
Safe and Efficient Navigation in
Dynamic Environments

Anirudh Vemula

CMU-RI-TR-17-40

July 2017

The Robotics Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Thesis Supervisors:
Dr. Jean Oh

Dr. Katharina Muelling

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Robotics

c©Anirudh Vemula, 2017

For my brother, who put the fear of mediocrity in me.
For my mom, for all her sacrifices to help me pursue my dreams.

I

Abstract
For mobile robots to become ubiquitous, they need to be able to navigate in dynamic

environments in a safe and efficient way. This is a challenging problem due to the added
time dimension in the search space and the subtle interactions between dynamic agents that
are extremely difficult to model. In this thesis, we will address both of these challenges.

The challenge of dimensionality is addressed by proposing a novel path planning al-
gorithm in environments with dynamic agents with quick planning times. We apply the
idea of adaptive dimensionality to speed up path planning in dynamic environments for a
robot with no assumptions on its dynamic model. Specifically, our approach considers the
time dimension only in those regions of the environment where a potential collision may
occur, and plans in a low-dimensional state-space elsewhere. We show that our approach
is complete and is guaranteed to find a solution, if one exists, within a cost sub-optimality
bound. We experimentally validate our method on the problem of 3D nonholonomic ve-
hicle navigation in dynamic environments. Our results show that the presented approach
achieves substantial speedups in planning time over 4D heuristic-based A*, especially when
the resulting plan deviates significantly from the one suggested by the heuristic.

We tackle the challenge of modeling interactions by presenting a novel statistical model
to capture cooperative behavior in human crowds. Previous approaches have used hand-
crafted functions based on proximity to model human-human and human-robot interac-
tions. However, these approaches can only model simple interactions and fail to generalize
for complex crowded settings. We develop an approach that models the joint distribution
over future trajectories of all interacting agents in the crowd through a local interaction
model that we train using real human trajectory data. The interaction model infers the
velocity of each agent based on the spatial orientation of other agents in his vicinity. Dur-
ing prediction, our approach infers the goal of the agent from its past trajectory and uses
the learned model to predict its future trajectory. We demonstrate the performance of our
method against a state-of-the-art approach on a public dataset and show that our model
outperforms when predicting future trajectories for longer horizons.

Finally, we lay out future directions of research in the domain of robot navigation in
dynamic environments, and the challenges remaining. We plan to verify and validate the
proposed work in this thesis on a robot placed in a real human crowd. Other challenges
include more accurate long-term prediction, uncertainty associated with predictions and
real-time incremental planning algorithms.

III

Acknowledgements
I would like to thank my advisors, Jean Oh and Katharina Muelling for their mentor-

ship and guidance for the past two years. I am extremely grateful to them for giving me
the freedom to pursue research topics that I am excited about and provide their valuable
insights to help me achieve my goals.

I would also like to thank a bunch of people for their technical assistance in several stages
of my research: Pete Trautman for providing useful insights into a difficult problem, Venka-
traman Narayanan for demistifying graph search and Kalin Gochev for going through the
painstaking process of explaining SBPL code. I am also indebted to Sanjiban Choudhury
for his constant guidance, since my days as an intern, in my research directions and for his
thoughtful opinions.

A big shout out to my colleagues at the Robotics Institute, Puneet Puri, Vishal Dugar,
Debidatta Dwibedi, Rosario Scalise, Sankalp Arora, Jerry Hsiung, Achal Dave, and many
others for lending an ear when it was most needed. A special thanks goes to Puneet for the
brainstorming sessions regarding our research, which helped me gain a better perspective.

Finally, I would like to thank my brother for pushing me to strive for the best and not
settle for less, and my parents for their unwavering support of my choices in life.

V

Contents

1 Introduction 1
1.1 Planning in Dynamic Environments . 1
1.2 Problem Definition . 2
1.3 Thesis Organization . 4

2 Navigation in Human Crowds : A Survey 6
2.1 Taxonomy of Approaches . 6
2.2 Safe Robot Navigation . 8
2.3 Social Robot Navigation . 10
2.4 Trajectory Prediction . 11
2.5 Summary . 12

3 Path Planning in Dynamic Environments with Adaptive Dimensionality 13
3.1 Introduction . 13
3.2 Related Work . 14
3.3 Problem Definition . 17
3.4 Approach . 17
3.5 Evaluation . 22
3.6 Discussion . 25
3.7 Summary . 26

4 Modeling Cooperative Navigation in Dense Human Crowds 27
4.1 Introduction . 27
4.2 Related Work . 28
4.3 Problem Definition . 31
4.4 Approach . 32
4.5 Evaluation . 36
4.6 Discussion . 39
4.7 Summary . 41

5 Conclusion 42
5.1 Summary . 42
5.2 Future Work . 43

A Code and Publications 45
A.1 Code . 45
A.2 Publications . 45

VII

B Public Datasets 46

VIII

List of Figures

1.1 Example of Freezing Robot Problem (obtained from Trautman and Krause
[1]). (left) With growing uncertainty about future trajectories of other agents,
the robot cannot find any feasible path and freezes. (middle) Even in the case
of perfect prediction, the robot executes a path that is highly suboptimal or
sometimes infeasible. (right) When human-robot cooperation is accounted,
the robot executes an optimal path through the crowd avoiding the Freezing
Robot problem. 4

3.1 Example of a dynamic environment where the heuristic leads the robot (blue
square) into collision (on blue dash-dot path) with the dynamic obstacle (red
disc). We need to find an alternate path (green dashed path) from A to B
without expanding a large number of states. 15

3.2 Example run of the algorithm on a sample map. HD regions are indicated
by blue circles, paths of dynamic obstacles by red lines and path found using
our approach by green line. 18

3.3 Example maps, with paths (green) of dynamic obstacles shown, used in our
experiments. Static obstacles are shown in yellow and free space in blue. . . 23

4.1 Examples of pedestrians exhibiting cooperative behavior. In each image, the
velocity of the pedestrian is shown as an arrow where the length of each
arrow represents the speed. (Left) The pedestrian (with green arrow) antic-
ipates the open space between the other three (with red arrow) and doesn’t
slow down. (Middle) The pedestrian (with green arrow) slows down to al-
low the other pedestrian (with red arrow) to pass through. (Right) The two
pedestrians (with green arrows) make way for the oncoming agents (with
red arrow) by going around them. 29

4.2 Occupancy grid construction. (Left) A configuration of other agents (red)
around the current agent (green). (right) 4x4 occupancy grid is constructed
using the number of agents in each grid cell 32

4.3 Example snapshot of the dataset with goals indicated by red dots 37
4.4 Example prediction by our model. For each pedestrian, we predict his future

locations (which are plotted) for the next 5 time-steps. The bottom set of
pedestrians are progressing towards a goal at the top centre of the image, but
they go around the other set of pedestrians making way for them cooperatively. 38

X

4.5 Velocities predicted by our trained model for example occupancy grids. In
each case, the goal of the pedestrian is right above in the Y-direction. Pre-
dicted mean y-velocity is shown in blue and predicted mean x-velocity is
shown in red. 40

XI

List of Tables

2.1 Taxonomy of related works, Independent (I), Handcrafted (H), Joint (J) and
Trained (T) . 8

3.1 Results on 50 indoor environments with 10 dynamic obstacles. 24
3.2 Results on 50 indoor environments with 30 dynamic obstacles. 24
3.3 Results on 50 maze-like environments with 10 dynamic obstacles. 25
3.4 Results on 50 maze-like environments with 30 dynamic obstacles. 25

4.1 Prediction errors (in pixels) on the dataset for IGP and our approach 39

XII

Chapter 1

Introduction

In this chapter, we will motivate the problem tackled by this thesis and highlight the chal-
lenges involved. We will then present necessary background on the problems of path plan-
ning and trajectory prediction. We finish the chapter by describing the organization of the
thesis.

1.1 Planning in Dynamic Environments
Navigation is an essential task for the autonomous mobile robot. The task not only involves
how the robot can move on its own, but also how to achieve various goals and objectives.
Specifically, the robot has to achieve its goals in the presence of hard constraints such as
dynamic feasibility, collision avoidance, and soft constraints like social compliance. These
problems involve finding trajectories in the workspace from a start configuration to a goal
configuration that satisfy the aforementioned constraints. Path Planning is the problem of
finding such a trajectory. The path planning approach depends on two important aspects
of the planner: The agent needs to have an accurate model of the dynamics of the environ-
ment or state of the world around it, and it needs to have a model of how its actions affect
the world state. For mobile robots, this is significantly challenging as they have to rely on
perception to create a model of the world state. In the absence of an accurate long-horizon
models and limited perception, mobile robots were traditionally relegated to use reactive
methods or one-step planning algorithms, [2, 3]. These reactive methods map the observed
state of the world at the current time-step to an action for the robot to execute. Employing an
accurate model of the environment, the mobile robot can instead plan its actions ahead, to
achieve more efficient (in some cases, more social) behavior. However, the major challenge
in achieving this objective is modeling the state of the environment, which can be dynamic.

Dynamics is an important aspect of mobile robot navigation in partially known or com-
pletely unknown environments. There are two types of dynamics that need to be consid-
ered when we perform planning: the first are the kinodynamic constraints of the robot
itself, the second are the dynamics of other agents in the environment. Most modern plan-
ning algorithms consider the kinodynamic constraints of the robot to come up with feasible
trajectories for the robot to execute. To ensure that the resulting trajectory doesn’t collide
with other agents, we need to come up with an accurate model of the environment. Such
a model enables accurate long-term predictions of the trajectories of other agents in the

1

environment. The dynamics of the environment are not readily predictable and need to
be supplemented by sensory information. Given sensory information regarding the past
behavior of the agents, the model needs to predict their future behavior.

We envision mobile robots to coexist with humans in unscripted environments and ac-
complish various kinds of tasks. Existing works towards this goal started out in the 1990s
with RHINO, [4], and MINERVA, [5], both designed as interactive museum tour guide
robots that will move among humans in museums. These works made extensive use of
path planning, localization and mapping methods that were developed around the same
time, and pioneered the field of service robots inciting a period of exciting research in the
area of robot navigation in human crowds (see Chapter 2 for a more detailed literature re-
view).

Despite the decades of research towards this goal, there are several fundamental prob-
lems that remain unsolved. Traditional algorithms for navigation in dynamic environments
tend to make strong assumptions about the environment and its own motion model, in or-
der to efficiently plan paths quickly [6, 7]. These planning algorithms don’t extend readily
to unscripted environments where the agent is highly uncertain about the dynamics of the
environment. Most of the work towards modeling dynamics of an unknown environment
make simplifying reductions such as independence of motion and the number of surround-
ing agents [8]. Situations where the actions of each agent affect each other are not modeled.
This is especially true in the case of human-robot interactions. To make the vision of coex-
isting robots and humans a reality, there is a great need for efficient planning algorithms in
dynamic environments and accurate models for environment dynamics.

In this thesis, we focus on the problems of planning and modeling dynamics. More
specifically, the first part of the thesis deals with path planning in dynamic environments,
with known dynamic model of the environment, and the latter half deals with human trajec-
tory prediction in dense crowds. We present novel solutions and take a small step towards
making the goal of autonomous mobile robot navigation more realizable.

1.2 Problem Definition
In this section, we describe the formal problem definitions for the path planning and tra-
jectory prediction problems. Subsequently, we describe how planning can be reduced to
inference in a joint prediction model and briefly present the freezing robot problem, which
was first introduced in Trautman and Krause [1].

1.2.1 Path Planning Problem in Dynamic Environments
The general path planning problem for an explicit goal configuration is, given the robot
dynamics, its start configuration and the configuration space, to find a path that is collision-
free, dynamically feasible to execute and is a solution.

Let X ⊂ Rn be the configuration space of the system. Let T = [0, 1] be the time interval
of interest without loss of generality. We define configuration-time space by incorporating
time as an additional dimension in the configuration space, formed asX×T and denoted by
XT . It consists of pairs 〈x, t〉, where x is an element ofX denoting the robot’s configuration,
and t is a scalar belonging to T denoting time. Let XTobs ⊂ XT be the set of all pairs 〈x, t〉
such that a robot configured at x at time t collides with any moving (or stationary) obstacle.
The dynamics of the system is specified as a dynamics constraint g(x, dxdt , . . . ,

drx
dtr) ≤ 0, x ∈

2

X . Let the trajectory ξ : [0, 1] → X be a continuous mapping from time to configuration.
The planning problem is to find the shortest dynamically feasible trajectory from start x0 to
the goal xf that is collision free. This is expressed as follows:

minimize
ξ(t)

1∫
0

‖ξ̇(t)‖dt

subject to ξ(0) = x0

ξ(1) = xf

g(ξ,
dξ

dt
, . . . ,

drξ

dtr
) ≤ 0

〈ξ(t), t〉 ∈ XT \XTobs, t ∈ [0, 1].

(1.1)

1.2.2 Trajectory Prediction Problem
Trajectory prediction in a dynamic environment entails predicting the future trajectories of
all dynamic agents in the environment until a fixed horizon. As argued before, this problem
is challenging as we need to model the world dynamics to obtain accurate predictions.

Given a dynamic environment with agents indexed by the set {1, 2, · · · , N}, where N
is the number of agents in the environment. The trajectory of agent i is given by f (i) =

(f
(i)
1 , f

(i)
2 , · · · , f (i)

T) where T is the length of trajectory, and f
(i)
t represents the location of

agent i at time t. We also assume that we have access to their past observed locations given
by z, where z(i) = (z

(i)
1 , z

(i)
2 , · · · , z(i)

t) are the observed locations of agent i until time t.
The trajectory prediction problem is to model the following joint distribution

P (f (1), f (2), · · · , f (N)|z(1), z(2), · · · , z(N)), (1.2)

i.e., given their observed locations z(1), z(2), · · · , z(N), we want to estimate the distribution
over their trajectories until some future time T . Note that such joint modeling accounts for
dependencies between trajectories of different agents which, as we show later, is paramount
for accurate predictions.

1.2.3 The Freezing Robot Problem
The freezing robot problem, first introduced in Trautman and Krause [1], highlights the
deficiencies of existing predictive models that force the robot to come to a complete stop (or
freeze). Trautman and Krause [1] shows that even under perfect individual prediction for all
agents in the environment, the freezing robot problem can occur for certain configurations.
Figure 1.1 shows a common scenario in human crowds, where people walking shoulder-
to-shoulder towards the robot, forces it to go around the crowd or in the worst case, stop
completely. As shown in Trautman and Krause [1], this happens as most existing navigation
approaches ignore implicit cooperation between humans and the robot.

The key insight, which we will follow in this thesis, is that agents engage in joint collision
avoidance, i.e., they adapt their trajectories to make room for other agents to navigate. The
joint collision avoidance criteria has been shown to improve tracking of humans in dense
crowds [1, 9, 10, 11].

The approach suggested in Trautman and Krause [1] to solve the freezing robot prob-
lem is to move away from individual agent prediction and model the joint distribution of

3

Figure 1.1: Example of Freezing Robot Problem (obtained from Trautman and Krause [1]).
(left) With growing uncertainty about future trajectories of other agents, the robot cannot
find any feasible path and freezes. (middle) Even in the case of perfect prediction, the robot
executes a path that is highly suboptimal or sometimes infeasible. (right) When human-
robot cooperation is accounted, the robot executes an optimal path through the crowd
avoiding the Freezing Robot problem.

trajectories, as shown in equation 1.2. In addition to joint modeling, we need to model the
robot as one of the agent so that we also include interactions between the robot and other
agents. In other words, the prediction algorithm should model

P (f (R), f (1), f (2), · · · , f (N)|z(1), z(2), · · · , z(N)), (1.3)

where f (R) is the robot’s trajectory. Note that this distribution encodes the idea of cooperative
planning as it captures interactions among agents and the robot.

An interesting outcome from this modeling is that planning the robot’s trajectory re-
duces to inference in this joint model, i.e. inferring what the robot should do given the
actions of other agents

(f (R), f (1), · · · , f (N))∗ = arg max
(f (R),f (1),··· ,f (N))

P (f (R), f (1), · · · , f (N)|z(1), · · · , z(N)). (1.4)

As we will see in Chapter 4, this joint model results in “human-like” behavior for the
robot when modeling crowds, as we model the robot as one of the humans.

1.3 Thesis Organization
The remainder of this thesis is organized as follows: Chapter 2 presents a brief survey of past
works in the domain of robot navigation in human crowds. We also review existing works
in the domain of human tracking in crowds and video surveillance. Chapter 3 presents our

4

novel approach for solving the problem of efficient path planning in dynamic environments
when an accurate model of the world dynamics is known. We propose a heuristic-based
graph search algorithm that results in safe and feasible paths for the robot in short planning
times. Additionally, we present theoretical guarantees on the optimality of the resulting
path and completeness of the planning algorithm. The task of obtaining an accurate model
of the world dynamics (specifically, crowd dynamics) is tackled in Chapter 4, where we
propose a novel statistical modeling approach that couples predictions for multiple agents
through occupancy grids. The proposed model is learned from real world trajectory and
can be used to predict future trajectories of dynamic agents in an environment. Finally,
Chapter 5 summarizes the contributions of this thesis and provides directions for future
research in this area.

5

Chapter 2

Navigation in Human Crowds : A
Survey

In this chapter, we present a brief survey of past literature in the domain of robot navigation
in human crowds. To address this problem, previous works either assume or construct a
model of human motion, which is used to predict future trajectories. Given these predic-
tions, they then proceed to plan the path for the robot to navigate through the crowd to its
destination. Thus, the efficacy of these approaches depend on the accuracy of their human
future trajectory predictions and robot path planning algorithms. As a part of this survey,
we will present these aspects of the approaches in the context of our problem.

There has been a diverse set of works over the past two decades that have tackled the
problem of robot navigation in human crowds. These approaches make varied assump-
tions, have different objectives and exhibit a wide range of results. We try to broadly classify
these approaches according to their methodology, and highlight the benefits and draw-
backs. More specifically, we will categorize the approaches based on their modeling as-
sumptions and their planning objective. For each category, a brief description of the em-
ployed methodology is discussed in addition to its advantages and disadvantages. The
intent of this chapter is to present the landscape of past research in this field to give some
perspective and context to our proposed work presented in the coming chapters.

2.1 Taxonomy of Approaches
We broadly classify past works on the basis of their (1) objective of the planning algorithm,
and (2) human motion model to predict future trajectories. The resulting classes are de-
scribed in the following subsections.

2.1.1 Planning Objective
Planning the robot’s path through the crowd involves several constraints that need to be sat-
isfied. Collision-avoidance, dynamic feasibility and social compliance are some such con-
straints that typical path planning algorithms consider. Collision-avoidance is self-explanatory
in that it requires the robot to avoid collisions with any obstacles including other agents in
the crowd. Dynamic feasibility implies that the planned path needs to be executed by the

6

robot. In contrast, social compliance is a complex constraint that is hard to rigidly define. In
broad terms, it implies that the resulting path for the robot needs to adhere to social norms
followed by humans, thus making the path interpretable and predictable for humans in the
crowd. Given these constraints, we can broadly classify past works as follows:

Safe Robot Navigation

The objective of this set of works involve the task of navigating a robot safely through a
human crowds avoiding collisions and planning a dynamically-feasible path. Safety, in
this context, refers to the collision-free aspect of the resulting path with respect to static
and dynamic obstacles in the environment. As a result, these works do not consider the
social aspects of navigation and hence, the resulting path of the robot is safe but may not
be “human-like”.

Social Robot Navigation

These works tackle the more difficult objective of not only safe robot navigation (as above),
but also to move in a socially compliant way. Thus, the resulting robot paths are more
predictable for the surrounding humans in the crowd.

Trajectory prediction

The set of works in this class do not necessarily involve robot navigation, but rather tackle
the problem of accurately modeling human trajectories in crowds. As shown in Section
1.2.3, planning the path for the robot reduces to inference in this model, thereby obtaining
a path for the robot that is “human-like” or socially-compliant. Most of the work in this
category is from the domain of video surveillance tracking and computer vision.

2.1.2 Human Motion Model
For robots to navigate in human crowds, they need to employ a model of human motion in
crowds so that accurate predictions of their future trajectories can be made. These predic-
tions are then fed into a planning algorithm to plan the final trajectory for the robot to follow
to navigate through the crowd. We can broadly classify past work based on the human mo-
tion model employed into four categories, that are discussed in subsequent subsections.

Independent Handcrafted Model (IH)

These approaches model each agent (or human) in the crowd independently of each other,
i.e., they assume that the predictions for human trajectories are mutually independent.
In addition to this assumption, the motion model is handcrafted (similar to a rule-based
model) to match social behavior usually observed in crowds.

Independent Trained Model (IT)

Similar to the IH category, works in this class make the independence assumption but the
model, instead of being handcrafted, is learned by training it on real-world human trajectory
data.

7

Joint Handcrafted Model (JH)

Unlike the independent models, these works assume that the predictions are dependent on
each other and jointly predict the trajectories of all interacting humans in the crowd. Most
of these approaches don’t model the joint distribution of trajectories explicitly, instead use
some approximate handcrafted potential terms to capture the interactions.

Joint Trained Model (JT)

Similar to the JH class of works, these approaches jointly predict the trajectories of all hu-
mans in the crowd but the joint distribution is learned from real-world human trajectory
data, and the learned model is used at inference time to make predictions.

In each of the categories in the above taxonomy, there are several related works. For
conciseness purposes, we describe only the latest works that have been shown to perform
better than others in their respective category. We would like to point out that our list of
works is not exhaustive and doesn’t list all the related past approaches. The taxonomy and
the related works have been summarized in Table 2.1.

IH IT JH JT
Safe robot navigation [12] [13] [11] [14]
Social robot navigation [15] [16] [17] [18]
Trajectory prediction

-
[19, 20] [21] [22, 23]

Table 2.1: Taxonomy of related works, Independent (I), Handcrafted (H), Joint (J) and
Trained (T)

2.2 Safe Robot Navigation
As described in the above section, the objective of these works is to navigate a robot through
human crowds avoiding collisions and satisfying dynamic feasibility. Early works have
dealt with this problem by using traditional handcrafted human motion models to obtain
predictions for future trajectories. Most of these models make the simplistic assumption
that motion of agents are independent of each other, except in close quarters where hand-
crafted potential terms predict collision-avoidance.

Hoeller et al. [12] employs a laser-based tracker to track humans in the crowd and com-
bines the estimates with a potential field-based model to predict their future motion. These
models have handcrafted quadratic repulsive potential terms that result in predictions that
avoid obstacles and linear attractive potential terms that steer the predictions towards des-
tination. These potentials are a function of the distances to other humans, obstacles and
destination. Given these predictions of future trajectories, the path of the robot is planned
using a variant of Expansive space trees (EST), Hsu et al. [24].

The potential field-based model captures simplistic human-space interactions such as
obstacle avoidance, and works well in wide open spaces. The linear attractive potential
terms capture the intent of the human to go towards the destination, but require the knowl-
edge of the true destination of every human in the crowd. Although they are capable of

8

modeling obstacle avoidance, they fail at accurately capturing complex human-human in-
teractions like cooperation. Another major drawback of such approaches is due to the in-
dependence assumption that doesn’t account for the effect of robot’s actions on the human
trajectories.

On the other hand, Aoude et al. [13] uses similar independent human motion mod-
els but learned from real pedestrian data, rather than using handcrafted potential terms.
The learned models are used to forecast future trajectories for humans in the crowd. More
specifically, Aoude et al. [13] use Gaussian Processes (GP) to learn independent models of
motion patterns of humans in real crowds. The future trajectories are grown using a variant
of RRT to follow the motion pattern. Chance-constrained RRT, Luders et al. [25], is used to
plan the robot’s path guaranteeing probabilistic robustness to predicted human paths. The
GP model is trained on human trajectories from real annotated crowd data.

Learning motion patterns from data enables Aoude et al. [13] to result in predictions that
capture several navigation behaviors. By combining GPs and RRTs, it has a run-time that is
suitable for real-time operation. Chance-constrained RRT, used in planning the path of the
robot, guarantees probabilistically safe trajectories for the robot in the presence of humans.
But the motion patterns modeled account for each individual human individually and do
not capture human-human interactions. In dense crowds, where such interactions play a
major role such a model would result in inaccurate predictions.

More recently, there have been several works which move away from the independence
assumption and model the future trajectories of all interacting agents as a joint distribution.
As a result, these works can capture human-human interactions within the crowd. Traut-
man et al. [11] introduced Interacting Gaussian Processes (IGP), which uses GPs to model
individual trajectories of the pedestrians (and the robot) and couples their predictions us-
ing a handcrafted interaction potential term that aims to capture joint behaviors, such as
cooperative collision avoidance. The robot’s path is chosen as the MAP assignment to the
modeled joint distribution (similar to Section 1.2.3).

The handcrafted interaction potential term explicitly assigns low probability mass to
predictions that result in human-human and human-robot collisions, thus capturing joint
collision avoidance. One important contribution of this work is that since the robot is part of
the joint model, it also accounts for human-robot cooperation which was lacking in previous
works. A major drawback of such an approach is the hand-tuned potential term that doesn’t
generalize across different environments and crowd settings.

To account for this drawback, one needs to learn the joint distribution from real-world
crowd data without using hand-tuned potential terms. Kim et al. [14] introduced an online
motion prediction method that learns per-agent motion models as the robot moves, with no
prior knowledge of the environment. The prediction algorithm extends the reciprocal ve-
locity obstacles approach, Van den Berg et al. [26], which captures joint collision avoidance
among pedestrians. Given the predictions, the robot plans its own path using generalized
velocity obstacles method, Wilkie et al. [27].

By learning individual motion model for each observed pedestrian, the online motion-
prediction model can perform better than less responsive offline motion models. But the
reciprocal velocity obstacles approach can only capture collision avoidance behavior and
not cooperative behavior that is commonly observed in crowds. Also, the predictions are
accurate only for short-term horizons and worsen over longer horizons.

9

2.3 Social Robot Navigation
Works in this category tackle the problem of coming up with socially-compliant paths in
addition to safe and dynamic-feasibility. Social compliance implies that the resulting paths
are predictable for surrounding humans in the crowd, which can be a difficult to define as
an objective. Early works in this domain use rule-based systems which try to capture social
norms that are typically observed in crowds.

Kirby et al. [15] presents an approach that tracks surrounding humans and uses the es-
timate of their current velocity to predict future locations. Pre-defined social conventions
such as person avoidance, personal space, pass on the right, keeping a constant velocity
etc. are encoded as social constraints on the robot’s path. Given these constraints, A* is
used to plan the robot’s path. Since social norms such as passing on right and respect-
ing personal space are explicitly encoded into the planning, the resulting path has social
compliance respecting such behaviors. On the other hand, the constant velocity assump-
tion used in human motion prediction doesn’t hold true in real crowds and the pre-defined
social conventions are specific to office hallways, not for general settings.

Rather than using these handcrafted rules to define social conventions, Kim and Pineau
[16] learns social behaviors from human demonstrated crowd navigation behavior. They
employ Bayesian inverse reinforcement learning (IRL), Ramachandran and Amir [28], to
learn a cost function from human demonstrations obtained by tele-operating the robot in
a real crowd. The features used to characterize this cost function are pedestrian speed,
direction of his motion, local crowd density and distance to goal, and these are extracted
from raw RGB-D sensor data. A low-level local path planner is used to optimize the cost
function and plan an optimal path for the robot.

As the cost function is learned from human demonstrations, the robot learns to navigate
in a socially compliant way and is generalizable to new environments. A reactive planner
is used to account for any uncertainty regarding the pedestrian motion, which replans ev-
ery time new sensor data is obtained. The major drawback of this approach is that future
motions of the humans are independent of each other and hence, cannot capture human-
human and human-robot interactions.

As argued before, to capture these interactions we need to model the joint distribution
of the trajectories. Shiomi et al. [17] approximates this distribution by using a variant of the
social forces model, Helbing and Molnar [29], which describes the interactions in terms of
forces that correspond to objectives. Attractive forces guide the pedestrians towards their
goal whereas repulsive forces ensure that collisions are avoided. These forces are a func-
tion of positions and speeds of the pedestrians. Given the predictions, the robot’s path is
planned using a local reactive planner.

In sparse crowds, approaches such as Shiomi et al. [17] that employ the social forces
model have been shown to result in socially compliant paths. But in dense crowds, social
force models fail as they cannot capture complex crowd behavior such as cooperation. This
restricts the applicability of such approaches in dense crowds.

Kretzschmar et al. [18] learns parameters of a joint distribution model over all interact-
ing agents using Maximum Entropy IRL, Ziebart et al. [30], from human demonstrations.
The features used include acceleration, velocity, clearance, collision-avoidance, passing left
vs right, group behavior etc. During prediction, they explicitly account for interactions be-
tween humans, and predict the future paths of both the humans and the robot jointly. Since
the cost function is learned from real crowd data and the future paths are jointly predicted,
this approach can capture interactions that are commonly seen in dense crowds resulting

10

in socially compliant path for the robot. Interestingly, the model also learns cooperative be-
havior between the humans and the robot. The major drawback is that the dimensionality
of the feature vector scales with the number of agents in the crowd, making the approach
scale poorly with the size of the crowd.

2.4 Trajectory Prediction
In this section, we will discuss works in the domain of video surveillance tracking and
human trajectory prediction in crowds. These works are relevant as predicting trajectories
of surrounding humans accurately is highly important to the task of navigation through
crowds. Given such an accurate prediction model, we can plan the path of the robot using
the same model to obtain socially-compliant paths that are “human-like”.

Some of the works such as Joseph et al. [19] learn independent human motion prediction
models by modeling motion patterns of pedestrians in real crowds. These motion patterns
are modeled using GPs to regress over their (x, y) positions and a Dirichlet process (DP)
to account for the unknown number of motion patterns. Activity forecasting introduced
in Kitani et al. [20], on the other hand, infers traversable regions in a scene by modeling
human-space interactions using semantic scene information. The traversability is defined
through a cost function that is learned using Maximum Entropy IRL, Ziebart et al. [30], over
the static semantic environment map from human trajectories.

Approaches that model motion patterns of pedestrians in environments capture human
navigation behaviors and implicitly model environmental constraints on human motion
(such as a static obstacle in the environment, that pedestrians avoid). Similarly, approaches
like Kitani et al. [20] that explicitly model human-space interactions can learn more refined
constraints on the motion according to the semantic objects in the environment. Unfortu-
nately, both these sets of approaches don’t account for human-human interactions i.e. they
model each human independently of each other. Hence, they cannot capture cooperation
or high-level social behavior among humans in the crowd.

As we already know, to account for human-human interactions we need to jointly predict
the trajectories of all interacting agents in the crowd. Luber et al. [21] presented a pedestrian
dynamics model based on Social Forces, Helbing and Molnar [29], that integrates the so-
cial forces model with a Kalman filter based multi-hypothesis tracker. The resulting model
accounts for both inter-person influences and influences from static obstacles (using an oc-
cupancy map) in the environment. Thus, the trajectory predictions are accurate for humans
in real crowds. One of the several drawbacks of such an approach, as discussed in the pre-
vious section, is that the use of social forces model has been shown to be effective only in
sparse crowds and not in dense crowds. This makes it not readily applicable for any crowd
scenario. Another important drawback of the model is that, as it doesn’t infer the destina-
tion of the pedestrian, its long term prediction accuracy is low (Note that attractive forces
that guide the pedestrian to the destination, which are a part of social forces, aren’t used in
this approach).

More recently, there have been approaches that learn a joint distribution over future
trajectories of all interacting agents from real crowd data, rather than using handcrafted
potential terms or forces. Pellegrini et al. [22] introduces a third order conditional random
field (CRF) based approach to model the joint distribution of trajectories. The CRF-based
approach is also able to identify groups within crowds on the basis of past trajectories. The
parameters of the CRF are learned by training the model on annotated crowd datasets with

11

very dense crowds. Taking a similar approach, Alahi et al. [23] presents an LSTM-based ap-
proach that learns a deep recurrent generative model of the joint distribution accounting for
interactions and short-term intentions. Given the past trajectories of all agents, this model
couples their predictions through a social pooling layer that combines the hidden states of
neighboring pedestrians.

These joint data-driven approaches perform well in real world dense crowd trajectory
prediction tasks and capture important social aspects such as cooperation, joint collision
avoidance and group memberships. Two important drawbacks of this approach are, (1) the
human-space interactions, such as static obstacle avoidance, are not included in the model,
and (2) they work only for short horizons as they are aimed to model interactions rather
than achieve accurate long term predictions.

2.5 Summary
In this chapter, a brief survey of past literature in the domain of navigation and trajectory
prediction in human crowds is presented. Approaches ranging from independent mod-
eling with rule-based models to joint modeling using deep recurrent networks have been
discussed along with their applicability and shortcomings. The intent of this chapter is to
get a better understanding of the work that has been done and how that leads up to the
work presented as a part of this thesis.

In the next chapter, Chapter 3, we present a novel planning algorithm that enables robots
to navigate crowded dynamic environments, where the path of the dynamic obstacle is
known. Such an algorithm can be used on a robot to re-plan its path upon receiving new
sensory information and subsequent dynamic obstacle trajectory predictions. The problem
of predicting the trajectory (especially, that of humans in crowds) is tackled in Chapter 4,
where we present a statistical model that, given the past trajectories, predicts future trajec-
tories accurately for long time horizons.

12

Chapter 3

Path Planning in Dynamic
Environments with Adaptive
Dimensionality

In this chapter, we present a novel path planning algorithm in densely populated dynamic
environments where the trajectories of the dynamic obstacles are known. We apply the
idea of adaptive dimensionality to speed up path planning in dynamic environments for
a robot with no assumptions on its dynamic model. Specifically, our approach considers
the time dimension in the search space only in those regions of the environment, where
a potential collision may occur and plans in a low-dimensional state-space elsewhere. We
show that our approach is complete and is guaranteed to find a solution, if one exists, within
a cost sub-optimality bound. We experimentally validate our method on the problem of
3D vehicle navigation (x, y, heading) in dynamic environments. Our results show that the
presented approach achieves substantial speedups in planning time over 4D heuristic-based
A*, especially when the resulting plan deviates significantly from the one suggested by the
heuristic. This chapter is adapted from our paper Vemula et al. [31] presented at SoCS 2016.

3.1 Introduction
It is important for mobile robots to be able to generate collision-free paths in environments
that contain both static and dynamic obstacles. In static environments, robots can efficiently
generate a collision-free path using the occupancy gridmap of the environment. But in
dynamic environments, to account for the dynamic nature of obstacles, the robot needs to
predict the future trajectories of these obstacles to plan its own path accordingly. These
predictions involve a high degree of uncertainty due to sensor limitations and incorrect
dynamic models. As a result, the predicted trajectories are subject to frequent changes due
to incorrect predictions, which makes it necessary to generate new plans in a timely manner.

To account for dynamic obstacles in an environment, we need to include the time di-
mension into consideration. For example, planning a path for a non-holonomic robot in a
dynamic environment involves a 4D state-space, i.e., (x, y, heading, time). Due to the curse
of dimensionality, adding the time dimension substantially increases the number of states

13

to be searched, e.g., from 3D state-space considering only (x, y, heading), leading to long
planning times especially, since there are potentially an unbounded number of timesteps
for each spatial location.

The Adaptive Dimensionality (AD) approach, Gochev et al. [32], exploits the observa-
tion that while planning in a high dimensional space is needed to satisfy kinematic con-
straints and collision-free criteria, large portions of the path are still low dimensional. For
instance, in planning for a non-holonomic robot, an optimal path generally includes straight-
line segments that do not involve any turns or collisions with dynamic obstacles. This ob-
servation implies that high dimensional path planning is required only in the sections of
the path where turning is required or where there is a potential collision with a dynamic
obstacle.

Following this insight, we consider the time dimension only in those regions where a
potential collision could occur and ignore it elsewhere. In this paper, we develop an ap-
proach that can achieve speedups over full-dimensional heuristic-based A* without any
assumptions on robot capabilities by employing a variant of the Adaptive Dimensionality
approach.

Given a path planning problem in a high dimensional space, it is possible to find an
optimal solution through a complete search. For example, heuristic-based A* variant algo-
rithms exist that are guaranteed to find an optimal solution, [33]. Because these algorithms
rely on low-dimensional heuristics, search can be counter-intuitive.

Consider the example shown in Figure 3.1, where the resulting path (dash-dot path), in
the absence of the dynamic obstacle (disc), is towards the heuristic. But, in the presence of
the dynamic obstacle, this path is in collision and cannot be executed. Hence, we need to
come up with the alternative path (dashed path), which is against the heuristic. Heuristic-
based A* would expand a large number of states and will take a long time to generate the
new path whereas our approach generates the alternative path quickly, because it plans in
a lower dimensional space.

More generally, we observe that substantial sections of paths found are not in collision
with any dynamic obstacles, implying that we need not consider the time dimension in such
regions. We can obtain quicker planning times by planning in low dimensional state-space
for those regions and in full dimensional state-space only where it is necessary to reason
about a potential collision with an obstacle.

Based on these observations, we explore the idea of adaptive dimensionality to solve the
target problem.

In the remainder of this chapter, we will give an overview of relevant existing work
in Section 3.2. The planning problem is formally defined in Section 3.3. Section 3.4 will
describe our approach and prove the theoretical guarantees. The efficiency of the method
is demonstrated by applying it to a 3D non-holonomic robot navigation problem in the
presence of dynamic obstacles, showing a significant increase in speed over 4D heuristic-
based A* planner for this task, in Section 3.5.

3.2 Related Work
Our work is relevant to path planning in dynamic environments and works on coping
with high dimensionality. In general, we divide the existing approaches into three cat-
egories: work that deals with planning in dynamic environments, work that deals with
high-dimensional planning using adaptive dimensionality and work that uses hybrid di-

14

Start

Goal

A

B

Figure 3.1: Example of a dynamic environment where the heuristic leads the robot (blue
square) into collision (on blue dash-dot path) with the dynamic obstacle (red disc). We
need to find an alternate path (green dashed path) from A to B without expanding a large
number of states.

mensionality path planning in dynamic environments.

3.2.1 Path Planning in Dynamic Environments
A common approach used for efficient path planning in dynamic environments involves
modeling moving obstacles as static objects with a small window of high cost around the
beginning of their projected trajectories [34, 35]. By avoiding the additional time dimension,
these approaches can efficiently find paths that do not collide with any obstacles in the near
future. However, they can suffer from severe sub-optimality or even incompleteness due to
the uncertainty of moving obstacles in the future.

To plan and re-plan online, several approaches have been suggested that sacrifice near-
optimality guarantees for efficiency [36], including sampling-based planners such as RRT-
variants that can quickly obtain kinodynamically feasible paths in a high dimensional space [37,
38]. However, these sampling-based approaches do not provide any global optimality guar-
antees that we require in most cases.

Other approaches delegate the dynamic obstacle avoidance problem to a local reactive
planner which can effectively avoid collision with dynamic obstacles [2, 3]. These methods
have the disadvantage that they can get stuck in local minima and are generally not globally
optimal.

Among the works that provide global optimality guarantees that are relevant to the
presented work, HCA* [33] is an approach that plans in the full space-time search space

15

for a path from start to goal, taking dynamic obstacles into account under the guidance
of a low-dimensional heuristic. In dynamic environments, HCA* provides guarantees on
optimality and can be applied to path planning for a robot without any assumptions on its
motion model.

Recently, approaches such as SIPP and its variants [39, 40], have been introduced that
obtain fast, globally optimal paths in dynamic environments. But, SIPP assumes that the
robot is capable of waiting in place. In cases where this assumption doesn’t hold, SIPP
is essentially a full space-time A* planner. Thus, the advantages from this algorithm are
restricted to only those robots which have the capability of waiting in place, unlike a fixed
wing aircraft or a motorcycle. Besides, when fuel efficiency is included in the cost, fuel
consumption is generally higher during idling than moving.

We use HCA* as our baseline algorithm as it doesn’t make any assumptions on the mo-
tion model of the robot and provides optimality guarantees, similar to our approach.

3.2.2 Adaptive Dimensionality

To accelerate planning, a variety of algorithms try to avoid global planning in high-dimensional
state-space. In these algorithms, planning is split into a two-layer process where a global
planner deals with a low-dimensional state-space and provides an input to a high-dimensional
local planner [41]. The local planner is a reactive planner that avoids obstacles locally and
hence, is fast and efficient. However, these approaches can result in paths that are highly
suboptimal or that cannot be executed, due to mismatches in the assumptions made by the
global and local planners.

In Knepper and Kelly [42], highly accurate heuristic values are computed by solving a
low-dimensional problem and are then used to direct high-dimensional planning. How-
ever, this approach does not explicitly decrease the dimensionality of the state-space and
can lead to long planning times when the heuristic is incorrect.

By contrast, the Adaptive Dimensionality (AD) approach, Gochev et al. [32], explicitly
decreases the dimensionality of the state-space in regions where full-dimensional plan-
ning is not needed. This approach introduces a strategy for adapting the dimensional-
ity of the search space to guarantee a solution that is still feasible with respect to a high
dimensional motion model while making fast progress in regions that exhibit only low-
dimensional structure. In Gochev et al. [43], path planning with adaptive dimensionality
has been shown to be efficient for high-dimensional planning such as mobile manipulation.
The AD approach has been extended in Gochev et al. [44], to get faster planning times by
introducing an incremental planning algorithm. Zhang et al. [45] extends this method in
the context of mobile robots by using adaptively dimensional state-space to combine the
global and local path planning problem for navigation. Our approach builds on the AD
approach and applies it to path planning in dynamic environments.

3.2.3 Hybrid Dimensionality in Dynamic Environments

Some approaches only plan in full-dimensional space-time search space until the end of
an obstacle’s trajectory and then finish the plan in a low-dimensional state-space. Time-
bounded lattice planning, [46], neglects dynamic obstacles and the time dimension in the
search space after a certain point in the time. Several works, [47, 48], have extended this
algorithm to account for kinematic and dynamic feasibility in the resulting paths by using

16

a hybrid dimensionality state-space. These approaches sacrifice optimality for faster plan-
ning times and don’t provide theoretical guarantees on the sub-optimality of the solution.
In contrast, our algorithm doesn’t prune the dynamic obstacle trajectories, takes the entire
obstacle trajectories into account and returns a bounded sub-optimal collision-free path. By
considering the entire trajectory of the obstacles the proposed algorithm ensures a globally
optimal solution.

3.3 Problem Definition
In this chapter, we follow the simplifying assumptions used in Phillips and Likhachev [39]
that the trajectories of moving obstacles are known and that obstacles move at a constant
speed. Based on these assumptions, path planning in a dynamic environment can be for-
mulated more generally as path planning in a high-dimensional space as follows. A path
planning problem is defined as a tuple Φ = [G = (S, T), c,Xs, Xg], whereG denotes a graph
consisting of S, a set of discretized states in a d-dimensional space, and T , a set of feasible
transitions between each pair of states Xi, Xj ∈ S; c, a function encoding a non-negative
cost c(Xi, Xj) for each pair of transitions (Xi, Xj) ∈ T ; Xs ∈ S, a start state, and Xg ∈ S,
a goal state. For instance, the target problem for a ground vehicle can be defined in 4-D
state space (x, y, θ, t) where each variable denotes x-coordinate, y-coordinate, vehicle head-
ing, and time, respectively. Note that transitions that result in collision with an obstacle are
assigned infinite cost, making them invalid.

A path between states Xi and Xj is denoted by π(Xi, Xj), and the cost of a path is
defined as the sum of all transition costs in the path.

Given a planning problem Φ = [G, c,Xs, Xg], the goal is to find a minimum cost path
between the two states Xs and Xg , denoted by π∗(Xs, Xg). Alternatively, given a subopti-
mality bound ε, the goal of the planner can be relaxed to find a path π(XS , XG) such that
its cost c(π(XS , XG)) ≤ ε · c(π∗(XS , XG)).

3.4 Approach
We describe the adaptive dimensionality approach used for path planning in dynamic en-
vironments, and the algorithm for finding a bounded cost sub-optimal path.

3.4.1 Adaptive Dimensionality for Dynamic Environments
Our approach follows the algorithm for planning with adaptive dimensionality introduced
in Gochev et al. [32]. Following their notation, the target problem in Section 3.3 can be
rewritten as follows. GraphG is substituted with the adaptive-dimensionality graphGad =
(Sad, T ad). Gad is constructed from two graphs: a high dimensional graphGhd = (Shd, Thd)
with dimensionality h and a low dimensional graphGld = (Sld, T ld) with dimensionality l.
The state-space Sld is a projection of Shd onto a lower dimensional manifold (h>l) through
a projection function:

λ : Shd → Sld. (3.1)

Similarly, an inverse projection function λ−1 : Sld → P(Shd) is defined to map low-
dimensional states to the set of all their high-dimensional pre-images,whereP(Shd) denotes
the power set of Shd.

17

Both state spaces Shd and Sld can have their own transition sets Thd and T ld, with a
constraint that transitions in a high-dimensional space are more expensive than the corre-
sponding transitions in a low-dimensional space, that is for every pair of states Xi and Xj

in Shd,
c(π∗Ghd(Xi, Xj)) ≥ c(π∗Gld(λ(Xi), λ(Xj))). (3.2)

We note that this constraint is important for bounding the suboptimality that will be dis-
cussed later in Section 3.4.3.

(a) HD region at the start (b) Path returned by planning phase in first iteration

(c) Search cannot progress in tunnel due to collision (d) HD region introduced at point of collision

(e) Path returned by planning phase in second iteration (f) Tracking successful and path returned as solution

Figure 3.2: Example run of the algorithm on a sample map. HD regions are indicated by
blue circles, paths of dynamic obstacles by red lines and path found using our approach by
green line.

In our target problem of planning in a dynamic environment, the low-dimensional state-
spaceSld consists of only spatial state variables, e.g., xy-coordinates, and the high-dimensional
state-spaceShd consists of states with spatio-temporal variables including a time dimension.
Theoretically, the time dimension is unbounded and thus, the high-dimensional graphGhd
is an infinite graph. For practical purposes, we bound the time dimension by a upper bound

18

T , which would slightly modify the goal of planning problem into finding a least-cost path
that can reach the goal from start within time T . For any high dimensional stateXhd ∈ Shd,
we will use the notation t(Xhd) to denote the value of time dimension associated with that
state.

The projection function λ projects the high-dimensional stateXhd to a low-dimensional
state X ld with only the spatial variables. If we follow the original definition of λ in Equa-
tion 3.4.1 then, for a given low-dimensional state X ld, the inverse projection function λ−1

would map state X ld to the set of all Xhd where the spatial configuration of Xhd is the
same as X ld and 0 ≤ t(Xhd) ≤ T . Thus, for each low-dimensional state, there are T cor-
responding high-dimensional states, which is quite a large number as T is usually a high
value.

Here, we introduce a pruning technique based on an observation that not all of high-
dimensional states are reachable from the start state. For example, consider a low-dimensional
stateX ∈ Sld which is mapped to T high-dimensional states. If the time-optimal path from
start to this state, ignoring dynamic obstacles, reaches at time tf then all the statesXhd with
λ(Xhd) = X and t(Xhd) < tf are essentially unreachable and hence, can be pruned away
from the search space.

Taking advantage of this fact, we decrease the size of search space by performing a low-
dimensional time-optimal Dijkstra search inGld, which ignores dynamic obstacles, initially
from the start state to all low-dimensional states and keep track of the time at which we
reach each state. We store this time as a dependent variable tdep of the low-dimensional
state and ignore all the corresponding high-dimensional states whose time value is less
than tdep in the inverse projection mapping. Note that this dependent time variable need
not be the exact optimal time obtained from the Dijkstra search, it just needs to be a lower
bound on the optimal time. Pruning the search space in this way is necessary as it speeds up
the planning by a considerable amount while still maintaining the completeness property
of the planning algorithm.

Thus, we define the inverse projection function, λ−1 as:

λ−1(X ld) = {Xhd | λ(Xhd) = X ld, tdep ≤ t(Xhd) ≤ T}

, where tdep is the dependent time variable associated with the low-dimensional state X ld.
The low-dimensional transition set is T ld = {(Xi, Xj)|Xi, Xj ∈ Sld} where it is feasible

for the robot to move from the spatial configuration of Xi to Xj according to its motion
model. The transition set Thd = {(Xi, Xj)|Xi, Xj ∈ Shd} where, t(Xj) ≥ t(Xi) and it is
feasible for the robot to move from spatial configuration ofXi toXj in time (t(Xj)− t(Xi))
according to its motion model. Note that we can check for collisions with any dynamic
obstacle only in the high-dimensional transitions as we have the time information.

3.4.2 Algorithm
The planning algorithm follows that of Gochev et al. [32]. Here, we sketch the general
algorithm and describe how it has been applied to our target problem of handling dynamic
obstacles.

Adaptive Dimensionality Graph Construction

The algorithm iteratively constructsSad, starting withSld and introducing high-dimensional
regions in subsequent iterations. Once a high-dimensional region is introduced we replace

19

all the low-dimensional states that fall inside it with their high-dimensional counterparts
as given by λ−1 to get the re-constructed Sad for the next iteration. The transition set T ad is
also iteratively constructed, starting with T ld and re-constructed as follows in subsequent
iterations. For any state Xi ∈ Sad:

• If Xi is high-dimensional then, for all high-dimensional transitions (Xi, X
hd
j) ∈ Thd,

if Xhd
j ∈ Sad then (Xi, X

hd
j) ∈ T ad. Otherwise, (Xi, λ(Xhd

j)) ∈ T ad.

• If Xi is low-dimensional then, for all low-dimensional transitions (Xi, X
ld
j) ∈ T ld, if

X ld
j ∈ Sad then (Xi, X

ld
j) ∈ T ad, and for all high-dimensional transitions (X,Xhd

j) ∈
Thd where X ∈ λ−1(Xi), if Xhd

j ∈ Sad then (Xi, X
hd
j) ∈ T ad.

Main Loop

We start with Gad same as Gld and a high-dimensional region added at the start, which is
necessary as the start stateXS is high-dimensional with t(XS) = 0. Note that the goal state
XG is not high-dimensional as we don’t know the value of the time dimension for the goal
state.

AD planning phase. At the start of each iteration, the current graph Gad is searched
for a path π∗Gad from the start to the goal, using a suboptimal graph search algorithm like
weighted A* with a suboptimality bound εplan. During the search for this path, we con-
sider the dynamic obstacles only in high-dimensional regions of Sad and not in the low-
dimensional regions. Hence, the path found could potentially be in collision with a dy-
namic obstacle in the low-dimensional regions. If no path π∗Gad is found, we return that
there exists no feasible path that can reach the goal from start within time T , and the algo-
rithm terminates.

Tracking phase. If a path is found, then in the tracking phase, a high-dimensional tunnel
τ is constructed around the path π∗Gad and searched for the least-cost path π∗τ (XS , X

hd
G)

whereXhd
G ∈ λ−1(XG). The tunnel is constructed by projecting all the states within to their

high-dimensional counterparts. Notice that since the tunnel is entirely high-dimensional
and is a subgraph of Ghd, we consider dynamic obstacles in the entire tunnel and hence,
the path found is guaranteed to be feasible and collision-free. If a path π∗τ is found and
its cost is less than εtrack ∗ c(π∗Gad), then it is returned as the solution by the algorithm
and the algorithm terminates. If no path is found, then we identify the farthest location
in the tunnel until which the planner has progressed (i.e. the path with most progress),
introduce a high-dimensional region there and move onto next iteration. If a path is found
and its cost is greater than εtrack ∗ c(π∗Gad), then we identify the location where the largest
cost discrepancy (cost difference) between the path π∗τ and π∗Gad is observed and a high-
dimensional region is introduced there. In both cases, if we identify a location which is
already high-dimensional, then the size of the high-dimensional region at that location is
increased.

Graph updating phase. The algorithm re-constructsGad based on the new high-dimensional
regions introduced and moves onto the next iteration of planning and tracking, and keeps
repeating until it finds a feasible, collision-free path or returns that there is no such path.
An example run of the algorithm is shown in Figure 3.2. The algorithm is presented in
Algorithm 1.

20

Algorithm 1 Planning with AD in dynamic environments
1: Gad = Gld

2: AddFullDimRegion(Gad, λ(XS))
3: loop
4: Search Gad for the path π∗Gad(XS , XG)
5: if no π∗Gad(XS , XG) is found then
6: return no path from XS to XG within time T exists
7: end if
8: Construct tunnel τ around π∗Gad(XS , XG)
9: Search τ for the least-cost path π∗τ (XS , X

hd
G) where Xhd

G ∈ λ−1(XG)
10: if no π∗τ (XS , X

hd
G) is found then

11: Let π(XS , Xend) be the path with most progress
12: if Xend is high-dimensional then
13: GrowFullDimRegion(Gad, λ(Xend))
14: else
15: AddFullDimRegion(Gad, Xend)
16: end if
17: else if c(π∗τ (XS , X

hd
G))>εtrack ∗ c(π∗Gad(XS , XG)) then

18: Identify state Xr with largest cost discrepancy
19: if Xr is already high-dimensional then
20: GrowFullDimRegion(Gad, λ(Xr))
21: else
22: AddFullDimRegion(Gad, Xr)
23: end if
24: else
25: return π∗τ (XS , X

hd
G)

26: end if
27: end loop

3.4.3 Theoretical Properties

The given algorithm is complete with respect to the underlying graph Ghd and provides a
sub-optimality bound on the cost of the returned path.

Theorem 1 If a path π∗τ (XS , X
hd
G) is found in the tracking phase, it is guaranteed to be collision-free

with respect to all obstacles.

Proof The tunnel τ constructed around π∗Gad is entirely high-dimensional and is a subgraph
of Ghd therefore, the search space considers the transition set Thd. In Thd, transitions that
are in collision with dynamic obstacles are assigned infinite cost, essentially making them
invalid. Hence, the path found in the tunnel π∗τ is guaranteed to be collision-free with re-
spect to all obstacles �

Theorem 2 If no path π∗Gad(XS , XG) is found in the planning phase, then no collision-free, fea-
sible path exists from start to goal in Ghd that can reach the goal from the start within time T .

Proof If no path is found during the planning phase of the first iteration, no feasible path

21

exists in the absence of dynamic obstacles (Note that we only consider dynamic obstacles in
the high-dimensional regions during the planning phase). Therefore, there is no collision-
free path. If no path is found during the planning phase of any subsequent iteration, then
the algorithm was not able to progress in a high-dimensional region. It cannot be a low-
dimensional region because in such a case, it would have terminated in a previous iteration.
If the algorithm is not able to progress in a high-dimensional region, then all the transitions
into or inside the region are blocked by dynamic obstacles. Because we allow transitions to
all Xhd inside the region where tdep ≤ t(Xhd) ≤ T and we already know that the planner
cannot reachXhd at a time earlier than tdep, that guarantees that there exists no path inGhd
that can reach the goal from start within time T . �

Theorem 3 The algorithm always terminates after a finite number of iterations.

Proof If no path is found at the end of a iteration, we introduce either a new high-dimensional
region or increase the size of an existing one. As the time dimension is bounded above by T ,
we have a finite state-space. Hence, in the worst scenario, after a finite number of iterations
Gad will be the same as Ghd and the algorithm will either terminate with a feasible path or
return that there is no feasible, collision-free path. �

Theorem 4 If a path π(XS , X
hd
G) is found at the time of termination, its cost is no more than

εplan ∗ εtrack ∗ c(π∗Ghd(XS , X
hd
G)) where π∗Ghd(XS , X

hd
G) is the optimal least-cost path in Ghd.

Proof We obtain this bound using equation 3.2 and the proof is similar to that of the AD
approach. For this proof, we refer the reader to Gochev et al. [32]. �

3.5 Evaluation

3.5.1 Experimental Setup
For an experimental evaluation of the presented approach, we use the domain of robotic
path planning in dynamic environments for a 3D-(x, y, θ) non-holonomic robot. To success-
fully avoid dynamic obstacles in the environment, we will need to add the time dimension
to the state-space while planning. Hence, the full-dimensional planning has a 4D (x, y, θ, t)
state-space. Our implementation of the algorithm kept track of the high-dimensional re-
gions in the environment as spheres: 2D (x, y) circles, in the 4D planning case, as this
allowed to quickly check if a state falls inside a region or not, and also quickly add new
regions or grow existing regions.

We modeled our environment as a planar world and the robot as a polygonal object
with a unicycle motion model, which doesn’t allow waiting in place actions. Our adaptive-
dimensionality space consists of a 2D (x, y) low-dimensional state-space and a 4D (x, y, θ, t)
high-dimensional state-space, where θ is the heading of the robot. Thus the projection func-
tion is:

λ(x, y, θ, t) = (x, y).

We used a set of 16-discretized values for the heading angle and a maximum value of
T = 1000 seconds at a resolution of 0.1 seconds for the time dimension. The set of motion
primitives used for the 4D states consists of pre-computed kinematically feasible motion se-
quences as used in a lattice-type planner [34]. The motion primitives used for the 2D states

22

were the eight neighboring states according to the eight-connected 2D grid. Note that the
motion primitives for 2D states do not produce feasible paths that can be executed by the
robot. The objective of the planner is to find the minimal time path from the start state to
goal state. Hence, cost of each edge in the graph is the time taken to execute the respective
action multiplied by a constant factor.

(a) Maze-like environment (b) Indoor environment

Figure 3.3: Example maps, with paths (green) of dynamic obstacles shown, used in our
experiments. Static obstacles are shown in yellow and free space in blue.

We compared our algorithm to the baseline 4D HCA* planner on several different envi-
ronment sizes. In small environments with a few hundred cells along each spatial dimen-
sion, the baseline planner comes up with the plan quickly, so there is no advantage from
our approach. In very large environments with more than 4000 cells along each spatial di-
mension, the baseline planner runs out of memory to find a solution, while our approach,
since it deals with a low-dimensional state-space, was still able to plan successfully. To ef-
fectively compare the two approaches at the same level, we chose a moderate environment
size of 2500 cells along each spatial dimension and generated 50 maze-like random envi-
ronments like the one shown on the left in Figure 3.3. We also generated 50 random indoor
environments of the same size like the one shown on the right in Figure 3.3. These indoor
environments are composed of a series of narrow hallways and rooms on a grid placed ran-
domly, while the maze-like environments are composed of a series of walls with small gaps
in them to allow the robot to pass through.

In each of these environments, we randomly generate 30 dynamic obstacles. Each dy-
namic obstacle could come in a large or small size, randomly chosen, and started at a ran-
dom configuration in the environment. To generate the trajectory for a dynamic obstacle,
random goals were chosen and 2D A* is used to generate the paths between the goal points.
We chose the start and goal configuration for each dynamic obstacle so that the resulting
path is long enough, ensuring that they cover a significant area of the environment. In the
indoor environments, the large dynamic obstacles fill the entire width of the hallways, so
there is no way to pass them while the narrow dynamic obstacles fill half the width of the
hallway, so they can be passed. In the maze-like environments, the dynamic obstacles tra-
verse through the small gaps that the robot tries to pass through, resulting in congestion
at such gaps. For each set of environments, we execute two sets of runs - one with 10 dy-
namic obstacles in each environment and the other with an additional 20 dynamic obstacles

23

Algorithm Number of Success Epsilon time (secs) # 4D expands # 2D expands path cost
mean std dev mean std dev mean std dev mean std dev

Adaptive 49 1.1 6.4 0.7 3160 1105 10810 9361 39442 4438
4D 7 1.1 99.3 67.7 127393 87024 0 0 37142 5766

Adaptive 50 1.5 20.9 48.5 16688 42804 33276 88880 55342 14668
4D 40 1.5 67.1 75.8 85324 96306 0 0 49150 11568

Adaptive 50 2.0 18.4 39.2 16029 42418 23193 62865 60050 17148
4D 44 2.0 36.5 61.5 45172 76970 0 0 54090 15339

Table 3.1: Results on 50 indoor environments with 10 dynamic obstacles.

Algorithm Number of Success Epsilon time (secs) # 4D expands # 2D expands path cost
mean std dev mean std dev mean std dev mean std dev

Adaptive 41 1.1 6.7 0.8 3705 1379 12524 9901 40740 2200
4D 5 1.1 91.0 71.2 111165 87228 0 0 38320 6522

Adaptive 40 1.5 11.7 14.0 7318 9285 21454 38559 54690 16811
4D 21 1.5 70.3 86.7 88576 109859 0 0 47566 9916

Adaptive 46 2.0 18.5 26.6 16000 31148 13672 21383 57760 19450
4D 23 2.0 35.8 69.8 43546 86677 0 0 50039 12256

Table 3.2: Results on 50 indoor environments with 30 dynamic obstacles.

(making it a total of 30 moving obstacles) in each environment.
The underlying search algorithm used in both the planning and tracking phase is weighted

A* with the εplan sub-optimality bound. The tunnel width used for the tracking phase, was
10 cells, and the radii of the newly added spheres were 20 cells. For the heuristic used by
the weighted A* planners, in our approach and the baseline HCA*, we use a 2D Dijkstra
search from the goal state to all the (x, y) cells in the environment ignoring the dynamic
obstacles. During the computation of heuristic, static obstacles are inflated by the inscribed
circle radius of the robot to preclude paths through areas that are too narrow for the robot
to physically traverse.

For each environment, we try three values of ε: 1.1, 1.5, and 2 with the adaptive planner
using the square root of ε for both εplan and εtrack, thus giving an overall sub-optimality
bound of ε for the adaptive planner. We use the same set of ε values for the baseline planner
and compare their performance. For both planners, we enforce a maximum planning time
of 5 minutes for all ε values. The code for our algorithm, the baseline algorithm and the
experiments can be found at https://github.com/vvanirudh/sbpl_dynamic_adaptive_
planner.

3.5.2 Results
For both sets of environments, we compare the planning time, number of high-dimensional
(4D) states expanded, number of low-dimensional (2D) states expanded and resulting path
cost, between our approach and the baseline 4D HCA* approach. We also list out the num-
ber of cases among the set of 50 environments that our approach could come up with a
solution within 5 minutes of planning time and the number of cases the baseline approach
could. Note that statistics like mean planning time, number of HD expansions, number of
LD expansions and path cost, are computed only on cases where both approaches could
come up with a solution within 5 minutes.

Tables 3.1 and 3.2 present the results for 50 randomly generated indoor environments
with 10 and 30 dynamic obstacles respectively. In these environments, the low-dimensional

24

https://github.com/vvanirudh/sbpl_dynamic_adaptive_planner
https://github.com/vvanirudh/sbpl_dynamic_adaptive_planner

Algorithm Number of Success Epsilon time (secs) # 4D expands # 2D expands path cost
mean std dev mean std dev mean std dev mean std dev

Adaptive 47 1.1 7.9 1.4 5105 2177 26665 9660 432425 43683
4D 4 1.1 161.5 59.8 195758 79955 0 0 416650 40272

Adaptive 48 1.5 14.2 11.2 9622 8566 22588 21539 532652 91234
4D 45 1.5 41.3 43.8 51515 56488 0 0 562109 95470

Adaptive 48 2.0 12.6 16.6 11771 13531 25630 34279 537873 89790
4D 48 2.0 18.6 35.8 22485 45048 0 0 622739 104136

Table 3.3: Results on 50 maze-like environments with 10 dynamic obstacles.

Algorithm Number of Success Epsilon time (secs) # 4D expands # 2D expands path cost
mean std dev mean std dev mean std dev mean std dev

Adaptive 46 1.1 18.2 16.1 12565 12843 50012 12470 441100 91923
4D 2 1.1 192.7 159.0 236515 196442 0 0 424250 81529

Adaptive 48 1.5 25.4 33.8 16558 18703 29679 28739 524451 83024
4D 45 1.5 46.7 46.0 59116 59870 0 0 553686 89470

Adaptive 48 2.0 22.9 36.2 18922 22002 44550 107434 538370 92375
4D 48 2.0 21.3 34.7 25986 43153 0 0 623997 103201

Table 3.4: Results on 50 maze-like environments with 30 dynamic obstacles.

heuristic used is very often misleading as it cannot account for dynamic obstacles and leads
the search into a blocked hallway. For ε = 1.1, the planning problem is hard and the base-
line could solve only 5 environments with 30 dynamic obstacles (7 in the case of 10 dynamic
obstacles). In comparison, our approach could solve 41 of the 50 environments with 30 dy-
namic obstacles (49 in the case of 10 dynamic obstacles) with a substantially smaller mean
planning time. As the ε value increases, the planning problem becomes easier and perfor-
mance of the baseline approach improves. Even in these easier cases, our approach has a
comparable performance, if not better than that of baseline. Results across tables 3.1 and
3.2 show that our approach performs well even when the number of obstacles increases,
whereas the performance of baseline degrades substantially.

The results for the 50 randomly generated maze-like environments with 10 and 30 dy-
namic obstacles are presented in tables 3.3 and 3.4. These environments are characterized by
tight turns and potential dynamic obstacle collisions at the gaps in the walls. In most cases,
the robot would have to swerve around the obstacle to avoid collision. Hence, the result-
ing path doesn’t deviate significantly from the one suggested by heuristic. From the results
we can observe that when the planning problem is difficult (for example, when ε = 1.1),
our approach could solve a large number of cases (47 and 46 of 50) when compared to the
baseline (4 and 2 of 50). But as the ε value increases and the planning problem becomes eas-
ier, performance of baseline quickly catches up with our approach and in one of the case,
outperforms our approach as well (ε = 2 in the 30 dynamic obstacles case). But in most
runs, our approach performs better than the baseline in mean planning time and the path
cost. Results across tables 3.3 and 3.4 show that there is not as much decrease in the per-
formance of baseline with increase in number of obstacles, when compared to the indoor
environments.

3.6 Discussion
Interestingly, in indoor environments our approach returns paths with higher costs (but
still within the suboptimality bound) when compared to the baseline approach. This is due

25

to the fast low-dimensional 2D planning used in our approach which when a hallway is
blocked finds an alternative path through an adjacent hallway, even if it is against heuristic.
In contrast, the baseline tries to go through the blocked hallway suggested by the heuristic
by wasting time before and entering the hallway once the obstacle comes out. Hence, the
path returned by baseline often has low cost.

Generally, in environments where dynamic obstacles do not block the path suggested
by heuristic, the baseline approach is fast and often outperforms our approach. This is the
case in maze-like environments where the robot has to just swerve around the obstacle to
avoid it. Hence, we see a good performance of baseline algorithm in such cases. But in
cases where the solution required a path significantly different from the one computed by
heuristic, baseline performs poorly and our approach outperforms it. This is the case in in-
door environments where the entire hallway is blocked by an obstacle and the planner has
to find an alternative path which might be against the heuristic. In such environments, as
the number of dynamic obstacles increases, the heuristic becomes less informative and per-
formance of baseline degrades. Our approach circumvents this through its iterative nature
and fast low-dimensional planning.

3.7 Summary
In this chapter, we have presented a new approach to path planning in dynamic environ-
ments that doesn’t make any assumptions on the robot’s motion model, but still achieves
significant speedups in planning time over heuristic-based A*. Our algorithm builds on the
previously-developed algorithm for path planning with adaptive dimensionality to explic-
itly decrease the dimensionality of the search space in an adaptive manner. The algorithm
plans in full dimensional state-space in regions of the environment, where there is a po-
tential dynamic obstacle collision and in low-dimensional state-space elsewhere, thereby
obtaining quicker planning times. We have proven that our approach returns feasible,
collision-free paths in dynamic environments with bounds on solution cost sub-optimality.
As shown in our results, we outperform full-dimensional planning algorithms such as
HCA* by a substantial margin in tasks like navigation of non-holonomic robot in dynamic
environments.

Note that the major assumption in this algorithm was that the trajectories of the dynamic
obstacles in the environment are known. This is a strong assumption to make, especially in
chaotic dynamic environments such as dense human crowds. Hence, we need to have access
to an accurate long-horizon trajectory prediction algorithm that can be used in conjunction
with the planning algorithm presented in this chapter. As new sensory information is ob-
tained, the predictions are updated and the path is re-planned. In the next chapter, we will
present a novel trajectory prediction algorithm in dense human crowds, which has high
long-term prediction accuracy and works for various crowd settings.

26

Chapter 4

Modeling Cooperative Navigation
in Dense Human Crowds

In this chapter, we will present a novel trajectory prediction algorithm for humans in dense
crowds assuming we have access to their past trajectories. The presented algorithm captures
human-human interactions such as joint collision avoidance and cooperation. More specif-
ically, we develop an approach that models the joint distribution over future trajectories of
all interacting agents in the crowd, through a local interaction model that we train using
real human trajectory data. The interaction model infers the velocity of each agent based
on the spatial orientation of other agents in his vicinity. During prediction, our approach
infers the goal of the agent from its past trajectory and uses the learned model to predict its
future trajectory. We demonstrate the performance of our method against a state-of-the-art
approach on a public dataset. Results show that our model outperforms when predicting
future trajectories for longer horizons. This chapter is adapted from our paper Vemula et al.
[49] presented at ICRA 2017.

4.1 Introduction
There is an increasing need for robots to operate in the midst of human crowds. This re-
quires the robot to be able to navigate through a crowd in a socially compliant way, i.e., the
robot needs to collaboratively avoid collisions with humans and adapt its trajectories in a
human predictable manner.

To date, the majority of existing works in the area of social navigation has focused on
the prediction of individual motion patterns in the crowd to improve the navigation per-
formance [50, 51, 52]. However, even in the case of perfect prediction, these approaches
can lead to severely suboptimal paths [1]. The primary reason for such underperformance
is that these approaches do not capture the complex and often subtle interactions that take
place among humans in a crowd; that is, these approaches model each agent independently
of the others. This observation leads to the insight that agents in crowds engage in joint col-
lision avoidance.

Humans navigate through dense crowds by adapting their trajectories to those of other
people in the vicinity. Figure 4.1 shows three examples of such behavior where people pass
through, slow down, or go around when they are near other pedestrians. In order to learn

27

to navigate in a socially compliant way, it is key to capture such human-human interactions
observed in a crowd.

Pioneering works by Helbing and Molnar [29], Hall [53] propose hand-crafted functions
to model such interactions based on proximity. Such functions are, however, limited in the
complexity of interactions that they can model and fail to generalize for crowded settings.
Trautman et. al. Trautman and Krause [1] proposed an approach that explicitly models
human-human and human-robot interactions to enable a robot to safely navigate in a dense
crowd. The trajectories of the robot and the humans are jointly predicted with a hand-
crafted potential term to model interactions.

Because the potential term is hand-crafted, it is possible that the robot trajectories gen-
erated may not resemble socially compliant human behavior. In this paper, we learn the
interaction model from real-world pedestrian trajectories in order to predict human-like
trajectories.

In safety-critical applications like robotics, where robots are expected to navigate safely
among humans, we need to account for uncertainty in our predictions. Those approaches
that learn interaction models but that do not deal with uncertainty as in Alahi et al. [23] can
lead to over-confident predictions which could result in awkward and disruptive behavior.
Our approach considers the uncertainty regarding intentions (or goals) of the pedestrians
and results in accurate predictions.

The summary of our contributions in this chapter are as follows: We develop a new al-
gorithm for enabling robots to move naturally through dense crowds. Following the key
insight that agents in crowd engage in joint collision avoidance, we develop an approach that
models the distribution over future trajectories of all interacting agents through a joint den-
sity model that captures the idea of cooperative planning, i.e., agents cooperating with each
other to achieve their goals and avoid collisions. To capture collision avoidance behavior, we
learn a local interaction model that encodes how agents move based on how populated their
vicinity is from real human trajectory data. During prediction, our model infers the goal of
an agent from its past trajectory and uses the learned model to predict its future trajectory.
Finally, we demonstrate that our model is capable of predicting robot trajectories that are
natural and human-like by reporting the experimental results on the ETH pedestrian video
dataset [9].

In the remainder of this chapter, we will give an overview of relevant existing work in
section 4.2. The notation and the problem is defined in section 4.3. Section 4.4 will describe
our approach in detail and its evaluation on a real world dataset is presented in section 4.5.
The results of the evaluation are discussed in section 4.6 and the conclusions are presented
in section 4.7, along with directions for future work.

4.2 Related Work
4.2.1 Navigation in Uncertain Dynamic Environments
Common approaches to robot navigation in uncertain, populated environments typically
compute a path to the goal without taking into account the collaborative collision avoid-
ance behavior exhibited by humans. Most of the approaches instead rely on local reactive
collision avoidance methods [4, 41]. Although these methods effectively avoid collisions
with humans, the planned trajectories are usually suboptimal, compared to the trajectory
a human would take for the same start and goal, and not socially compliant due to evasive
maneuvers.

28

Figure 4.1: Examples of pedestrians exhibiting cooperative behavior. In each image, the
velocity of the pedestrian is shown as an arrow where the length of each arrow represents
the speed. (Left) The pedestrian (with green arrow) anticipates the open space between
the other three (with red arrow) and doesn’t slow down. (Middle) The pedestrian (with
green arrow) slows down to allow the other pedestrian (with red arrow) to pass through.
(Right) The two pedestrians (with green arrows) make way for the oncoming agents (with
red arrow) by going around them.

Naively modeling unpredictability in the trajectories of humans, using linear models
like Kalman filters, leads to increasing uncertainty that makes safe and efficient navigation
difficult [1]. Several works have focused on controlling the uncertainty in these predictive
models by developing accurate human motion models [50, 51], but these approaches do not
account for interactions between humans and thus cannot model joint collision avoidance.

4.2.2 Modeling human interactions
The social forces model proposed by Helbing and Molnar [29] models motion of pedestrians
in terms of forces that drive humans to reach a goal and to avoid obstacles. Subsequently,
approaches have been proposed that use learning methods to fit the social forces model to
observed crowd behavior [54, 55]. The social forces model has been shown to perform well
in predicting trajectories in simulated crowds, but fails when it comes to predicting move-
ments of pedestrians in real dense crowds as it uses a hand-crafted potential term based
on distances, and doesn’t learn human-human interactions from real data. Using a hand-
crafted potential term results in a model that can capture simple interactions, like repulsion
and attractions, but may fail to account for more complex crowd behavior. Treuille et al.

29

[56] models pedestrian motion behavior using dynamic potential fields that guide people
to avoid collisions and move towards the goal, but this model does not explicitly account
for interactions like cooperation between agents in the crowd.

Hall [53] introduces a theory on human proximity relationships which have been used
in potential field methods to model human-human interactions [57, 58]. These models cap-
ture interactions to avoid collisions, but do not model human-robot cooperation. However,
models of cooperation are necessary for safe and efficient navigation in dense crowds [1],
because in cases where the crowd density is high, the robot believes there is no feasible path
in the environment unless it accounts for cooperation from the crowd. Reciprocal Velocity
Obstacles (RVO), [26], and Velocity Obstacles (VO), [59], account for interactions between
agents by computing joint collision-free velocities assuming constant velocities and shared
collision avoidance behaviors. However, these approaches cannot handle stochastic behav-
ior in pedestrian motions and do not train the model from real observed data.

Trautman and Krause [1] proposed Interacting Gaussian processes (IGP) to explicitly model
the human-robot cooperation. Similar to the work presented in this paper, IGP models the
trajectories of all interacting agents jointly which results in a probabilistic model that can
capture joint collision avoidance behavior. However, the IGP model assumes that the final
destinations of all pedestrians are known, which is not the case in a realistic prediction task.
Another drawback of IGP is the use of hand-crafted interaction potential term to model co-
operative behavior which may result in robot trajectories that are not socially compliant. In
this paper, we learn the interaction model from observations of real pedestrian trajectory
data in the hope that we achieve more human-like and socially compliant trajectories.

The works of Kretzschmar et al. [18], Kuderer et al. [60] are also closely related to our
work. These approaches explicitly model human-robot cooperation and jointly predict the
trajectories of all agents, using feature-based representations. Unlike our proposed ap-
proach, they use maximum entropy inverse reinforcement learning (IRL) to learn an interaction
model from human trajectory database using carefully designed features such as clearance,
velocity, or group membership. However, their approach has been tested in scripted envi-
ronments with no more than four humans. In our work, we deal with crowded scenarios
with an average of six humans in a single scene. Very recently, Pfeiffer et al. [61] have ex-
tended the maximum entropy approach to unseen and unstructured environments by using
a receding horizon motion planning approach.

4.2.3 Trajectory prediction

A large body of works exist in the domain of computer vision and video surveillance that
deal with predicting motion of people in videos, that are relevant to our work. Joseph et al.
[19], Kim et al. [62] learn motion patterns using Gaussian processes and cluster human
trajectories into these motion patterns. But these approaches ignore human-human inter-
actions. IRL has also been used in the domain of activity forecasting to predict human paths
in static scenes, [20] and more recently, Alahi et al. [23] used Long Short-Term Memory net-
works (LSTM) to jointly reason across multiple agents to predict their trajectories in a scene.
However, most of these approaches have been used in the context of prediction and have
not been extended to navigation.

30

4.3 Problem Definition
In this section, we will lay out the notation followed in the rest of the chapter, briefly explain
how planning reduces to inference using joint density and formally define the problem of
modeling the joint density.

4.3.1 Notation
We follow the notation of Trautman and Krause [1]. Let the index i ∈ {1, 2, · · · , N} specify
the agent, where N is the number of individuals in the crowd and i = R indicates the
robot. The trajectory of agent i ∈ {R, 1, 2, · · · , N} is given by f (i) = (f

(i)
1 , f

(i)
2 , · · · , f (i)

T),
where T is the length of the trajectory and f (i)

t = (x
(i)
t , y

(i)
t) ∈ R2 is the location of agent i

at time-step t. The observed locations of pedestrian i until time-step t is denoted as z(i)
1:t =

(z
(i)
1 , z

(i)
2 , · · · , z(i)

t). We denote the set of all pedestrian trajectories by f = {f (i)}i=1:N , the
robot trajectory by f (R), and the set of all pedestrian observations until time-step t by z1:t =

{z(i)
1:t}i=1:N . We assume a fixed number of goals g in the environment are known and denote

the set of goals by G.

4.3.2 Planning using the joint density
Following the assumption that people engage in a joint collision avoidance when moving
through a dense crowd as in Trautman and Krause [1], Helbing and Molnar [29], the robot
does not only have to respond to the observed trajectories of the pedestrians, but also has
to account for the adaptive behavior of the humans.

To capture this cooperative behavior, it has been suggested by Trautman and Krause [1]
to use the joint density of both the robot and the crowd, denoted by P (f (R), f |z1:t). Plan-
ning the path for the robot using this density corresponds to finding the maximum-a-priori
(MAP) assignment for the following posterior:

(f (R), f)∗ = arg max
f (R),f

P (f (R), f |z1:t). (4.1)

4.3.3 Problem
In this work, we assume that at each time-step t, we receive the observation zt of the loca-
tions of all agents in the crowd. Given the current and past observations z1:t, we tackle the
problem of estimating the joint posterior distribution of the future trajectories of all agents.
Formally, we seek to model the density given by,

P (f (R), f |z1:t).

Planning the robot’s trajectory then corresponds to taking the MAP assignment for f (R)

and executing it until the next observation is received. At time-step t + 1, we receive a
new observation zt+1 and update the above joint posterior density to P (f (R), f |z1:t+1). This
process is repeated until the robot reaches its destination. In contrast to Trautman and
Krause [1], who tackle a similar problem, we aim to predict more natural and human-like
robot trajectories by learning the model from pedestrian trajectory data.

31

Figure 4.2: Occupancy grid construction. (Left) A configuration of other agents (red)
around the current agent (green). (right) 4x4 occupancy grid is constructed using the num-
ber of agents in each grid cell

4.4 Approach

We exploit the observation that humans navigating in dense crowds adapt their trajectories
based on the presence of agents in their vicinity [23]. We first explain the construction of
occupancy grids, which account for the presence of other agents within an agent’s local neigh-
borhood (Section 4.4.1). We formulate the problem of learning the social interaction model
as a Gaussian process regression problem, where we predict the agent’s velocities at each
time-step as a function of their occupancy grids and intended goal. Given the preprocessed
training trajectories (Section 4.4.2), we train the GP model by maximizing its marginal like-
lihood to learn the hyperparameters of the kernel (Section 4.4.3). At prediction time, we use
the learned model to infer the goal of each agent and jointly predict future trajectories of all
interacting agents in the crowd (Section 4.4.4).

4.4.1 Constructing occupancy grids

To capture the local interactions of an agent with its neighbors, we construct an occupancy
grid for each agent i at each time-step t that is similar to the social pooling grid used in
Alahi et al. [23]. The occupancy grid is constructed by discretizing the neighborhood of the
agent’s current location into a spatial grid of size M ×M . We then count the number of
surrounding agents within each grid cell. Formally, we define occupancy grid as a vector
of length M2 given by,

O
(i)
t (a+M(b− 1)) =

∑
j∈N (i)

Ia,b[x(j)
t − x

(i)
t , y

(j)
t − y

(i)
t]. (4.2)

N (i) denotes the set of all agents j 6= i, who are within the neighborhood of agent i. The
indicator function Ia,b[x, y] defines if (x, y) is located in the (a, b) cell of the occupancy grid.
In the remainder of the paper, O(i) and O will denote the set of all occupancy grids at every
time-step of an agent i and that of all agents, respectively.

32

4.4.2 Preparing training data for learning

Before training our model, we preprocess the training data f , which correspond to the tra-
jectories of all agents. First, we construct occupancy grids O(i) and O along f , as described
in Section 4.4.1. Second, we process all the trajectories to obtain the velocities of agents at
each time-step (∆x

∆t ,
∆y
∆t). Third, since we have access to the entire trajectory at training, we

can compute the goals of all the pedestrians. Note that this information about the true goals
is used only during training and is not assumed in the prediction phase. After this prepro-
cessing, we have (O, ∆x

∆t ,
∆y
∆t) for all agents at every time-step and their corresponding goals

{g(i)}.

4.4.3 Training the local interaction model

To learn across different pedestrians traversing in different regions of the environment, we
model the velocity of an agent at a specific time-step as a function of their intended goal
and their occupancy grid at that time-step. Formally, we seek to estimate the distribution
P (∆x

∆t |O, g) and P (∆y
∆t |O, g), for each goal g in G, from the training data obtained in Section

4.4.2.
We start by modeling the interactions as a Gaussian Process (GP) regression problem,

where the noisy data to be interpolated is (O, ∆x
∆t) and (O, ∆y

∆t). Note that we use a separate
GP for each goal g to learn the mapping from occupancy grids to velocities. We use a squared
exponential automatic relevance determination (SE-ARD) kernel (with additive noise) for these
GPs [63]. The SE-ARD kernel learns a different lengthscale for each input dimension, which
in our problem are the dimensions of the occupancy grid vector, i.e., the grid cells. Since,
the kernel can learn the relevance of each input dimension by learning the lengthscale pa-
rameter [63] (dimensions with large lengthscales are less relevant than those with small
lengthscales), the kernel will capture the relevance of each grid cell for a specific goal and
effectively ignore irrelevant cells.

The SE-ARD kernel with additive noise is given by,

KS(O,O′) = σ2
f exp

−1

2

M2∑
d=1

(O(d)−O′(d))2

`2d


+ σ2

nδ(O,O
′),

(4.3)

where δ(O,O′) = 1 if O is equal to O′ and zero otherwise, and O(d) is the value of the
dth dimension in the vector O. The hyperparameters of this kernel are σf (signal variance),
{`d}M

2

d=1 (lengthscales) and σn (noise variance).
This construction results in a total of 2G GPs because there is a pair of GPs (in x- and

y-direction) for each of theG goals; thus, we have 2G sets of hyperparameters to be learned.
We denote the set of hyperparameters corresponding to the GP associated with goal g by
Θg
x and Θg

y . To learn the hyperparameters Θg
x, we isolate the tuples Bg = {(O(i), ∆x

∆t

(i)
)}i

from training data, corresponding to the set of pedestrians iwhose goal is g, and maximize
the log marginal likelihood of the GP [63] given by,

33

logP

(
∆x

∆t
|O
)

= −1

2

∆x

∆t

T

KS(O,O)−1 ∆x

∆t

− 1

2
log |KS(O,O)| − ng

2
log 2π,

(4.4)

where ∆x
∆t and O are vectors constructed by concatenating elements of Bg , and ng is the

number of elements in ∆x
∆t .

We can learn Θg
y and all the other sets of hyperparameters for all goals g ∈ G in a similar

fashion.

4.4.4 Prediction
During prediction we are given an unseen crowd with Np pedestrians, a robot, and their
observations z1:t until time t. Our task is to predict their trajectories f and f (R) for H time-
steps into the future, using the learned model. We cannot directly use the GP predictive
distribution because we do not know the goals of the pedestrians during prediction. Note
that we know the goal of the robot g(R) since it is user-defined.

Infer goal of a pedestrian

Given observations z(i)
1:t of pedestrian i until time t and the set of goals G, we seek to infer

the goal g(i) ∈ G of the pedestrian. We assume a uniform prior P (g(i)) over all goals, in
the absence of any observations for agent i (A more informative prior over the goals can be
found by analyzing the environment). Hence, we have:

P (g(i)|z(i)
1:t) =

P (z
(i)
1:t|g(i))P (g(i))

P (z
(i)
1:t)

∝ P (z
(i)
1:t|g(i)). (4.5)

That is, we evaluate the likelihood that the observation sequence z(i)
1:t is true conditioned

on the fact that g(i) is the goal of agent i. Similar approaches have been explored in Kitani
et al. [20] and Ziebart et al. [64], for inferring destination of an agent given its previous path.

To compute the likelihood, we first compute, from the observations z1:t, the velocities
{(∆x

∆t ,
∆y
∆t)}1:t−1 and the occupancy grids O1:t−1 of all pedestrians at each time-step until

t− 1. For each possible goal g ∈ G, we take the corresponding set of trained hyperparam-
eters Θg

x and Θg
y , and evaluate the log marginal likelihood of the GP for each agent i (using

equation 4.4). Hence, for each agent i and each goal g(i) ∈ G, we obtain the likelihood that
its observed data z

(i)
1:t is generated from the GP conditioned on the goal g(i). Normalizing

the likelihoods across all goals, we get the likelihood P (z
(i)
1:t|g(i)) for every goal g(i) ∈ G.

Predicting future trajectories

Now that we have a distribution over the goals g(i) for all agents i in the crowd, we can use
the trained model to predict future locations. The joint posterior density can be decomposed
as

P (f (R), f |z1:t) =
∑
g

P (f (R), f |g, z1:t)P (g|z1:t), (4.6)

34

where g = {g(i)}i=R,1:N are the goals of all agents including the robot. We can assume
that the goals of the pedestrians are independent of each other (and that we know the goal
of the robot with certainty) given their respective observations. Then, we can write the
distribution of a goal given a history of observations as:

P (g|z1:t) =

N∏
i=1

P (g(i)|z(i)
1:t), (4.7)

whereP (g(i)|z(i)
1:t) is given by equation 4.5. We approximate the joint distributionP (f (R), f |g, z1:t)

by using the velocities and occupancy grids obtained from observations z1:t (as done in Sec-
tion 4.4.4),

P (f (R), f |g, z1:t) ≈ P (f (R), f |{∆x

∆t
,

∆y

∆t
}1:t−1,O1:t,g). (4.8)

The predictions for different agents are coupled through the occupancy grid which contains
the configuration of other agents around each agent locally. This enables our model to
capture local interactions, like joint collision avoidance and cooperation.

Since the task is to predict the future locations of all agents for the next H time-steps,
f (i) suffices to represent the next H locations of agent i after time t, in addition to previous
locations.

Multi-step prediction

Future locations can be predicted using the learned model from Section 4.4.3. For each
agent i, we fit a separate pair of GPs (with the learned hyperparameters Θg

x, Θg
y for goal g)

to the observed tuples (O
(i)
1:t, {∆x

∆t }
(i)
1:t−1) and (O

(i)
1:t, {

∆y
∆t }

(i)
1:t−1). Using their corresponding

GPs, each agent can predict their velocities and compute the location for the next time-step
by adding it to the current location.

This can be done exactly for time t + 1, i.e., we can predict (∆x
∆t)

(i)
t+1 and (∆y

∆t)
(i)
t+1 for

each agent i, since we know the value of the occupancy grid at time t, O(i)
t . But for future

time-steps, we need to estimate the occupancy grid at the previous time step using pre-
vious predictions. Instead of computing the distribution over future locations in an exact
form (which can be extremely difficult), we use Monte Carlo sampling to approximate the
distribution as shown in Algorithm 2.

At time t + 1, we compute the GP predictive distribution [63] for each (∆x
∆t)

(i)
t+1 and

(∆y
∆t)

(i)
t+1 (line 2). We then proceed to sample S points from each of these distributions (line

6), and estimate S samples for the location f
(i)
t+1 for all agents i (line 7). These sets of samples

approximate the distribution P (f
(R)
t+1, ft+1|{∆x

∆t ,
∆y
∆t }1:t−1,O1:t,g).

Since, for each sample, we have locations of all agents at time t + 1, we can compute
occupancy grids O

(i)
t+1 for each agent (line 9). Thus, we get S samples for Ot+1. Now, to

estimate location at time t + 2, we compute the mean of the S samples to get the set of
occupancy grids, Ot+1 (line 10). Using the mean, we predict the velocities at time t+2 (line
12), and repeat the above process until H time-steps into the future. At every time-step t′
(t′ ≥ t + 1, t′ ≤ t + H), we get a set of S samples corresponding to the locations ft′ that
approximate the distribution

{f (R)
t′ , ft′}j=1:S ≈ P (f

(R)
t′ , ft′ |{

∆x

∆t
,

∆y

∆t
}1:t−1,O1:t,g).

35

As we let the value of S grow, we get a better approximation.

Algorithm 2 Multi-step prediction through Sampling
1: for each agent i do
2: Compute distributions of (∆x

∆t)
(i)
t+1, (∆y

∆t)
(i)
t+1 given O

(i)
t

3: end for
4: for t′ = t+ 2→ t+H do
5: for each agent i do
6: Sample S points from distributions of (∆x

∆t)
(i)
t′−1, (∆y

∆t)
(i)
t′−1

7: Compute S estimates for f (i)
t′ from sampled velocities

8: end for
9: Compute S samples for Ot′ from estimates of ft′

10: Set Ot′ to be the mean of the S samples from above
11: for each agent i do
12: Compute distributions of (∆x

∆t)
(i)
t′ , (∆y

∆t)
(i)
t′ given O

(i)
t′

13: end for
14: end for
15: return {{f (R)

t′ , ft′}j=1:S}t′=t+1:t+H

4.5 Evaluation
In this section, we will describe the setup for the experiments and present results in com-
parison to the baseline algorithm.

4.5.1 Setup
We evaluate our model on a publicly available human-trajectory dataset released by ETH,
[9]. The dataset contains a video recorded from above a busy doorway of a university build-
ing with the pedestrian trajectories tracked and annotated. This video contains scenes with
real world crowded settings, hundreds of trajectories and high crowd density. An exam-
ple snapshot from the video (with goals marked) is shown in figure 4.3. Each time-step in
the video is six frames long and amounts to 0.4 seconds. The average trajectory length of a
pedestrian is 25 time-steps. The total number of pedestrians in the video is 360 and there
are four goals in the environment. The resolution of the video is 640 × 480. Each pixel in
the video frame corresponds to 0.042 metres (slightly varies across the frame, as the camera
is angled and not exactly top-down).

We evaluate our model by choosing a pedestrian in the crowd randomly as our robot
and use his start and goal state to plan a path through the crowd. The resulting path is
compared to the true path that the pedestrian has taken in the video. Comparing the true
path and the predicted path gives us a evaluation of how closely our prediction resembles
human-like behavior. A similar evaluation was done in Trautman and Krause [1].

We compare our approach against IGP [1], as it deals with the same problem of jointly
modeling trajectories of robot and pedestrians, and has shown good results in real robot
navigation scenario among dense crowds [10, 11]. We will use both our approach and IGP
to predict the path untilH time-steps into the future and compare it with the true trajectory.

36

Figure 4.3: Example snapshot of the dataset with goals indicated by red dots

Note that the original IGP needs to know the true final destination of each pedestrian
at prediction time, which would give it an unfair advantage over our algorithm. Hence,
we use a variant of IGP which doesn’t need the true final destinations and use that in our
comparison. At prediction time, we compute the average heading of the pedestrian for the
last 5 time-steps and estimate the goal location in the computed heading direction. The
estimated goal is used in the original IGP algorithm in place of the true final destination of
the pedestrian.

To compare the path predicted by the two algorithms and the true path of the pedestrian,
we consider two metrics:

1. Average displacement error: Introduced in Pellegrini et al. [9], this metric computes the
mean squared error over all estimated points at each time-step in the predicted trajec-
tory and the true trajectory.

2. Final displacement error: Introduced in Alahi et al. [23], this metric computes the mean
distance between the final predicted location afterH time-steps and the true location
after H time-steps, where H is our prediction horizon.

4.5.2 Model Parameters
We construct occupancy grids around each agent of size 4×4 (i.e.,M = 4) covering a space
of 80 × 80 pixels in the video. In each video, we train the model on the trajectories of the
first 50 pedestrians. At prediction time, we chose a scenario with 11 pedestrians (from the
remaining part of the video, not used in training), one of whom is used as a robot in our
model. We predict the future locations for a range of prediction horizons H = 1, 2, 5, 10, 20
time-steps. If the path of the pedestrian (or robot) ends in less than H time-steps, we will
predict only until the end of his path. For multi-step prediction, we use S = 100 samples

37

Figure 4.4: Example prediction by our model. For each pedestrian, we predict his future
locations (which are plotted) for the next 5 time-steps. The bottom set of pedestrians are
progressing towards a goal at the top centre of the image, but they go around the other set
of pedestrians making way for them cooperatively.

to approximate the distribution over future locations. We implement the Gaussian process
regression model using the GPML toolbox, [63].

4.5.3 Results
To test the prediction accuracy of both approaches, we have chosen scenarios with 11 pedes-
trians in the crowd where crowd density is high and some pedestrians head into and through
the crowd. To get an unbiased estimate, we chose 5 such scenarios in the video. In each sce-
nario, we assume each pedestrian to be the robot, one at a time, and compute their average
displacement error and final displacement error, averaged over all time-steps. This results
in 11 sets of error values and we compute the average over all sets to give the mean errors
over all pedestrians. We repeat the experiment for differentH values to get both short-range
and long-range prediction accuracies of both approaches. The results are averaged over all
5 scenarios and are presented in Table 4.1. Note that the errors are listed in pixels.

In Figure 4.4, we show an example scene where our approach predicts cooperative be-
havior. The set of pedestrians going up give way to the set of pedestrians going down. To
visualize what our local interaction model (from section 4.4.3) learned, we give it some ex-

38

Table 4.1: Prediction errors (in pixels) on the dataset for IGP and our approach

Metric Prediction horizon (H) IGP Our Approach

Avg. Disp. Error

1 3.42 4.42
2 5.66 6.14
5 15.75 12.09
10 21.59 21.52
20 41.51 34.63

Final Disp. Error

1 3.42 4.42
2 7.12 7.78
5 23.18 19.77
10 38.75 36.25
20 67.41 54.2

ample occupancy grids and goals, and observe the predicted velocities. Figure 4.5 shows
that the model learns collision avoidance as it predicts velocities away from grid cells which
are occupied and towards unoccupied grid cells. When an agent’s vicinity is heavily pop-
ulated in the direction of its goal, the magnitude of predicted velocity is very low, i.e., the
agent moves slowly. If instead, its vicinity is populated in the opposite direction of its goal,
the velocity of the agent doesn’t get affected by the surrounding agents (as they are not
obstructing its path).

To verify this observation, we have examined the values of the learned hyperparame-
ters of the SE-ARD kernel. The lengthscales for grid cells that are not in the direction of
the pedestrian’s intended goal, are given high values, thus reducing their relevance in the
velocity prediction. For example, in Figure 4.5 the lengthscales for the bottom grid cells in
the left bottom occupancy grid, are set to values higher than 7 whereas the lengthscales for
the top grid cells in the same grid are set to values lower than 1. This shows that our model
learns how neighbors affect a pedestrian’s path based on their relative spatial orientation.

4.6 Discussion
From the results presented in Table 4.1, we can observe that our approach performs bet-
ter than IGP at predicting human trajectories for longer prediction horizons and worse for
shorter horizons. This is mainly because IGP models trajectories directly by predicting fu-
ture locations based on previously observed locations. This results in very accurate pre-
dictions in situations where there are no surrounding agents (and hence, no interactions)
and for shorter prediction horizons, as it extrapolates the trajectory to future time-steps
smoothly. Our model, on the other hand, models velocities at each time-step and needs to
estimate the future location based on velocity predictions for the previous time-step. Thus,
for shorter prediction horizons, our model has a higher variance associated with predicted
locations. But for longer horizons, our model has higher accuracy in prediction as it reasons
about the intended goal of the agent and captures local interactions at each time-step. IGP
fails at longer horizons as the smooth extrapolation, coupled with the handcrafted interac-
tion potential term, is unable to account for all the interactions and cooperative behavior
among dense crowds. More importantly, our approach has a higher performance than IGP
because it learns the local interaction model from real human trajectory data whereas the
interaction model in IGP is hand-crafted.

39

Figure 4.5: Velocities predicted by our trained model for example occupancy grids. In each
case, the goal of the pedestrian is right above in the Y-direction. Predicted mean y-velocity
is shown in blue and predicted mean x-velocity is shown in red.

Accurate predictions for longer horizons is important in social navigation as it results in
a more globally optimal behavior. In cases where the prediction is accurate in a short hori-
zon but poor for longer horizons, the resulting paths are locally optimal and can potentially
lead to a non-socially compliant and reactive behavior.

Upon careful examination of predictions of our approach in crowded scenarios, we ob-
served that it learns the behavior of slowing down (see bottom right of Figure 4.5) when
its vicinity is heavily populated, which is a common behavior among humans. Also, as ob-
served from the values of the learned lengthscales for the SE-ARD kernel, our model learns
how humans decide their velocity based on the relative spatial configuration of other agents
in their neighborhood. As shown in Figure 4.5, our trained local interaction model captures
collision avoidance based on an agent’s occupancy grid by learning from human trajectory
data without any hand-crafted potential term.

Although we present results for predicting trajectories of every agent in the crowd, this
approach can be extended to robot navigation by treating the robot as an agent in the crowd.
Planning the path of the robot in this model reduces to inference in the joint density as
shown in Section 4.3.2. The resulting path taken by the robot is the most likely path pre-

40

dicted according to the learned model. Recent work by Pfeiffer et al. [61] has shown that as
long as pedestrians interact with the robot naturally (as one of them), such an interaction-
aware modeling approach is significantly better than a reactive approach.

4.7 Summary
In this chapter, we presented a new approach to modeling cooperative behavior among hu-
mans in dense crowds. While most existing approaches use hand-crafted models to capture
interactions among humans in the crowd, we take a data-driven approach and learn an in-
teraction model from real human trajectory data. We propose a nonparametric statistical
model that uses Gaussian processes to model velocities of agents in the crowd as a func-
tion of how populated their vicinity is. We show how our model can be used to predict
future trajectories of pedestrians and compute the path of a robot through a dense crowd.
The future trajectories are computed using a Monte Carlo sampling approach to multi-step
prediction. Lastly, the efficacy of our approach is demonstrated by predicting trajectories
of agents in a real world pedestrian dataset. Our results show that the model captures
important aspects of human crowd behavior such as cooperative navigation and collision
avoidance.

The drawback of our approach is the assumption of known goals in the environment.
This restricts the generalizability of the approach to previously seen environments and a
separate model needs to be trained for a new environment.

41

Chapter 5

Conclusion

In this chapter, we will summarize the contributions of the thesis and lay out future direc-
tions of research in the area of robot navigation in dynamic environments.

5.1 Summary
In this thesis, we have considered the problem of mobile robot navigation in dynamic en-
vironments. In particular, we explored two questions:

• Given an accurate model of world dynamics, how do you efficiently obtain safe, fea-
sible and bounded sub-optimal paths for mobile robots in dynamic environments?

• How do you model complex dynamics such as cooperative behavior in dynamic en-
vironments, specifically human crowds?

We addressed the first question in Chapter 3, where we proposed a heuristic based graph
search planning algorithm that uses adaptive dimensionality to only consider time dimen-
sion in the search space corresponding to regions where potential dynamic obstacle colli-
sions can occur. This reduction in search space lends the approach great speed-ups in plan-
ning time over traditional approaches such as HCA*, without sacrificing safety, dynamic
feasibility and bounded sub-optimality of the solution. The proposed planning algorithm
has been shown to outperform HCA* in densely populated environments with a large num-
ber of dynamic and static obstacles, without making any assumption regarding the robot’s
motion model.

Chapter 4 addresses the second question of modeling environment dynamics by propos-
ing a novel statistical model that aims to capture the complex and subtle interactions be-
tween humans in a dense crowd. Following previous approaches, we model the joint dis-
tribution of trajectories of all interacting agents without sacrificing scalability by introduc-
ing the abstraction of occupancy grids. We decompose the joint distribution by coupling
predictions for individual trajectories through the occupancy grid thereby, capturing in-
teractions that are dependent on relative distance and orientation between agents. The
proposed model has shown to outperform IGP over long prediction horizons and learns
complex behavior such as joint collision avoidance, slowing down and other cooperative
behavior.

42

In addition to the aforementioned novel contributions of this thesis, Chapter 2 presents
a brief survey of past works that have addressed similar challenges. The survey presents a
good introduction for future researchers in this field to understand what has been done in
the past and what challenges remain in order to make robot navigation in dynamic envi-
ronments more safe and efficient.

5.2 Future Work
In this section, we present a few directions for future research to extend the proposed solu-
tions in this thesis.

5.2.1 Path Planning in Dynamic Environments
The proposed planning algorithm in Chapter 3 has only been tested in simulations. As a
future work, its performance can be verified on a mobile robot navigating in an environment
with scripted dynamic obstacle trajectories. This can be taken further by using the planner
in conjunction with a predictive model of the environment (such as the one in Chapter 4).
Every time new sensor information is received, the model can be updated and a new path
can be computed by re-planning using the proposed planner.

Another interesting direction would be to make the planner incremental so that search
information from previous iterations can be re-used in subsequent iterations. Currently, the
planner starts from scratch at the start of each iteration and does not reuse search tree from
previous iterations. Extending it to be incremental lends itself naturally to this algorithm
as it is iterative in nature and a large portion of the search tree remains the same across
iterations. Hence, large speedups can be achieved in planning time making the algorithm
more efficient and suitable for frequent re-planning.

Finally, most statistical models for world dynamics result in predictions with uncer-
tainty associated with them. An extremely useful future direction would be to extend the
proposed planning algorithm to account for the uncertainty, along with the prediction,
to obtain probabilistic guarantees on safety of the planned path (similar work is done in
Kushleyev and Likhachev [46]). We could also use this measure of uncertainty to obtain a
good estimate of how frequently one should re-plan the path to ensure these probabilistic
guarantees on safety.

5.2.2 Modeling Navigation in Dynamic Environments
The problem of modeling complex interactions in dynamic environments, such as human
crowds, remains an unsolved problem. Our proposed statistical model in Chapter 4 takes
a small step towards modeling cooperative behavior exhibited in human crowds resulting
in more accurate predictions. As a future work, the model can be validated and verified
on a real robot placed in a dense human crowd. The task would be, given a start and goal
location, the robot should be able to navigate safely and efficiently through the crowd.

Currently, the model doesn’t account for static obstacles which play a very important
role in modeling navigation behavior. An interesting future direction would be to explore
ways to account for both the dynamic agents and static obstacles in the environment, while
predicting future trajectories. Another important drawback of our approach is the assump-
tion of known goals in the environment. This restricts the generalizability of the approach

43

to previously seen environments and a separate model needs to be trained for a new en-
vironment. A future direction would be to move away from this assumption and achieve
accurate long-term predictions in completely unknown environments.

Finally, our model only uses the positions and velocities as features to learn cooperative
behavior from data. We could extend the model using temporal representation learning
methods such as deep recurrent neural networks, to learn a latent representation for tra-
jectories that encode high-level time varying information. This would enable the model to
capture more complex and subtle interactions between agents in a dynamic environment.

44

Appendix A

Code and Publications

A.1 Code
• Code for the planning algorithm proposed in Chapter 3, with dataset : https://

github.com/vvanirudh/sbpl_dynamic_adaptive_planner

• Code for the statistical model proposed in Chapter 4 : https://github.com/vvanirudh/
occupancy-IGP

A.2 Publications
• The work presented in Chapter 3 was presented at SoCS 2016.

Vemula, Anirudh, Katharina Muelling, and Jean Oh. “Path Planning in
Dynamic Environments with Adaptive Dimensionality.” In Ninth Annual
Symposium on Combinatorial Search. 2016.

• The work presented in Chapter 4 was presented at ICRA 2017.

Vemula, Anirudh, Katharina Muelling, and Jean Oh. “Modeling Coopera-
tive Navigation in Dense Human Crowds.” In International Conference on
Robotics and Automation. 2017.

45

https://github.com/vvanirudh/sbpl_dynamic_adaptive_planner
https://github.com/vvanirudh/sbpl_dynamic_adaptive_planner
https://github.com/vvanirudh/occupancy-IGP
https://github.com/vvanirudh/occupancy-IGP

Appendix B

Public Datasets

• ETH Dataset used for evaluation in Chapter 4 can be found here : http://www.vision.
ee.ethz.ch/en/datasets/

46

http://www.vision.ee.ethz.ch/en/datasets/
http://www.vision.ee.ethz.ch/en/datasets/

Bibliography

[1] Peter Trautman and Andreas Krause. Unfreezing the robot: Navigation in dense, interacting
crowds. 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 797–803,
2010.

[2] Dieter Fox, Wolfram Burgard, and Sebastian Thrun. The dynamic window approach to collision
avoidance. IEEE Robotics & Automation Magazine, 4(1):23–33, 1997.

[3] Oliver Brock and Oussama Khatib. High-speed navigation using the global dynamic window
approach. In IEEE International Conference on Robotics and Automation, 1999, volume 1, pages
341–346. IEEE, 1999.

[4] Wolfram Burgard, Armin B. Cremers, Dieter Fox, Dirk Hähnel, Gerhard Lakemeyer, Dirk Schulz,
Walter Steiner, and Sebastian Thrun. Experiences with an interactive museum tour-guide robot.
Artif. Intell., 114:3–55, 1999.

[5] Sebastian Thrun, Michael Beetz, Maren Bennewitz, Wolfram Burgard, Armin B. Cremers, Frank
Dellaert, Dieter Fox, Dirk Hähnel, Charles R. Rosenberg, Nicholas Roy, Jamieson Schulte, and
Dirk Schulz. Probabilistic algorithms and the interactive museum tour-guide robot minerva. I.
J. Robotics Res., 19:972–999, 2000.

[6] Steven M LaValle. Planning algorithms. Cambridge university press, 2006.

[7] Jean-Claude Latombe. Robot motion planning, volume 124. Springer Science & Business Media,
2012.

[8] Howie M Choset. Principles of robot motion: theory, algorithms, and implementation. MIT press, 2005.

[9] Stefano Pellegrini, Andreas Ess, Konrad Schindler, and Luc Van Gool. You’ll never walk alone:
Modeling social behavior for multi-target tracking. 2009 IEEE 12th International Conference on
Computer Vision, pages 261–268, 2009.

[10] Peter Trautman, Jeremy Ma, Richard M Murray, and Andreas Krause. Robot navigation in dense
human crowds: the case for cooperation. In Robotics and Automation (ICRA), 2013 IEEE Interna-
tional Conference on, pages 2153–2160. IEEE, 2013.

[11] Pete Trautman, Jeremy Ma, Richard M Murray, and Andreas Krause. Robot navigation in dense
human crowds: Statistical models and experimental studies of human–robot cooperation. The
International Journal of Robotics Research, 34(3):335–356, 2015.

[12] Frank Hoeller, Dirk Schulz, Mark Moors, and Frank E Schneider. Accompanying persons with a
mobile robot using motion prediction and probabilistic roadmaps. In 2007 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 1260–1265. IEEE, 2007.

47

[13] Georges S Aoude, Brandon D Luders, Joshua M Joseph, Nicholas Roy, and Jonathan P How.
Probabilistically safe motion planning to avoid dynamic obstacles with uncertain motion pat-
terns. Autonomous Robots, 35(1):51–76, 2013.

[14] Sujeong Kim, Stephen J Guy, Wenxi Liu, David Wilkie, Rynson WH Lau, Ming C Lin, and Dinesh
Manocha. Brvo: Predicting pedestrian trajectories using velocity-space reasoning. The Interna-
tional Journal of Robotics Research, page 0278364914555543, 2014.

[15] Rachel Kirby, Reid Simmons, and Jodi Forlizzi. Companion: A constraint-optimizing method for
person-acceptable navigation. In RO-MAN 2009-The 18th IEEE International Symposium on Robot
and Human Interactive Communication, pages 607–612. IEEE, 2009.

[16] Beomjoon Kim and Joelle Pineau. Socially adaptive path planning in human environments using
inverse reinforcement learning. International Journal of Social Robotics, 8(1):51–66, 2016.

[17] Masahiro Shiomi, Francesco Zanlungo, Kotaro Hayashi, and Takayuki Kanda. Towards a so-
cially acceptable collision avoidance for a mobile robot navigating among pedestrians using a
pedestrian model. International Journal of Social Robotics, 6(3):443–455, 2014.

[18] Henrik Kretzschmar, Markus Spies, Christoph Sprunk, and Wolfram Burgard. Socially compliant
mobile robot navigation via inverse reinforcement learning. The International Journal of Robotics
Research, 35(11):1289–1307, 2016.

[19] Joshua Joseph, Finale Doshi-Velez, Albert S Huang, and Nicholas Roy. A bayesian nonparametric
approach to modeling motion patterns. Autonomous Robots, 31(4):383–400, 2011.

[20] Kris M Kitani, Brian D Ziebart, James Andrew Bagnell, and Martial Hebert. Activity forecasting.
In European Conference on Computer Vision, pages 201–214. Springer, 2012.

[21] Matthias Luber, Johannes A Stork, Gian Diego Tipaldi, and Kai O Arras. People tracking with
human motion predictions from social forces. In Robotics and Automation (ICRA), 2010 IEEE In-
ternational Conference on, pages 464–469. IEEE, 2010.

[22] Stefano Pellegrini, Andreas Ess, and Luc Van Gool. Improving data association by joint modeling
of pedestrian trajectories and groupings. In European Conference on Computer Vision, pages 452–
465. Springer, 2010.

[23] Alexandre Alahi, Kratarth Goel, Vignesh Ramanathan, Alexandre Robicquet, Li Fei-Fei, and Sil-
vio Savarese. Social lstm: Human trajectory prediction in crowded spaces. 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 961–971, 2016.

[24] David Hsu, Robert Kindel, Jean-Claude Latombe, and Stephen M. Rock. Randomized kinody-
namic motion planning with moving obstacles. I. J. Robotics Res., 21:233–256, 2002.

[25] Brandon Luders, Mangal Kothari, and Jonathan How. Chance constrained rrt for probabilistic
robustness to environmental uncertainty. In AIAA guidance, navigation, and control conference,
page 8160, 2010.

[26] Jur Van den Berg, Ming Lin, and Dinesh Manocha. Reciprocal velocity obstacles for real-time
multi-agent navigation. In Robotics and Automation, 2008. ICRA 2008. IEEE International Conference
on, pages 1928–1935. IEEE, 2008.

[27] David Wilkie, Jur Van Den Berg, and Dinesh Manocha. Generalized velocity obstacles. In Intel-
ligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on, pages 5573–5578.
IEEE, 2009.

[28] Deepak Ramachandran and Eyal Amir. Bayesian inverse reinforcement learning. In IJCAI, 2007.

48

[29] Dirk Helbing and Peter Molnar. Social force model for pedestrian dynamics. Physical review E,
51(5):4282, 1995.

[30] Brian D. Ziebart, Andrew L. Maas, J. Andrew Bagnell, and Anind K. Dey. Maximum entropy
inverse reinforcement learning. In AAAI, 2008.

[31] Anirudh Vemula, Katharina Muelling, and Jean Oh. Path planning in dynamic environments
with adaptive dimensionality. In Ninth Annual Symposium on Combinatorial Search, 2016.

[32] Kalin Gochev, Benjamin Cohen, Jonathan Butzke, Alla Safonova, and Maxim Likhachev. Path
planning with adaptive dimensionality. In Fourth annual symposium on combinatorial search, 2011.

[33] David Silver. Cooperative pathfinding. In AIIDE, pages 117–122, 2005.

[34] Maxim Likhachev and Dave Ferguson. Planning long dynamically feasible maneuvers for au-
tonomous vehicles. The International Journal of Robotics Research, 28(8):933–945, 2009.

[35] Martin Rufli, Dave Ferguson, and Roland Siegwart. Smooth path planning in constrained en-
vironments. In IEEE International Conference on Robotics and Automation, 2009., pages 3780–3785.
IEEE, 2009.

[36] Jur Van Den Berg, Dave Ferguson, and James Kuffner. Anytime path planning and replanning in
dynamic environments. In IEEE International Conference on Robotics and Automation, 2006., pages
2366–2371. IEEE, 2006.

[37] Kostas E Bekris and Lydia E Kavraki. Greedy but safe replanning under kinodynamic constraints.
In IEEE International Conference on Robotics and Automation, 2007, pages 704–710. IEEE, 2007.

[38] Stephane Petti and Thierry Fraichard. Safe motion planning in dynamic environments. In
IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005.(IROS 2005)., pages 2210–
2215. IEEE, 2005.

[39] Mike Phillips and Maxim Likhachev. Sipp: Safe interval path planning for dynamic environ-
ments. In IEEE International Conference on Robotics and Automation (ICRA), 2011, pages 5628–5635.
IEEE, 2011.

[40] Venkatraman Narayanan, Mike Phillips, and Maxim Likhachev. Anytime safe interval path plan-
ning for dynamic environments. In IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2012, pages 4708–4715. IEEE, 2012.

[41] Roland Philippsen and Roland Siegwart. Smooth and efficient obstacle avoidance for a tour guide
robot. In ICRA, 2003.

[42] Ross A Knepper and Alonzo Kelly. High performance state lattice planning using heuristic look-
up tables. In IROS, pages 3375–3380, 2006.

[43] Kalin Gochev, Alla Safonova, and Maxim Likhachev. Planning with adaptive dimensionality for
mobile manipulation. In IEEE International Conference on Robotics and Automation (ICRA), 2012,
pages 2944–2951. IEEE, 2012.

[44] Kalin Gochev, Alla Safonova, and Maxim Likhachev. Incremental planning with adaptive di-
mensionality. In ICAPS, 2013.

[45] Haojie Zhang, Jonathan Butzke, and Maxim Likhachev. Combining global and local planning
with guarantees on completeness. In IEEE International Conference on Robotics and Automation
(ICRA), 2012, pages 4500–4506. IEEE, 2012.

49

[46] Aleksandr Kushleyev and Maxim Likhachev. Time-bounded lattice for efficient planning in dy-
namic environments. In IEEE International Conference on Robotics and Automation, 2009, pages
1662–1668. IEEE, 2009.

[47] Janko Petereit, Thomas Emter, and Christian Walter Frey. Mobile robot motion planning in multi-
resolution lattices with hybrid dimensionality. In Proceedings of the IFAC Intelligent Autonomous
Vehicles Symposium, pages 546–563, 2013.

[48] Janko Petereit, Thomas Emter, and Christian W Frey. Combined trajectory generation and path
planning for mobile robots using lattices with hybrid dimensionality. In Robot Intelligence Tech-
nology and Applications 2, pages 145–157. Springer, 2014.

[49] Anirudh Vemula, Katharina Mülling, and Jean Oh. Modeling cooperative navigation in dense
human crowds. CoRR, abs/1705.06201, 2017. URL http://arxiv.org/abs/1705.06201.

[50] Simon Thompson, Takehiro Horiuchi, and Satoshi Kagami. A probabilistic model of human
motion and navigation intent for mobile robot path planning. In Autonomous Robots and Agents,
2009. ICARA 2009. 4th International Conference on, pages 663–668. IEEE, 2009.

[51] Maren Bennewitz, Wolfram Burgard, Grzegorz Cielniak, and Sebastian Thrun. Learning motion
patterns of people for compliant robot motion. The International Journal of Robotics Research, 24
(1):31–48, 2005.

[52] F. Large, D. Vasquez, T. Fraichard, and C. Laugier. Avoiding cars and pedestrians using velocity
obstacles and motion prediction. IEEE Intelligent Vehicles Symposium, 2004, pages 375–379, 2004.

[53] Edward T Hall. A system for the notation of proxemic behavior. American anthropologist, 65(5):
1003–1026, 1963.

[54] Dirk Helbing and Anders Johansson. Pedestrian, crowd and evacuation dynamics. Springer, 2011.

[55] Anders Johansson, Dirk Helbing, and Pradyumn K Shukla. Specification of the social force
pedestrian model by evolutionary adjustment to video tracking data. Advances in complex systems,
10(supp02):271–288, 2007.

[56] Adrien Treuille, Seth Cooper, and Zoran Popović. Continuum crowds. In ACM Transactions on
Graphics (TOG), volume 25, pages 1160–1168. ACM, 2006.

[57] Mikael Svenstrup, Thomas Bak, and Hans JAndersen. Trajectory planning for robots in dynamic
human environments. 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 4293–4298, 2010.

[58] Ninad Pradhan, Timothy Burg, and Stan Birchfield. Robot crowd navigation using predictive
position fields in the potential function framework. In American Control Conference (ACC), 2011,
pages 4628–4633. IEEE, 2011.

[59] Paolo Fiorini and Zvi Shiller. Motion planning in dynamic environments using velocity obstacles.
I. J. Robotics Res., 17:760–772, 1998.

[60] Markus Kuderer, Henrik Kretzschmar, Christoph Sprunk, and Wolfram Burgard. Feature-based
prediction of trajectories for socially compliant navigation. In Robotics: science and systems, 2012.

[61] Mark Pfeiffer, Ulrich Schwesinger, Hannes Sommer, Enric Galceran, and Roland Siegwart. Pre-
dicting actions to act predictably: Cooperative partial motion planning with maximum entropy
models. 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
2096–2101, 2016.

50

http://arxiv.org/abs/1705.06201

[62] Kihwan Kim, Dongryeol Lee, and Irfan A. Essa. Gaussian process regression flow for analysis
of motion trajectories. 2011 International Conference on Computer Vision, pages 1164–1171, 2011.

[63] Carl E. Rasmussen and Christopher K. I. Williams. Gaussian processes for machine learning. In
Adaptive computation and machine learning, 2009.

[64] Brian D. Ziebart, Nathan D. Ratliff, Garratt Gallagher, Christoph Mertz, Kevin M. Peterson, J. An-
drew Bagnell, Martial Hebert, Anind K. Dey, and Siddhartha S. Srinivasa. Planning-based pre-
diction for pedestrians. 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 3931–3936, 2009.

51

	Introduction
	Planning in Dynamic Environments
	Problem Definition
	Thesis Organization

	Navigation in Human Crowds : A Survey
	Taxonomy of Approaches
	Safe Robot Navigation
	Social Robot Navigation
	Trajectory Prediction
	Summary

	Path Planning in Dynamic Environments with Adaptive Dimensionality
	Introduction
	Related Work
	Problem Definition
	Approach
	Evaluation
	Discussion
	Summary

	Modeling Cooperative Navigation in Dense Human Crowds
	Introduction
	Related Work
	Problem Definition
	Approach
	Evaluation
	Discussion
	Summary

	Conclusion
	Summary
	Future Work

	Code and Publications
	Code
	Publications

	Public Datasets

