach
that demonstrably optimizes for path and velocity for UAVs in the presence of wind, and gen-
erates smooth, dynamically feasible trajectories in near real-time. Our main conclusions can be
summarized as follows-

1. Our algorithm effectively plans smooth, dynamically-feasible trajectories that explicitly
account for wind. It is near real-time, which is essential for practical deployment on aerial
vehicles such as our autonomous helicopter.

2. Decoupling path optimization from velocity optimization is an extremely effective strategy
to make the highly non-convex problem tractable. Our derivation of appropriate curvature
limits, taking into account all appropriate dynamic limits of the system (roll and its deriva-
tives, airspeed and acceleration) is the key ingredient that allows us to decouple path from
velocity in a principled manner. This is an especially difficult problem given the presence
of wind, which automatically introduces time-dependence even in the path optimization
stage.

3. Searching for arcs in the curvature space allows us to directly address non-trivial steering
constraints such as roll-rate. The curvature space also provides an elegant mathematical
representation of the steering control input.

4. We have demonstrated the effectiveness of our algorithm with over 20 successful real-
world flight tests using both onboard wind measurements and estimates from weather sta-
tions, and analyzed the 3 cases where it failed to find a feasible trajectory.

5. κITE also determines whether it is safe to takeoff/land in the current wind regime, and
aborts before takeoff if the conditions are adverse to safe flight.

6. While we have not currently tested with very long missions (≥ 100km), our simulation
results indicate that κITE scales gracefully with mission length and the number of way-
points. For example, κITE computes a trajectory for a ∼ 500km mission in ∼ 7s.

7. Our emphasis on treating roll and roll-rate as strict constraints arises out of our discus-

39

sion with helicopter pilots, as well as the need to ensure operation within control margins.
However, pilots might sometimes violate these limits during actual flight if the situation
demands, and determining the exact tradeoffs in a pilot’s internal cost function using ma-
chine learning techniques (such as Inverse Reinforcement Learning) remains an exciting
avenue for future work.

8. κITE is currently constrained to lie on the polyline defined by the mission waypoints. In-
cluding the problem of determining turn end-points in the optimization process is an area
of future work. However, the algorithm includes logic that preprocesses the waypoints to
make them suitable for the optimizer. For instance, extremely short segments and very
sharp turns are replaced with dynamically feasible segments before being fed to the opti-
mizer.

9. Another interesting area of future work is to use the motion primitives (turns and straight
lines) that we generate in an RRT-style algorithm to relax the polyline assumption.

10. We have open-sourced a MATLAB implementation of κITE at https://bitbucket.
org/castacks/kite_optimizer. κITE is an effective trajectory optimization tech-
nique for systems such as helicopters and fixed-wing aircraft that have steering and steering-
rate constraints.

40

https://bitbucket.org/castacks/kite_optimizer
https://bitbucket.org/castacks/kite_optimizer

Appendix A

Curvature Bounds

A.1 Deriving bounds for curvature
The following subsections derive allowable bounds on curvature and curvature derivatives given
dynamic limits.

We make use of the following relation between κ and φ:

κ =
g tanφ

v2
(A.1)

A.1.1 Time vs spatial derivatives
For a quantity r, we use the chain rule to specify the relation between time and spatial derivatives
(ṙ and r′ respectively, and v = ds

dt
= speed):

r′ =
dr

ds
=
ṙ

v
(A.2)

A.1.2 Curvature bound

κmax =
g tanφmax

vmax

(A.3)

A.1.3 Curvature derivative bound
Differentiating (A.1) with respect to arclength s, we get

κ′ =
g (sec2 φ) φ̇

v3
− 2κa

v2

Let α = g (sec2 φ) φ̇ and β = 2κa. Therefore,

κ′ =
α

v3
− β

v2

=⇒ dκ′

dv
=
−3α

v4
+

2β

v3

41

Setting this to zero, we get

v∗ =
3α

2β
= γ

Differentiating again w.r.t v, we get

dκ′′

dv
=

12α

v5
− 6β

v

=
6

v4

(
2α

v
− β

)
=

6

v4

(
2α
3α
2β

− β
)

=
2β

v4

Since we want to derive a worst-case upper bound, we set β = 2κmaxamax. Therefore dκ′′

dv
> 0 at

v∗ = 3α
2β

= γ. Similarly, we set α = gφ̇max for a conservative bound. The curvature-rate limit is
now

κ′max =
α

γ3
− β

γ2
(A.4)(

α = gφ̇max, β = 2κmaxamax, γ =
3α

2β

)
(A.5)

A.1.4 Curvature double-derivative bound
For a conservative bound, we get

κ′′max =
gφ̈max

v4max

(A.6)

42

Bibliography

[1] Daniel Althoff, Matthias Althoff, and Sebastian Scherer. Online safety verification of trajec-
tories for unmanned flight with offline computed robust invariant sets. In Intelligent Robots
and Systems (IROS), 2015 IEEE/RSJ International Conference on, pages 3470–3477. IEEE,
2015. 1

[2] Erik P. Anderson, Randal W. Beard, and Timothy W. McLain. Real-time dynamic trajectory
smoothing for unmanned air vehicles. IEEE Trans. Contr. Sys. Techn., 13:471–477, 2005.
2.2

[3] Efstathios Bakolas and Panagiotis Tsiotras. Time-optimal synthesis for the zermelo–
markov–dubins problem: the constant wind case. In American Control Conference (ACC),
pages 6163–6168, 2010. 2.2

[4] Efstathios Bakolas and Panagiotis Tsiotras. Optimal synthesis of the zermelo–markov–
dubins problem in a constant drift field. Journal of Optimization Theory and Applications,
156(2):469–492, 2013. 2.2, 2.2

[5] James E Bobrow, Steven Dubowsky, and JS Gibson. Time-optimal control of robotic ma-
nipulators along specified paths. The international journal of robotics research, 4(3):3–17,
1985. 2.2, 5.2

[6] Howie M Choset. Principles of robot motion: theory, algorithms, and implementation.
MIT press, 2005. 2.2, 5.2

[7] Sanjiban Choudhury , Sankalp Arora, and Sebastian Scherer. The planner ensemble and
trajectory executive: A high performance motion planning system with guaranteed safety.
In AHS 70th Annual Forum, Montre al, Que bec, Canada, May 2014. 6.2.1

[8] Sanjiban Choudhury and Sebastian Scherer. The dynamics projection filter (dpf)-real-time
nonlinear trajectory optimization using projection operators. In Robotics and Automation
(ICRA), 2015 IEEE International Conference on, pages 644–649. IEEE, 2015. 2.2

[9] Sanjiban Choudhury, Sankalp Arora, and Sebastian Scherer. The planner ensemble: Mo-
tion planning by executing diverse algorithms. In 2015 IEEE International Conference on
Robotics and Automation (ICRA), pages 2389–2395. IEEE, 2015. 1

[10] Vishal Dugar , Sanjiban Choudhury, and Sebastian Scherer. A kite in the wind: Smooth
trajectory optimization in a moving reference frame. In IEEE International Conference on
Robotics and Automation, Singapore, May 2017. 1

[11] Vishal Dugar , Sanjiban Choudhury, and Sebastian Scherer. Smooth trajectory optimization

43

in wind: First results on a full-scale helicopter. In AHS International 73rd Annual Forum,
Forth Worth, Texas, USA, May 2017. 1

[12] FAA. Helicopter Flying Handbook. 1, 3

[13] Thierry Fraichard and Alexis Scheuer. From reeds and shepp’s to continuous-curvature
paths. IEEE Transactions on Robotics, 20(6):1025–1035, 2004. 2.2

[14] Emilio Frazzoli, Munther A Dahleh, and Eric Feron. Real-time motion planning for agile
autonomous vehicles. Journal of Guidance, Control, and Dynamics, 25(1):116–129, 2002.
2.2, 2.1

[15] Chad Goerzen, Zhaodan Kong, and Bernard Mettler. A survey of motion planning algo-
rithms from the perspective of autonomous uav guidance. Journal of Intelligent and Robotic
Systems, 57(1-4):65–100, 2010. 1

[16] Jeong hwan Jeon, Raghvendra V Cowlagi, Steven C Peters, Sertac Karaman, Emilio Fraz-
zoli, Panagiotis Tsiotras, and Karl Iagnemma. Optimal motion planning with the half-car
dynamical model for autonomous high-speed driving. In 2013 American Control Confer-
ence, pages 188–193. IEEE, 2013. 2.2, 2.1, 5.2

[17] Dongwon Jung and Panagiotis Tsiotras. On-line path generation for small unmanned aerial
vehicles using b-spline path templates. In AIAA Guidance, Navigation and Control Con-
ference, AIAA, volume 7135, 2008. 2.2

[18] Mrinal Kalakrishnan, Sachin Chitta, Evangelos Theodorou, Peter Pastor, and Stefan Schaal.
Stomp: Stochastic trajectory optimization for motion planning. In Robotics and Automation
(ICRA), 2011 IEEE International Conference on, pages 4569–4574. IEEE, 2011. 2.2, 2.1

[19] Sertac Karaman and Emilio Frazzoli. Incremental sampling-based algorithms for optimal
motion planning. Robotics Science and Systems VI, 104, 2010. 2.2, 2.1

[20] Alonzo Kelly and Bryan Nagy. Reactive nonholonomic trajectory generation via parametric
optimal control. The International Journal of Robotics Research, 22(7-8):583–601, 2003.
2.2, 5.3

[21] Steven M LaValle. Planning algorithms. Cambridge university press, 2006. 2.1

[22] Steven M LaValle and James J Kuffner Jr. Randomized kinodynamic planning. The Inter-
national Journal of Robotics Research, 20(5):378–400, 2001. 2.1

[23] Maxim Likhachev and Dave Ferguson. Planning long dynamically feasible maneuvers for
autonomous vehicles. The International Journal of Robotics Research, 28(8):933–945,
2009. 2.2, 2.1

[24] Thomas Lipp and Stephen Boyd. Minimum-time speed optimisation over a fixed path.
International Journal of Control, 87(6):1297–1311, 2014. 2.2

[25] Brian MacAllister, Jonathan Butzke, Alex Kushleyev, Harsh Pandey, and Maxim
Likhachev. Path planning for non-circular micro aerial vehicles in constrained environ-
ments. In Robotics and Automation (ICRA), 2013 IEEE International Conference on, pages
3933–3940. IEEE, 2013. 2.2, 2.1

[26] Timothy G McGee, Stephen Spry, and J Karl Hedrick. Optimal path planning in a constant

44

wind with a bounded turning rate. In AIAA Guidance, Navigation, and Control Conference
and Exhibit, pages 1–11. Reston, VA, 2005. 1, 2.2, 2.2

[27] Michael Otte, William Silva, and Eric Frew. Any-time path-planning: Time-varying wind
field + moving obstacles. In IEEE International Conference on Robotics and Automation,
Stockholm, Sweden, 2016. 1

[28] Mihail Pivtoraiko, Ross A Knepper, and Alonzo Kelly. Differentially constrained mobile
robot motion planning in state lattices. Journal of Field Robotics, 26(3):308–333, 2009.
2.2, 2.1

[29] Raymond W Prouty. Helicopter performance, stability, and control. 1995. 1

[30] Nathan Ratliff, Matt Zucker, J Andrew Bagnell, and Siddhartha Srinivasa. Chomp: Gra-
dient optimization techniques for efficient motion planning. In Robotics and Automation,
2009. ICRA’09. IEEE International Conference on, pages 489–494. IEEE, 2009. 2.2, 2.1

[31] Alexis Scheuer and Christian Laugier. Planning sub-optimal and continuous-curvature
paths for car-like robots. In Intelligent Robots and Systems, 1998. Proceedings., 1998
IEEE/RSJ International Conference on, volume 1, pages 25–31. IEEE, 1998. 2.2

[32] John Schulman, Jonathan Ho, Alex X Lee, Ibrahim Awwal, Henry Bradlow, and Pieter
Abbeel. Finding locally optimal, collision-free trajectories with sequential convex opti-
mization. In Robotics: science and systems, volume 9, pages 1–10, 2013. 2.2, 2.1

[33] Martin Seleck, Petr Vana, Milan Rollo, and Tomáš Meiser. Wind corrections in flight path
planning. Int J Adv Robotic Sy, 10(248), 2013. 1

[34] Laszlo Techy. Optimal navigation in planar time-varying flow: Zermelos problem revisited.
Intelligent Service Robotics, 4(4):271–283, 2011. 1, 2.2

[35] Laszlo Techy, Craig A Woolsey, and Kristi A Morgansen. Planar path planning for flight ve-
hicles in wind with turn rate and acceleration bounds. In Robotics and Automation (ICRA),
2010 IEEE International Conference on, pages 3240–3245. IEEE, 2010. 2.2, 2.2

[36] Diederik Verscheure, Bram Demeulenaere, Jan Swevers, Joris De Schutter, and Moritz
Diehl. Time-optimal path tracking for robots: A convex optimization approach. IEEE
Transactions on Automatic Control, 54(10):2318–2327, 2009. 2.2

[37] Chanyeol Yoo, Robert Fitch, and Salah Sukkarieh. Online task planning and control for
fuel-constrained aerial robots in wind fields. The International Journal of Robotics Re-
search, page 0278364915595278, 2015. 1

45

	1 Introduction
	1.1 Notation

	2 Background
	2.1 Architecture
	2.2 Related Work

	3 Flying Like a Pilot
	3.1 Frames of Reference
	3.2 Optimal Speed Profiles
	3.3 Optimal Turn Profiles
	3.4 Takeoff and Landing

	4 Problem Definition
	4.1 Model and Dynamics
	4.2 Inputs and outputs
	4.3 Optimization Problem

	5 Enroute Flight - ITE Ã�
	5.1 Motivation
	5.2 Overview
	5.3 Phase A
	5.4 Phase B
	5.5 Phase C
	5.6 Phase D
	5.7 Takeoff
	5.8 Landing

	6 Results
	6.1 Simulation Results
	6.1.1 Solution Quality
	6.1.2 Scalability and versatility

	6.2 Experimental Results
	6.2.1 Setup
	6.2.2 Performance In Wind
	6.2.3 Online Re-planning

	7 Discussion and Conclusion
	Appendices

	A Curvature Bounds
	A.1 Deriving bounds for curvature
	A.1.1 Time vs spatial derivatives
	A.1.2 Curvature bound
	A.1.3 Curvature derivative bound
	A.1.4 Curvature double-derivative bound

	Bibliography

