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Abstract

Operation of mobile autonomous systems in real-world environments and their partic-

ipation in the accomplishment of meaningful tasks requires a high-fidelity perceptual

representation that enables efficient inference. It is challenging to reason efficiently

in the space of sensor observations primarily due to the dependence of measurements

on the type of sensor, noise in measurements and in some cases, the prohibitive size

of sensor data. A perceptual representation that abstracts out sensor nuances is

thus required to enable effective and efficient reasoning in a priori unknown environ-

ments. This thesis presents a probabilistic environment representation that allows

efficient high-fidelity modeling and inference towards enabling informed planning (ac-

tive perception) on a computationally constrained mobile autonomous system. A

major challenge is the need for real-time generation and update of the model given

the computational and memory limitations on a mobile robot. This constraint has

generally resulted in a compromise on the fidelity of the model in existing literature

in the mobile robot community.

To address this challenge, the proposed approach exploits the structure of real

world environments and models dependencies between spatially distinct locations.

Gaussian Mixture Models are employed to capture these structural dependencies and

learn a semi-parametric continuous spatial model from the measurements of the en-

vironment. A hierarchy of these arbitrary resolution models enables a multi-fidelity

representation with the variation in fidelity quantified via information-theoretic mea-

sures. Crucially for active perception, the spatial model is extended to a distribution



over occupancy with a measure of uncertainty incorporated via a variance estimate as-

sociated with model predictions. The compact nature and representative capability of

the proposed model coupled with a real-time embedded GPU-based implementation

enables high-fidelity and memory-efficient modeling and inference as demonstrated

on real-world datasets in diverse environments.
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Chapter 1

Introduction

Autonomous systems are increasingly being deployed for operation in perceptually

challenging, diverse and potentially hazardous environments such as monitoring power

plants, information-gathering in underground mines and tunnels, and search and

rescue operations in disaster-hit areas. The operating environment for such operations

is not always known a priori and thus a representation of the environment to enable

reasoning with respect to the surroundings needs to be generated online. Information

pertaining to the environment is made available to the mobile systems via sensors

and thus a fundamental requirement to enable operation in real-world environments

is efficient reasoning and inference over acquired sensor measurements. It is not

always feasible to operate directly on the raw point measurements obtained from the

sensors. Major reasons for this include the dependence of the nature of measurements

on the characteristics of the sensor (for example, measurements from a LIDAR are

typically relatively sparse as compared to those from an RGBD sensor), noise in

the sensor measurements, computational tractability of operating on dense sensor

data and the inability of points to capture meaningful perceptual correlations in
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(a) (b) (c)

Figure 1.1: Diversity in perceptual information. (a) A high-clutter, small-scale engi-
neered environment (average range ≈ 3 m), (b) A low-texture, small-scale engineered
environment, and (c) A large-scale natural environment (average range ≈ 10 m.)

the environment, such as geometric shapes and structural dependencies. Another

important requirement to enable planning and navigation in real-world and a priori

unknown environments is the generation of a precise occupancy representation. A

major challenge in the online generation of a high-fidelity representation is posed by

the computational constraints on a mobile robot that include restricted processing

power and limited memory. Another significant challenge is the perceptual diversity

in real-world environments in terms of scale, clutter and type of structure (man-made

versus natural) (Fig. 1.1).

A computationally efficient perceptual modeling strategy is required that can scale

to potentially large and diverse environments and is able to handle sparsity in sen-

sor measurements. A compact representation of sensor data would enable efficient

inference via retention of the information contained in the data at a reduced memory

footprint. The representation would also enable homogenization of different sensing

modalities into a unified model that would serve as an interface to higher level per-

ceptual algorithms. Further, informed planning in the environment would be enabled

if an uncertainty measure is associated with model predictions.
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1.1 Approach

There are several characteristics that are desired in the perceptual representation to

be able to address all the challenges mentioned earlier. The following is a list of

desired properties that a sufficient spatial representation should have.

• High-Fidelity and Generative: The representation should provide a high-

fidelity representation of the sensor data. Also, it should be possible to re-

generate the sensor observations from the model as and when required.

• Memory-Efficient: The model should have a relatively small memory foot-

print. This is required to enable scalability to large environments.

• Computationally-Tractable: It should be possible to generate and update

the model online and in real-time on a compute-constrained mobile robot to

enable efficient operation in unfamiliar environments.

• Generalizable: The perceptual representation should be generalizable to di-

verse environments and robust to the peculiarities of a given environment. This

implies that minimal parameter-tuning should be required for obtaining a high-

fidelity representation across environments exhibiting variation in scale, degree

of clutter and the nature of structure.

• Robust to Sparsity: The representation should be able to handle sparsity

in sensor data and capture spatial dependencies induced by surfaces in the

environment.

• Hierarchical: The representation should enable operation at different degrees

of fidelity depending of the computational budget of the concerned applica-

tion. Further, it should be possible to quantify the variation in fidelity of the

3



representation across the hierarchy to enable informed selection of a particular

fidelity-level.

• Uncertainty Measure: The model should support a measure of uncertainty

associated with model predictions. This measure is crucial to enable informed

planning (active perception) in the operating environment.

Several approaches presented in literature including occupancy Grids [15] and

Normal Distribution Transform [42] make restrictive assumptions, such as conditional

independence between locations in space, to enable a computationally-tractable for-

mulation. However, these assumptions adversely impact the accuracy of the represen-

tation and scalability of the approach to large environments. Other approaches that

capture spatial dependencies, such as Gaussian Process Occupancy Maps ( [34, 52])

are prohibitively expensive to be feasible for large-scale operation. An approach based

on a hierarchy of Gaussian Mixtures is explored in this thesis to model the raw point

sensor observations. Gaussian Mixtures provide a compact semi-parametric represen-

tation capable of modeling arbitrary multimodal distributions given the right number

of components. Further, Gaussian Mixtures are generative in nature and inherently

able to encode spatial correlations and geometric connectivity. Also, the continuous

nature of the model enables principled estimation of information-theoretic measures

that enables of a hierarchy in terms of the information content of the model.

This thesis develops 3D Gaussian Mixture Models as an approach to large-scale

environment representation based on point clouds obtained from range sensors. The

3D model is extended into a probabilistic representation of occupancy via incorpo-

ration of free-space information. A thorough evaluation of the proposed approach is

provided along with a comparison to state of the art for online surface modeling and
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occupancy representation. The implications of the hierarchy are investigated and a

methodology to estimate the required number of components based on information-

theoretic measures is developed. A measure of uncertainty in the form of an associated

variance estimate is incorporated via a regression framework and characterized.

1.2 Thesis Contributions

The contribution of this work is the development of a methodology to represent

sequential sensor observations as a coherent, compact and high-fidelity world model.

The experiments conducted and the results presented in this thesis are limited to 3D

point cloud data. However, the proposed formulation is easily extensible to other

sensing modalities. Specifically, the thesis offers the following contributions:

• Large-Scale Generative Modeling: A methodology to learn a hierarchi-

cal generative model for point clouds amenable to incremental updates with

sequential point clouds thus enabling a large-scale environment representation.

• Continuous Probabilistic Occupancy Representation: A continuous dis-

tribution over occupancy, obtained from the generative surface model, via in-

corporation of free-space information.

• Online Inference: An associated measure of uncertainty via a variance esti-

mate to enable online inference with respect to the model.

• Real-time Implementation: A GPU-based parallelized implementation ca-

pable of operating in real-time on an embedded System-on-Chip (SoC).

• Evaluation on real-world datasets: A thorough evaluation on diverse real-

world datasets to investigate generalizability, accuracy and memory footprint
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of the proposed approach along with a comparison to state of the art.

1.3 Thesis Outline

The thesis is structured as follows.

• Chapter 2: A description of the approaches for surface modeling and occu-

pancy representation presented in the literature is covered.

• Chapter 3: The hierarchical generative spatial model based on Gaussian Mix-

tures is introduced and developed.

• Chapter 4: A model of observed free-space is developed and the surface model

is augmented into a probabilistic representation of occupancy via incorporation

of free-space information. An uncertainty measure is also introduced.

• Chapter 5: The proposed model is extended to incorporate information from

multiple sensing modalities and enable efficient multimodal inference.

• Chapter 6: The proposed approach is summarized and directions for future

work are explored.
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Chapter 2

Background

A high-fidelity representation of the environment is crucial for operation of mobile

robots in real-world environments. Consequently, there has been a myriad of work

toward enabling computationally tractable representations that can enable success-

ful accomplishment of the task at hand. A noticeable trend in the development

of environment and occupancy representations is the trade-off between computa-

tional complexity and model fidelity. Research in the late 1980’s and 1990’s com-

promised on model-fidelity to achieve a real-time viable representation [15, 49, 55].

This trend continued till early 2000’s when several higher fidelity representations were

proposed [76–78], leading to increased emphasis on precise representations. A ma-

jor motivation toward high-fidelity representations has been the growing availability

of industry-grade, high-resolution range sensors capable of providing dense measure-

ments of the environment. This chapter describes some of the significant efforts at

environment representation over the years that have influenced the development of

the proposed approach.

The approaches that have been proposed in the literature can be classified into one
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or more of the following categories: Voxel-based representations, that involve tes-

sellation of the environment into cells, Generative Surface Models, that involve

learning surface models based on sensor data and obtaining an occupancy repre-

sentation from the models, and Continuous representations, that approximate the

underlying occupancy distribution via a continuous function.

2.1 Voxel Based Representations

2.1.1 Occupancy Grids

Occupancy grid maps were introduced by Elfes [15] and Moravec [49] in 1989 and

have since been widely used as the spatial representation throughout the mobile

robot community. These maps involve discretization of the environment into cells of

a predefined fixed size, with the likelihood of occupancy stored per cell. Each cell is

classified as either occupied, free or unknown based on the number of sensor rays that

pass through the cell. The occupancy status of a cell is represented by the log-odds

ratio

li ≡ log
oi

1− oi
(2.1)

where oi is the probability of occupancy of the cell and the log-odds ratio is updated

as

li ← li + L(m|zt) (2.2)

where L is the inverse sensor-model [78].

The simplicity and computational efficiency associated with occupancy grid maps

comes at the expense of certain restrictive assumptions that adversely affect model

fidelity. Specifically, occupancy grids assume that the likelihood of cell occupancy
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Figure 2.1: Occupancy grid at a resolution of 4 cm. The vulnerability of the repre-
sentation to measurement sparsity results in holes in the map highlighted via a white
ellipse.

depends only on the rays that pass through the cell and is independent of other

measurements. This allows the joint probability of occupancy of the map m to be

expressed as the product of individual cell occupancy probabilities

p(m|x1:t, z1:t) =
∏
i

p(mi|x1:t, z1:t). (2.3)

where x1:t is the history of robot states and z1:t is the history of sensor measurements.

This conditional independence assumption makes occupancy grid maps computa-

tionally efficient but also precludes the model from capturing spatial dependencies,

resulting in incorrect classifications due to sparsity in sensor measurements. Sensor

sparsity typically results in holes in the occupancy map in regions that did not expe-

rience sensor rays. Further, the size of a voxel in an occupancy grid is a user-defined

parameter, generally referred to as resolution, that needs to be predefined. This limits

the the generalizability of the model to environments exhibiting structural diversity

as one fixed cell-size might fail to capture fine structural detail in one region of the
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environment and consume unnecessary memory in some other region. A high-fidelity

occupancy grid for a complex environment calls for a small cell-size that in turn leads

to a high memory footprint and increased vulnerability to sparsity of measurements

(Fig. 2.1).

2.1.2 Octrees

Octrees were introduced by Moravec for 3D computer graphics in order to compute

Fast Fourier Transforms [48]. Payeur et al. [55] proposed an approach for 3D modeling

in a robotics context based on Octrees [47] to address the memory concerns associated

with occupancy grids and achieve compactness via on-demand sub-division of cells.

Each cell in this representation gets divided into eight octets, if the cell experiences

partial hits and partial misses. A similar approach was used by Fournier et al. [20]

and Fairfield et al. [17] and extended by Hornung et al. [28], who incorporated online

map compression via pruning of cells with the same occupancy status. Octrees serve

to reduce the memory footprint in environments with a varying degree of clutter.

However, the leaf voxel-size of the tree needs to be specified as a parameter which

may impact representation fidelity in highly cluttered environments and require prior

knowledge of the environment that may not always be available. Also, the repre-

sentation assumes conditional independence between cells that affects representation

fidelity.

2.1.3 Elevation Maps

An approach to obtain relatively compact representation leverages elevation maps

that are a 2.5D parameterization of space obtained by associating height values to

cells organized in a 2D grid. However, this approach has representation limitations
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due to a single height value per cell. Specifically, it is challenging to obtain a high-

fidelity representation of a curved surface with an elevation map. Triebel et al. [82]

extend the 2.5D representation to incorporate multiple height values per cell while

Lang et al. [38] and Plagemann et al. [58] formulate the height value at each cell as

a non-parametric Bayesian Regression. 2.5D representations have been extensively

used for terrain modeling to enable humanoid robot locomotion [2, 26, 30]. However,

a 2.5D representation is limited by the resolution of the 2D grid and is vulnerable to

discretization errors.

2.1.4 Forward Sensor Models

The vulnerability to sparsity in sensor measurements can be attributed to the con-

ditional independence assumption made by occupancy grids (2.3). Specifically, occu-

pancy grids assume that the likelihood of cell occupancy depends only on the rays

that pass through the cell and is independent of other measurements. This assump-

tion has been addressed by Thrun [77] who proposed an approach for map updates

based on forward models to transform the updates into a latent-variable optimization

and thus maintain dependencies between cells. A forward sensor model considers

L(zt|m) instead of the L(m|zt) considered in inverse sensor models (2.2). This allows

a sensor measurement to contribute to more than one voxels in the representation

making it relatively more robust to sensor sparsity. Forward sensor models have

since been employed for efficient sensor-fusion [54] and robust sonar sensing [40].

The proposed optimization, however, lacks an analytic solution and Expectation-

Maximization (EM) [10] is employed to iteratively maximize the likelihood of sensor

observations given the map and the set of latent variables. An unfortunate drawback

of this approach is the requirement to optimize in a high-dimensional space, corre-
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sponding to the size of the map, to realize the map updates which may be challenging

for online operation.

2.2 Generative Surface Models

This class of techniques seeks to approximate the environment via models learned

based on acquired sensor data. The parametric surface models enable a compact

representation that is generative in nature and are capable of leveraging structural

dependencies to learn low complexity models.

2.2.1 Latent-Variable Optimization Methods

Thrun et al. [76] fit a set of 3D planes to represent the environment with the number

of planes estimated via a Bayesian prior that penalizes complex maps. Expectation

Maximization is employed to obtain a maximum likelihood assignment of raw sensor

points to planes aided by a set of binary correspondence variables. The model provides

a compact 3D representation of indoor environments and the generative nature allows

high-fidelity reconstruction of the sensor data. The approach, however, makes an

assumption of planarity of structure in the environment that precludes generalizability

to diverse environments. Also, it is non-trivial to incorporate free-space information

into the model and obtain an occupancy representation.

Veeck et al. [84] proposed a model based on polylines as a continuous environment

representation. Specifically, the environment is represented by a set of line segments

obtained via an optimization over the distance of the segments to the scan-points.

The optimization is initialized via the Bayesian Information Criterion [50] and the

initial set of line segments is then optimized to obtain the desired representation. This
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work was extended by Lakaemper et al. [37] to incorporate incremental updates via

fusion in a multi-robot context. The approach, however, is geared toward modeling

2D laser scans and has been found to be prone to consistency issues [56]. The work

of Veeck et al. was extended by Paskin et al. [53] to enable inference over occupancy

via a framework based on polygonal random fields. A polygonal coloring scheme is

employed to represent occupied and free regions as polygons with the color discon-

tinuities forming line segments. A drawback of this approach is the computational

cost of generating the map that, as noted by the authors, is prohibitive for online

operation.

2.2.2 Normal Distribution Transform

Normal Distribution Transform (NDT) is a spatial representation initially proposed

by Biber et al. [4] for 2D scan matching. The approach involves subdivision of the

2D plane into cells and a a normal distribution, that locally models the probability of

measuring a point, is assigned to each cell. The result is a piece-wise continuous and

differentiable probability density that can be used to match another scan using New-

ton’s method [19]. The approach was extended to 3D by Magnusson et al. [42] and has

since been used for fast scan-matching [72], loop-closure detection [41], anomaly detec-

tion [1], and point cloud segmentation [24]. NDT is a hybrid strategy as it augments

a tessellation-based approach with a generative Gaussian distribution. Representing

the laser scans that pass through a given voxel via a Gaussian distribution enables a

higher-fidelity representation than an occupancy grid of the same resolution.

The perceptual representation was extended to an occupancy mapping framework,

Normal Distribution Transform Occupancy Map (NDT-OM), by Saarinen et al. [68]
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(a) (b)

Figure 2.2: Illustration of the Normal Distribution Transform (NDT) representation
(a) on a point cloud dataset representing a cluttered engineered environment. The
red ellipses represent the covariance of the Gaussian distributions learned per cell
(cell-size: 10 cm). The representation limitations are highlighted in (b) where the
sensor data is reconstructed via sampling. Higher uncertainties are observed at cell-
boundaries (in the zoomed-in view) as a consequence of clipped Gaussian distributions
employed by the representation. RGB information is only for illustration.

via incorporation of a log-likelihood based occupancy update per cell. Free-space is

explicitly modeled via an occupancy grid and a multi-scale representation is enabled

through moment-based merging of Gaussian distributions. The representation is bet-

ter able to capture surfaces in the environment as compared to an occupancy grid and

is more robust to tessellation artifacts. The framework has been applied extensively

for mapping and localization [3, 67, 83]. However, the model assumes conditional cell

independence that restricts the support of the Gaussian distributions to the parent

cell leading to higher uncertainty at cell boundaries [70] (Fig. 2.2). Also, the repre-

sentation is sensitive to the size of the voxel and typically requires prior knowledge

of the operating environment to obtain desired performance (Sect. 3.4.1).
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2.3 Continuous Occupancy Representations

This class of approaches represent occupancy as a continuous probability distribution.

This makes the representation robust to sensor sparsity as the underlying distribution,

from which the sensor measurements are sampled, is being approximated. The two

noteworthy approaches presented in the literature that approximate the environment

as a continuous distribution are discriminative in nature.

2.3.1 Gaussian Process Occupancy Maps

A Gaussian process (GP) is a particular kind of statistical model where observations

occur in a continuous domain. In a Gaussian process, every point in some continuous

input space is associated with a normally distributed random variable. Moreover,

every finite collection of those random variables has a multivariate normal distribu-

tion, i.e. every finite linear combination of them is normally distributed. GPs are

non-parametric approaches in that they do not specify an explicit functional model

between the input and output. They can be viewed as a Gaussian probability dis-

tribution in function space and are characterized by a mean function, µ(x), and the

covariance function, k(x, x∗), where x and x∗ are both input vectors. Hence, the

process itself can be thought of as a distribution over an infinite number of possible

functions and inference takes place directly in the space of functions. By assuming

that the target data is jointly Gaussian,

f(x∗) = N (µ, σ) (2.4)
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where

µ = k(x∗, X) [k(X,X) + σ2
nI]−1 y (2.5)

σ = k(x∗, x∗) − k(x∗, X) [k(X,X) + σ2
nI]−1 k(X, x∗) (2.6)

Here X is a D x n matrix representing the training input data where D is the di-

mensionality of the data and n corresponds to the total number of measurements

employed by model. x∗ refers to a query (or test) location. Here, y represents noisy

observations of the function at the training locations, f(X); σ2
n is the variance of

the global noise; k( X , X ), or simply K, is the matrix of the covariance function

values evaluated at all pairs of training inputs. The vector k(X, x∗) is the covariance

between the training set and the test set defined depending on a covariance function

k that is parameterized by hyper-parameters θ. A detailed treatment of Gaussian

Processes can be found in the work of Rasmussen et al. [63].

O’Callaghan et al. [52] employ Gaussian Processes (GPs) as a non-parametric

Bayesian learning technique to model occupancy in the environment. The predictive

mean and variance are squashed via a sigmoid function to obtain probability of oc-

cupancy at a location. The non-parametric nature of the approach enables arbitrary

resolution representations of complex structure. GP based occupancy representations

have been used for path-planning [43] and exploration [21, 29]. The major drawback

of this approach is the high memory footprint resulting from the need to cache the

training data and the computational complexity which grows cubically with the size

of training data. Kim et al. [34] propose an occupancy mapping formulation lever-

aging sparse local Gaussian Processes. The training data is partitioned into grid

blocks of size given by the characteristic length of the covariance function and the

predictive mean and variance is estimated via an extended block. Incremental up-
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dates via Bayesian Committee Machines [81] has been proposed by Kim et al. [35]

and extended by Wang et al. [85] to further reduce the computational complexity via

test-data octrees. The scalability of Gaussian Process based mapping to potentially

large environments remains a concern as training data needs be to cached to estimate

mean and variance for a query location. Estimation of predictive mean and variance

requires inversion of the covariance matrix (2.5), the size of which depends on the

training data. Also, offline training of hyper-parameters requires prior knowledge of

the operating environment that may not always be available.

2.3.2 Hilbert Maps

Recently, Hilbert maps have been proposed by Ramos et al. [62] as an efficient al-

ternative to GP based mapping. Occupancy is represented as a linear discriminative

model operating on a high-dimensional feature vector obtained by projecting obser-

vations into a reproducing kernel Hilbert space. Advances in kernel approximations,

such as Random Fourier Features [61] and Nystrom Approximations [86], are lever-

aged to obtain feature vectors used to train the model via stochastic gradient descent.

The work has since been extended by Guizilini et al. [25] to make feature selection

more principled via k-means clustering and local queries more efficient via a KD-tree.

However, the number of clusters (or inducing points) required and the size of the

neighborhood for querying the model are user-defined parameters that might affect

the model accuracy. Also, extension of the approach to associate an uncertainty

measure with model predictions is not trivial.
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2.4 Comparison with the Proposed Approach

The approach proposed in this work borrows elements from the techniques described

in this chapter. The approach involves learning a continuous spatial model via a la-

tent variable optimization similar to the techniques presented in Sect. 2.2.1. Gaussian

Mixture Models (GMMs) are employed as a semi-parametric learning technique to

capture spatial dependencies and obtain a high-fidelity, compact environment repre-

sentation. The proposed methodology is similar in spirit to the work of Thrun [76] in

that Expectation Maximization is used to maximize joint likelihood of the data and

correspondence variables. However, a mixture of coupled Gaussian distributions is

learned instead of a set of decoupled 3D planes that enables the proposed representa-

tion to operate in non-planar environments. Also, information-theoretic measures are

employed to estimate the required number of components and a multi-fidelity repre-

sentation is enabled via a hierarchy of Gaussian Mixture Models. Occupancy in the

environment is approximated by a continuous distribution similar to the approaches

proposed in Sect. 2.3. However, a semi-parametric GMM is employed for both oc-

cupied and free space instead of a non-parametric Gaussian Process (Sect. 2.3.1) or

a kernel logistic regression (Sect. 2.3.2). Hierarchical Gaussian Mixture Models have

been proposed as a precise representation for point cloud data by Eckart et al. [12, 14].

A top-down hierarchy is proposed with each Gaussian component at level l further

divided into m components at level l + 1. However, the work is aimed at point

cloud registration and does not consider the challenges associated with large-scale

environment mapping.
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2.5 Choice of Model

The proposed approach employs a hierarchy of Gaussian Mixture Models as a multi-

fidelity representation of information pertaining to the environment acquired via sen-

sors. This section discusses the other candidate modeling techniques and provides

justification for using GMMs. Considering the high-degree of non-linearity in the

environment, simplistic models like linear regression are clearly not complex enough

to represent surfaces in the environment. High-degree polynomials might provide the

desired representative capability. However, the diversity in environments in terms of

the complexity of perceptual information makes estimating the required degree of the

polynomial challenging. Further, a hierarchical representation based on polynomial

models is non-trivial.

Kernel-based non-parametric methodologies are motivated as they do assume a

fixed functional form and are capable of approximating arbitrary functions given

enough data. Kernel-based approaches have been leveraged via Gaussian Process

Occupancy Mapping [34, 35, 52] and Hilbert Maps [11, 25, 62]. Non-parametric tech-

niques are inherently data-driven, and consequently, pose a challenge in terms of

scalability to large environments. More the size of data, more is the associated com-

putational complexity. A modeling technique that can approximate the fidelity of a

non-parametric approach but at a reduced computational and memory footprint is

thus required. A Gaussian Mixture Model (GMM) is an intermediate semi-parametric

model that can approximate a Gaussian Process given sufficient number of compo-

nents. Further, the associated memory footprint is significantly smaller as a result

of the parametric form of a Gaussian component. One major advantage with GMMs

is that the continuous GMM density function enables principled generation of a hi-
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erarchy based on the information-content of the pdf. A noteworthy approach to

hierarchical representation is based on Hierarchical Dirichlet Processes (HDPs) [75],

an extension of Dirichlet Processes that enables reasoning about hierarchies. How-

ever, HDPs are more suited to model data that exhibits a natural grouping of the

same set of shared elements (called atoms) across groups. Real-world environments

do not inherently exhibit such grouping making HDPs not so suitable for surface

modeling.

2.6 Summary

An overview of the various approaches to enable online surface modeling and occu-

pancy mapping presented in the literature is provided in this chapter. The techniques

can be categorized into three main classes: (a) Voxel-Based representations that dis-

cretize the environment into voxels and maintain the likelihood of occupancy per cell

assuming conditional independence with other cells. Several improvements have been

proposed to this representation to address memory concerns (Octomap), artifacts of

conditional independence (forward sensor models) and compactness of the model (El-

evation maps). (b) Generative surface models that learn a parametric model over

the environment to enable a compact representation. A hybrid strategy, that is a

combination of voxel-based representations and generative models is the Normal Dis-

tribution Transform (NDT) that learns a Gaussian distribution over the rays that

pass through a voxel. (c) Continuous Occupancy representations that learn a contin-

uous distribution over occupancy in the environment. Two approaches of significance

include Gaussian Process Occupancy Maps that employ Gaussian Processes to esti-

mate the occupancy distribution, and Hilbert maps that project the sensor data into
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a higher-dimensional space and employ logistic regression as a discriminative model

over occupancy.
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Chapter 3

The Spatial Model

The 3D multi-fidelity generative model based on a hierarchy of Gaussian Mixtures

is developed in this chapter. The number of components in the mixture is crucial

in determining the representation capability of the the model. An approach based

on information-theoretic principles is developed to estimate the mixture size required

for a high-fidelity and compact representation of the environment. An incremental

update strategy based on the novelty of information acquired via sensors is developed.

The approach enables the model to scale with the information-content of the environ-

ment instead of the size of the environment as is generally observed with voxel-based

approaches. In other words, more the number of objects and structural elements to

represent, more is the size of the model and vice versa.

The chapter begins with a discussion of Gaussian Mixture Models and the pro-

cedure for training them via Expectation Maximization. Information-theoretic mea-

sures are then introduced that enable estimation of the number of components re-

quired for a high-fidelity representation (referred to as fidelity threshold λf ). Algo-

rithms to generate and incrementally update the hierarchy are presented followed by
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an evaluation of the approach on real-world datasets.

3.1 Gaussian Mixture Models

Gaussian Mixture Models (GMMs) have been established as powerful statistical tool

to model multimodal probability distributions and have been used extensively in

Machine Learning literature. Given the right number of components, GMMs are

capable of modeling arbitrarily complex distributions and this is the main reason

for their widespread application to a diverse range of tasks. In image and video

processing, Gaussian Mixture Models have been used for background subtraction [39,

71, 89], image-segmentation [5, 57, 88], and object-detection and classification [18,

27, 45, 46]. In speech and natural language processing, they have been used for

speaker identification and verification [64–66], speech recognition [7, 59], and language

identification [79, 80]. In robotics, Gaussian Mixture Models have been employed for

learning dynamical systems [32, 33], and learning and representation of tasks and

policies [8, 9]. GMMs have also been employed for point cloud representation by

Eckart et al. [14] with occupancy grids generated via quantization of samples from the

distribution. However, to the best of our knowledge, this is the first time GMMs are

being employed to enable a probabilistic representation of occupancy via principled

incorporation of free space information.

3.1.1 Definition

A Gaussian Mixture Model is a parametric probability density function represented

as a weighted sum of Gaussian component densities. For this work, we want to learn

a model to represent 3D point cloud data. Let a GMM, G, contain J component
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Gaussian distributions specified by parameters, Θj = (µj, Σj, πj), where µj, Σj,

and πj represent the mean, covariance, and mixing weight for the jth component, with

j ∈ {1, J}. Given a 3D point cloud, Z, of size N , with points zi ∈ Z and assuming

that the points are i.i.d. samples of the surface being modeled, the likelihood of Z

being generated by G is

p(Z | Θ) =
N∏
i=1

p(zi | Θ) (3.1)

=
N∏
i=1

J∑
j=1

πj p(zi | µj, Σj) (3.2)

where

p(zi | µj, Σj) = N (zi | µj, Σj) (3.3)

Generally, for numerical stability, the log of the likelihood is used in optimization.

The log-likelihood is given as

ln p(Z | Θ) =
N∑
i=1

ln
J∑
j=1

πj p(zi | µj, Σj) (3.4)

3.1.2 Training

The log-likelihood of the data, Z, given the GMM parameters, Θ, (3.4) produces

an analytic gradient that is unsuitable for optimization because as no closed-form

solution exists for the minimum. As explained by Eckart et al. [13], a set of N x J

binary correspondence variables C = cij ∈ {0, 1} representing the assignment of

each point, zi, to a mixture component, Θj are incorporated to produce a tractable
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likelihood function. In other words, each point zi will have J binary correspondence

variables, representing the degree to which a point belongs to a mixture component.

The log-likelihood can then be factored as

ln p(Z,C|Θ) =
N∑
i=1

J∑
j=1

cij{ln πj + ln p(zi|Θj)} (3.5)

It is not feasible to solve the factored form because the value of C is unknown. How-

ever, if the correspondence variable cij was known for each zi , the joint likelihood

could be maximized by setting Θj to the sample mean and sample covariance based

on the points for which cij 6= 0. Conversely, if Θ was known, the probability of a

points correspondence with a mixture could be estimated via Bayes’ rule

p(cij | zi, Θj) =
p(zi | cij, Θj) p(cij | Θj)

p(zi | Θ)
(3.6)

=
πj N (zi | Θj)∑
j′ πj′ N (zi | Θj′)

(3.7)

The above equation is a typical instance of Bayes’ rule where the probability of

cij to take on a certain value is given by the product of the likelihood of the data

point zi to be represented by a mixture component Θj and the prior probability of cij,

normalized by the total probability given all other mixture components. Also, p(zi|Θ)

can be seen as a marginalization over mixture components of the joint distribution

p(zi, ci|Θ) where

p(cij | Θj) = πj
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and

p(zi | Θ) =
∑
j

p(cij | Θj) p(zi | cij, Θj)

However, since neither the correspondence labels C nor the model parameters Θ are

known, Expectation Maximization (EM) [10] is employed to iteratively estimate both

the correspondence variables and the component parameters.

EM has been established as a way to iteratively maximize the joint likelihood of

the data and an associated set of latent variables. Two steps are involved in every

iteration. The E-Step involves calculation of the expected value of the correspon-

dence variables given the current mixture parameters at the (k + 1)th-iteration.

E[cij] =
πkj p(zi | µkj , Σk

j )∑J
j′=1 π

k
j′p(zi | µkj′ , Σk

j′)
(3.8)

The M-Step involves maximizing the expected log-likelihood with respect to Θ con-

sidering E[cij]
def
= γij to be a constant.

Θk+1 = argmax
Θ

∑
ij

γij {ln πj + ln p(zi | Θj)} (3.9)

This optimization reduces to an analytic solution for the mixture parameters given
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as

µk+1
j =

∑N
i γij zi∑N
i γij

(3.10)

Σk+1
j =

∑N
i γij ziz

T
i∑N

i γij
− µk+1

j µk+1T

j (3.11)

πk+1
j =

N∑
i

γij
N

(3.12)

3.1.3 Initialization

The procedure to learn the parameters of a Gaussian Mixture Model via Expectation-

Maximization involves a non-trivial initialization step. EM requires the number of

Gaussian components and initial values for the parameters for each of the Gaussian

components as input. The number of components is crucial to the representation

fidelity of the GMM for a given dataset. The approaches generally used to estimate

the number of components include priors like the Bayesian Information Criterion [50],

Akaike Information Criterion [6] with k-means employed to initialize the parameters

for the components. Considering the significance of the size of the mixture model, an

information-theoretic approach is developed in this work as a principled initialization

strategy for the mixture model.

3.2 Information Theoretic Measures

Tools in information-theory enable study of transmission, processing, utilization, and

extraction of information. The basic entity, called entropy, relates to the uncertainty

associated with a random variable [69]. One of the major goals of this work is to

enable reasoning in terms of the information content of the environment instead

of the size of the environment. Reasoning in terms of information aligns with the
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approach that humans adopt when confronted with a complex environment. Humans

tend to reason about their environment in units of information such as a wall, cups,

chairs and so on. Approaches to environment representation that are based on a fixed

quantization (such as voxel-grids) scale with the size of the environment and are not

amenable to reasoning in terms of information. Efforts have been made in literature to

compress a voxel-based representation based on the affect of such compression on the

information-content of the map [51]. However, the base representation still involves a

tessellation of the environment that obfuscates the structural characteristics observed

in real-world environments.

The proposed approach leverages information-theoretic measures to estimate the

required model complexity to enable a high-fidelity representation of the environment.

Specifically, divergence measures are employed to estimate the similarity of Gaussian

Mixture Models and Gaussian components with in a mixture model. These measures

are reproduced here and used in Sect. 3.3 to enable hierarchy generation.

3.2.1 Kullback-Leibler Divergence

Divergence measures seek to provide a measure of distance or dissimilarity between

two pdfs. Here, we are interested in the divergence between two Gaussian distri-

butions and between two GMMs. The most well-known form of divergence is the

Kullback-Leibler divergence [36]. For a random variable X, the Kullback-Leibler

divergence, DKL, between two distributions, p(x) and q(x), is given by

DKL(p||q) =
∑
x∈X

p(x) log2

p(x)

q(x)
(3.13)

The closed form solution for Kullback-Leibler divergence between two Gaussian
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distributions f = N (µf ,Σf ) and g = N (µg,Σg) for D-dimensional data is given as

DKL(f ||g) =
1

2
(log
|Σg|
|Σf |

+ trace(Σ−1
g Σf )

+ (µf − µg)
TΣ−1

g (µf − µg) − D)

(3.14)

A closed-form approximation for KL Divergence between GMMs has been proposed

by Goldberger et al. [22]. For two GMMs, p and q, with M and K components re-

spectively and parameters (πm, µm,Λm) and (τk, νk,Ωk), it is given as

DKL(q, p) ≈
M∑
i=1

πi min
j∈{1,K}

(DKL(pi || qj) + log
πi
τj

) (3.15)

3.2.2 Cauchy-Schwarz Divergence

Cauchy-Schwarz divergence is a non-negative distance metric that takes on a value

of zero when its arguments are the same distribution. Unlike Kullback-Leibler di-

vergence, Cauchy-Schwarz divergence is symmetric in its arguments. For a random

variable X, the Cauchy-Schwarz divergence, DCS, between two distributions, p(x)

and q(x), is given by

DCS(p || q) = log

∑
x∈X p2(x)

∑
x∈X q2(x)

(
∑

x∈X p(x) q(x))2
(3.16)

for the discrete case and

DCS(p || q) = log

∫
x
p2(x)dx

∫
x
q2(x)dx

(
∫
x
p(x)q(x) dx)2

(3.17)
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for the continuous case.

A closed-form solution for CS Divergence between GMMs has been proposed by

Kampa et al. [31]. For two GMMs, p and q, with M and K components respectively

and parameters (πm, µm,Λm) and (τk, νk,Ωk), it is given as

DCS(q, p) =

− log(
M∑
m=1

K∑
k=1

πmτkzmk)

+
1

2
log(

M∑
m=1

π2
m|Λm|1/2, (2π)D/2

+ 2
M∑
m=1

∑
m′<m

πmπm′zmm′)

+
1

2
log(

K∑
k=1

τ 2
k |Ωk|1/2, (2π)D/2

+ 2
K∑
k=1

∑
k′<k

τkτk′zkk′)

(3.18)

where

zmk = N (µm | νk , (Λ−1
m + Ω−1

k ))

zmm′ = N (µm | µm′ , (Λ−1
m + Λ−1

m′ ))

zkk′ = N (νk | νk′ , (Ω−1
k + Ω−1

k′ ))

3.3 Hierarchical Spatial Model

The proposed model consists of a hierarchy of Gaussian Mixture Models representing

3D space X ∈ R3, and the mixture at any given level of the hierarchy differs in size and

fidelity from other levels. The GMM size decreases as one moves up the hierarchy and

corresponds to a decrease in fidelity of the representation. Expectation-Maximization

is employed to initiate model generation and information-theoretic measures are used

to estimate the number of components for every level of the hierarchy. Figure 3.1
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Figure 3.1: The proposed hierarchy of Gaussian Mixture Models. Each level is a
sufficient environment model with the lowest level (l = 0) providing the highest fidelity
representation. The size of the mixtures on moving up in the hierarchy corresponding
to a reduction in fidelity. Components at level l are merged (shown by black arrows)
to form components for level l + 1.

provides an overview of the hierarchy.

3.3.1 Model Definition

Let the lth level of the hierarchy (l ∈ {1, L}) be given by the GMM Gl. Let Gl contain

Jl component Gaussian distributions specified by parameters Θj = (µj, Σj, πj)

where µj, Σj, and πj represent the mean, covariance, and mixing weight for the jth

component, with j ∈ {1, Jl}. Given a 3D point cloud, Z, of size N , with points

zi ∈ Z and assuming that the points are i.i.d. samples of the space being modeled,

the likelihood of Z being generated by Gl is given by (3.1).

3.3.2 Model Generation

Estimation of the Fidelity Threshold

A crucial step in the generation of the multi-fidelity model is the estimation of the

number of components required to obtain a precise representation. An iterative strat-

egy is proposed to obtain the size of the GMM that best approximates the underlying

spatial distribution. A key observation is that there is a threshold on the GMM
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(a) Kullback-Leibler Divergence

(b) Cauchy-Schwarz Divergence

Figure 3.2: Variation of KL-Divergence (a) and CS-Divergence(b) for GMMs of size
varying from 300 to 116 with respect to the largest GMM of size 300. The possible
fidelity thresholds are highlighted. Increasing the size of the GMM beyond these
thresholds does not significantly affect the fidelity of representation as indicated by
the small decrease in divergence.
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size (hereafter referred to as fidelity threshold, λf ) beyond which the model fidelity

does not vary significantly even if more components are added. To leverage this

observation, a measure to quantify variation in model fidelity is required. The diver-

gence between Gaussian Mixture pdfs serves as the measure of relative model fidelity

and is demonstrated in Fig. 3.2 that shows the variation in KL-divergence and CS-

Divergence between a reference GMM and reduced size GMMs trained via EM on

the same dataset. The knee point is distinctly visible in the plot for KL-Divergence

which motivates using KL-Divergence for fidelity-threshold estimation in this work.

The presence of a distinct knee-point enables an iterative bottom-up approach that,

when initialized with a GMM of size greater than λf , generates GMMs of reduced

size until the fidelity threshold is obtained. The GMM of size equal to the fidelity

threshold forms the lowermost (highest-fidelity) layer of the hierarchy. The itera-

tive algorithm can be naturally extended to generate more levels in the hierarchy of

reduced-fidelity with the difference quantified via KL-Divergence.

Iterative Hierarchy Generation

Algorithm 1 and Figs. 3.3 and 3.4 outline the proposed bottom-up approach to gener-

ate a hierarchy of Gaussian Mixtures forming a multi-fidelity environment representa-

tion. Expectation-Maximization is employed to initialize the algorithm via parameter

estimation for the initial reference GMM (Line 4, Fig. 3.3a). The size of the reference

GMM needs to be greater than the fidelity threshold for correct estimation of the

λf . This size is referred to as the overestimate of fidelity-threshold, (λfo), and is

provided as a parameter to Algorithm 1. At every step of the iteration (Lines 6-16),

a reduced size GMM, M, is generated given the most recent GMM in the hierarchy,
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Algorithm 1: HGMM Generation

Result: HGMM G
1 λd, λfo, L, Z ← Input;

2 G ← {∅};
3 div ← 0, l← 0;

4 G ← EM(Z, λfo);

5 while true do

6 M← {∅};
7 for i ← 1... |Gl| do

8 θi, wi ← Ll,i;
9 for j ← i+1...|Gl| do

10 θj ← Gl,j;
11 if KLDivergence(θi, θj) < λd then

12 {θi} ← Merge(θi, θj);

13 end

14 end

15 M←M∪ {θi};

16 end

17 G ← G ∪M;

18 div ← KLDivergence(Gl,G0);

19 if ¬Pruned AND IsKneePoint(div) then

20 λf ← |Gl−1|;
21 Prune(G, λf );

22 end

23 if |Gl| < L then

24 break;

25 end

26 end

Gl (Fig. 3.3b). This is achieved by merging similar Gaussian components where the

measure of similarity is given by Kullback-Leibler (KL) Divergence between Gaus-
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(a) Initialization

(b) Merging of Gaussian Components

(c) Divergence calculation

Figure 3.3: Iterative Hierarchy Generation. The algorithm is initialized via Expec-

tation Maximization (a) followed by merging of components to generate reduced-size

GMMs (b) and calculation of KL-Divergence to estimate fidelity-threshold (c).
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(a) Obtaining the Lowest Level

(b) Lesser-Fidelity GMM Generation

Figure 3.4: Iterative Hierarchy Generation. The GMM corresponding to the fidelity
threshold is the high-fidelity representation (a) and forms the lowest level in the
hierarchy (b). The lesser fidelity levels are generated by continuing the merging-
based procedure.

sian distributions (3.14) and similarity itself is based on KL Divergence being less

than the similarity threshold, λd. KL Divergence between the current level, Gl, and

the bottom most level, G0, (Line 18) is used to estimate whether the knee-point and

thus the fidelity-threshold has been reached (Lines 19-20, Figs. 3.3c and 3.4a). Once

estimated, all levels of the hierarchy with size more than λf are pruned (Line 21)

and the GMM with size λf forms the bottom-most level of the hierarchy (Fig. 3.4b).

The algorithm terminates when the desired number of hierarchy levels (L) have been

generated (Line 23).
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3.3.3 Model Update

A consequence of the sequential motion of mobile robots is that a portion of the point

cloud, Z, obtained at any instant, contains information that has already been modeled

and the remaining portion contains novel information. The novel and redundant

portions of Z are estimated via calculation of the log-likelihood of the points, zi ∈ Z,

to be generated by the existing model, Gl=0 (3.4). Inspired by the work of Engel et

al. [16], an empirically determined novelty threshold, λn, is used to categorize points

as novel (Zn) versus redundant (Zr).

The update of Gl=0 with Zr proceeds via boot-strapping of EM with the already

learned parameters Θ. M-step is slightly modified to incorporate the posterior from

the previous point clouds as well as Zr. Let the support size of Gl=0 be N . Then,

following entities are defined for {Θj = (µj, Σj, πj)},

Sπj =
N∑
i

γij = Nπj

Sµj =
N∑
i

γij zi = Sπjµj

SΣj
=

N∑
i

γij ziz
T
i = Sπj(Σj + µj µ

T
j )

The updated mean, covariance and weights, given |Zr| = N ′ are

S ′πj = Sπj +
N ′∑
i

pij (3.19)

π′j =
S ′πj

N +N ′
(3.20)

µ′j =
Sµj +

∑N ′

i pij zi

S ′πj
(3.21)

Σ′j =
(SΣj

+
∑N ′

i pij ziz
T
i )

S ′πj
− µ′j µ

′T
j (3.22)
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Higher levels of the hierarchy are re-generated based on the procedure outlined in

Algorithm 1 (Lines 6-16).

A fresh HGMM, G ′, is learned for the novel point cloud, Zn, following the same

procedure as outlined in Algorithm 1. The levels of the existing HGMM, G, are then

augmented with the components of the corresponding levels of G ′ followed by weight

normalization. The required insight is that the points in Zn are minimally influenced

by the components in G as evidenced by the log-likelihood based novelty check. Thus,

a naive augmentation closely approximates the distribution that would be learned if

trained as a whole. The updated weight vector, πGl , for Gl with a support set of size

NGl is

πGl =
πGlNGl

NGl + NG′l
(3.23)

where NG′l is the support-set size of the G ′l .

The computational cost of calculating the log-likelihood for the purpose of novelty

detection, grows with the size of the model. To ensure real-time nature of the updates,

a relatively small sub-model of Gl=0 is maintained and used for novelty-check. Let the

sub-model be called the local model L. The local model is generated by discarding

the components from G that have a negligible contribution to the log-likelihood for

the current point cloud Z. Thus, only the components of G that have a non-negligible

maximum pdf value N (zi |Θj) over zi ∈ Z in (3.4) are retained in L.
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3.3.4 A Note on Parameters

The similarity threshold, λd, regulates the rate of merging of Gaussian components

to form higher layers of the hierarchy. A higher value of λd causes more components

to be merged at each level thereby increasing the difference in fidelity between subse-

quent levels. The divergence between Gaussian components tends to increase as the

number of GMM components used to represent the distribution decreases. Thus, λd

is incremented as the levels of the hierarchy are generated. It is, however, important

to note that the parameter needs to be tuned only once. The same values for λd are

observed to hold across all datasets on which the proposed approach is evaluated. The

overestimate of fidelity-threshold, λfo affects the accuracy of the model if it is not a

strict overestimate. Conversely, a very large value affects computational complexity.

The strategy used here involves applying a voxel-grid filter to the point cloud. The

size of the filtered point cloud is indicative of the overestimate for λf .

3.4 Evaluation

A quantitative and qualitative evaluation of the fidelity of the proposed spatial model

is presented in this section. Also, a comparison to an implementation1 of the Normal

Distribution Transform surface model (Sect. 2.2.2) in terms of fidelity is provided.

Two datasets have been used for this purpose. The first is a point cloud dataset (D1)

collected using an Asus Xtion Pro RGB-D sensor. The dataset represents an envi-

ronment exhibiting varying levels of clutter with low-texture walls in the background

and numerous objects in the foreground. The data-set contains 186 point clouds with

1NDT software. https://github.com/OrebroUniversity/perception\_oru-release [Ac-

cessed on 28th June, 2017]
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(a) (b)

Figure 3.5: Receiver Operating Characteristic (ROC) Curves for the highest-fidelity
level of the HGMM spatial model and NDT representation (cell-size 5 cm, 10 cm
and 15 cm) for D2 dataset (a) and the zoomed-in view of the relevant region of the
curve (b) . The proposed approach is observed to have a higher True-Positive rate and
Area Under the Curve (AUC) than NDT. The NDT representation is also observed
to be sensitive to cell-size.

odometry obtained from a motion-capture system. Figure 3.8a provides a represen-

tative snapshot of the dataset. The second dataset (D2) is a publicly available point

cloud dataset from University of Freiburg [73]. The dataset has 86 point clouds and

odometry at 1 Hz and captures the insides of a cluttered room (Fig. 3.6a).

3.4.1 Fidelity of the Spatial Model

The proposed model is trained on a sequence of subsampled point clouds from D2

and the highest-fidelity level is queried for the likelihood of the test-points to be rep-

resented by the model. The test-set consists of the set of points not made available

to the algorithm during training and free-space points sampled along the rays corre-

sponding to the test-set. The performance is compared to the Normal Distribution
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(a) Input point cloud data

(b) Reconstruction via sampling

Figure 3.6: The cumulative point cloud of the cluttered room environment from
University of D2 (a) and the reconstructed point cloud (b) obtained by sampling
from the GMM with an average size of 116 components forming the lowest level
of the HGMM. RGB information is for illustration only and obtained via nearest
neighbor association.
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Transform [42] surface model (cell-size 5 cm, 10 cm and 15 cm) via Receiver Operat-

ing Characteristic curves shown in Fig. 3.5 and generated by using the log-likelihood

value as a threshold to turn the generative model into a classifier. The proposed

approach is observed to achieve a higher true positive rate and Area Under the Curve

than the NDT representation. This can be attributed to the restricted support of the

Gaussian distributions due to the cell independence assumption in NDT that leads to

higher uncertainties at cell boundaries. Also, the accuracy of the NDT representation

is observed to be sensitive to the resolution of the voxel grid.

Figures 3.6 and 3.7 provide a qualitative evaluation of the spatial model. Point

cloud data from D2 is used to train the proposed hierarchical model. The point cloud

is then reconstructed via sampling from the highest-fidelity level of the surface-model.

Figure 3.7 shows the point cloud from the dataset and the high-fidelity reconstruction

via sampling. Snapshots of the same dataset are shown in Fig. 3.7 to highlight the

accuracy of the surface model.

3.4.2 Metric map from continuous distribution

The proposed technique can be considered an arbitrary resolution representation of

the environment. It is, thus, possible to generate any desired resolution representa-

tion via sampling from the surface model. This sections shows an occupancy grid

generated from the HGMM model and compares it to the occupancy grids generated

from competing techniques. To generate an occupancy grid from a continuous belief

distribution, samples are drawn and binned into voxels of the desired size. Sampling

from each component ensures coverage of the occupied space and as no points are

drawn from free space, a relatively small set of points needs to be sampled to generate
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(a)

(b)

Figure 3.7: Qualitative visual evaluation for the spatial model. (a,b) A snapshot
from the point cloud dataset D2 (left) and the corresponding reconstruction via
sampling from the lowest level of the hierarchical model (right). With an average size
of 116 components per point cloud, the HGMM based model provides a high-fidelity
reconstruction and is also able to handle sparsity in sensor data (b). RGB information
is for illustration only and obtained via nearest neighbor association.

the occupancy grid. Once the points have been sampled, they are binned into voxels

of the desired size.
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(a) Input point cloud

(b) Grid (c) NDT

(d) GPmap (e) HGMM

Figure 3.8: The occupancy map at 5 cm resolution for dataset D1 generated using
an occupancy grid (b), NDT-OM (c), GPmap (d) and HGMM (e). The gaps in the
naive grid and NDT-OM approach are clearly visible. GPmap and HGMM produce
dense occupancy grids due to the continuous distribution learned.

Figure 3.8 shows the occupancy map at 5 cm resolution generated by a grid,

NDT-OM, an implementation of GPmap [34] and the proposed approach. The map
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for NDT-OM is generated by querying the model for likelihood and categorizing based

on a threshold of 1e−5. The occupancy grid for GPmap is obtained by regressing from

test-points defined at a resolution of 5 cm.

3.5 Summary

A multi-fidelity spatial model is developed in this chapter via a hierarchy of Gaussian

Mixture Models (GMMs). The hierarchy consists of a GMM per level and each

GMM differs from the others in terms of the number of components and the fidelity

of representation. A methodology, governed by information-theoretic principles, to

estimate the required number of components in the levels of the hierarchy is presented.

The distinct knee-point in the growth of divergence when the size of the GMM is

reduced is leveraged to obtain the fidelity threshold, λf . An iterative algorithm to

generate the level l of the hierarchy by merging similar components in the level l− 1

is presented as a principled strategy to generate an information hierarchy.

The proposed surface model is also compared in terms of fidelity to Normal Distri-

bution Transform (NDT) surface representation and shown to be more accurate with

less manual tuning. A qualitative evaluation is done to demonstrate the fidelity of the

representation via reconstruction of input point cloud data leveraging the generative

properties of the model.
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Chapter 4

Probabilistic Representation of

Occupancy

The spatial model presented in Chapter 3 does not support queries for the probability

of occupancy at a given location. The model lacks free-space information and there-

fore, does not suffice to be a probabilistic representation of occupancy. In other words,

the spatial model is a generative representation of sensor data and a discriminative

model of occupancy is required to enable queries for occupancy probability.

This chapter extends the spatial model into a probabilistic representation of occu-

pancy. The 3D HGMM is extended to a 4-tuple model to enable a conditional prob-

ability distribution over occupancy. An explicit free-space model based on GMMs is

developed to incorporate free-space information into the model. Further, an uncer-

tainty measure in the form of a variance estimate, associated with model predictions,

is incorporated to enable online inference with respect to the model.
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4.1 Augmented Spatial Model

4.1.1 Distance Function

The 3D spatial model is augmented to a 4-tuple HGMM to enable reasoning over

occupancy. The additional variable W is a function of the 3D point cloud Z and the

sensor pose P and is called the distance function. The distance function maps every

point on the surface to zero and points outward from the surface to a distance from

the surface along a ray emanating from the sensor. Given a point on the surface, Q,

the distance for a point in free-space, F , along the ray ~QP is || ~QF ||. Thus, W is zero

for all points on the surface and positive for the points in free-space.

The additional variable W enables expression of occupancy as a conditional distri-

bution over spatial location. Specifically, considering occupancy as a binary variable

occ, the probability of occupancy at a 3D location X = x is

P (occ = 1 | X = x) = P (W = 0 | X = x) (4.1)

and similarly the probability of free-space at a location X = x is

P (occ = 0 | X = x) = P (W > 0 | X = x) (4.2)

4.1.2 The Conditional PDF

The conditional pdf for W over X is derived as follows based on the work of Sung [74].

The joint density, pX,W , can be represented as a GMM with J components specified

by parameters Θj = (πj, µj, Σj) where πj , µj and Σj represent the mixing weight,
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mean and covariance matrix as

pX,W (x,w) =
J∑
j=1

πjφ(x,w;µj,Σj) (4.3)

where

J∑
j=1

πj = 1, µj =

µjX
µjW

 , Σj =

ΣjXX ΣjXW

ΣjWX ΣjWW

 ,

and φ(x,w; µj,Σj) is the 4-tuple Gaussian distribution N (x,w; µj,Σj) representing

the pdf of the jth component. The joint density can be decomposed as follows by

partitioning each Gaussian component as proposed by Mardia et al. [44],

pX,W (x,w)

= pW |X(w|x) pX(x)

=
J∑
j=1

πjφ(w|x;mj(x), σ2
j ) φ(x;µjX ,ΣjXX)

(4.4)

where

mj(x) = µjW + ΣjWX Σ−1
jXX(x− µjX) (4.5)

σ2
j = ΣjWW − ΣjWX Σ−1

jXX ΣjXW (4.6)

The marginal density of X is obtained from (4.4) as

pX(x) =

∫
pX,W (x,w) dw =

J∑
j=1

πjφ(x;µjX ,ΣjX) (4.7)
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The conditional density pW |X(w|x) follows from (4.4)

pW |X(w|x) =
J∑
j=1

wj(x) φ(w;mj(x), σ2
j ), (4.8)

with the mixing weight

wj(x) =
πjφ(x;µjX ,ΣjXX)∑K
k=1 πkφ(x;µkX ,ΣkXX)

(4.9)

4.1.3 Model Training

The generation of the augmented HGMM follows essentially the same procedure as

outline in Algorithm 1. However, a small perturbation is required to the input point

cloud, Z. By definition, the value of the distance function is zero for all points zi in

Z. The point cloud, thus, needs to be augmented with points in free-space to enable

the model to learn the correlation between X and W . Typically, only a small set of

points in free-space are required to learn this correlation. The free-space points are

generated at a small distance ε (typically 1 mm) from the points in Z.

As a consequence of the addition of free-space points, the distribution over the

input point cloud is slightly altered. The vanilla spatial model corresponds to the

W = 0 and is given as

pX|W (x|0) =
J∑
j=1

wj(0)φ(mj(0),Σj) (4.10)
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where

mj(W = 0) = µjX + ΣjXW Σ−1
jWW (0− µjW ) (4.11)

Σj = ΣjXX − ΣjXW Σ−1
jWW ΣjWX (4.12)

wj(W = 0) =
πjφ(0;µjW ,ΣjWW )∑J

j′=1 πj′φ(0;µj′W ,Σj′WW )
(4.13)

4.2 Free-Space Model

Free-space, in the context of a mobile robot, implies the space present between the

sensor and the observed surfaces in the environment. This space is indirectly observed

by sensor rays passing through it. It is bounded on one side by the observed point

cloud Z and on the other side by the sensor. The free-space is not structurally

complex and this fact can be leveraged to obtain an efficient representation.

4.2.1 Model Training

Structural-sparsity in free-space is leveraged to develop a constant time algorithm for

learning a 4-tuple HGMM F to model indirectly observed free-space. The surface

model G is used as a prior for the size of the free-space model. Specifically, for every

Gaussian component in the GMM Gl, there is a corresponding component in Fl.

The parameter estimation of the jth component of Fl proceeds by sampling a set

of points, Sj, from the jth component of Gl. The set, Sj, together with the sensor-

pose, P , are used to sample points in free-space, at a fixed resolution, along the

rays originating at the P and terminating at the points in Sj. The values for W

are obtained by calculating the distance function from the sampled points and the
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sensor-pose. The mean and covariance matrix for the jth component in Fl are then

estimated from the set of sampled free-space points. The weight of the jth component

is set equal to the weight of the corresponding component in Gl.

The procedure outlined above is repeated for every component in Gl and for every

layer in G resulting in the generation of the free-space HGMM F . Clearly, the value

of distance-function for the free-space model is always positive and varies up to the

maximum distance of the sensor from the surface.

4.3 Unified Model

A unified model of occupancy is obtained via assimilation of information from both

occupied space and free space. One strategy to obtain a unified representation would

be to generate a unified dataset consisting of the point cloud Z and the free-space

points sampled based on zi and training the proposed HGMM on the unified dataset.

However, this approach is computationally expensive as the required number of com-

ponents and the size of the dataset is higher. Also, this approach affects the accuracy

of the spatial model as it gets diluted by the free-space model and the degree of this

effect depends on the density of free-space observations. Considering these challenges,

an approach is proposed that retains the high-fidelity generative model while enabling

probabilistic representation of occupancy.

The 4-tuple spatial model, G, (Sect. 4.1) and the free-space model, F , (Sect. 4.2)

are merged to form a unified model of occupancy, H, for the environment. The merg-

ing proceeds via weight normalization. The updated weight vector, πGl , for the lth

layer of the surface model, Gl, with a support set of size NGl is
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πGl =
πGlNGl

NGl + NFl

(4.14)

where NFl
is the support-set size of the Fl. This strategy is preferred over training

the hierarchy directly on a set containing hit-points and sampled free-space points in

order to cap the computational complexity and retain the high-fidelity surface model.

Given the unified occupancy model for the environment, the probability of occupancy

at any location x is expressed as

P (occ = 1 | X = x) = P (W = 0 | X = x)

=

∫ W=ε

W=−ε
pW |X(w|x) dw

=

∫ W=ε

W=−ε

J∑
j=1

wj(x) φ(w;mj(x), σ2
j )

(4.15)

where ε is a small integration interval. The probability of a location to be in free-

space (4.2) is expressed as

P (occ = 0 | X = x) = P (W > 0 | X = x)

=

∫ W=∞

W=ε

pW |X(w|x) dw

=

∫ W=∞

W=ε

J∑
j=1

wj(x) φ(w;mj(x), σ2
j )

(4.16)
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4.3.1 Variance Estimate

A mean function and a variance estimate is regressed from the unified occupancy

distribution, based on the work of Sung [74]. A mean function is obtained from (4.5)

and (4.9) as the weighted average of component-wise means.

m(x) = E[W |X = x] =
J∑
j=1

wj(x) mj(x) (4.17)

A variance estimate associated with the regressed mean is obtained from (4.17) as

v(x) = E[(W |X = x)2]− E[W |X = x]2

=
J∑
j=1

wj(x)(mj(x)2 + σ2
j )− (

J∑
j=1

wj(x)mj(x))2
(4.18)

The variance estimate forms a measure of uncertainty associated with model predic-

tions that enables informed planning for the purpose of active perception.

4.4 Results and Analysis

The proposed approach is evaluated in this section to assess the fidelity of the occu-

pancy representation along with the associated memory-footprint. The correctness

of the variance estimate is investigated and the real-time viability of the proposed

formulation on a computationally-constrained processor is assessed. Three datasets

are used for this evaluation. The first dataset FR ROOM is publicly available [73]

and is collected using an RGBD sensor. The dataset represents a small-scale clut-

tered environment where the measured depth ranges up to 3.5 m. The second dataset
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MINE represents a larger-scale environment. This dataset is collected using a Velo-

dyne VLP-32 LIDAR in an underground mine with the average depth ranging from

8 m to 9 m. The dataset extends over 1 km in length and contains significantly

less structural detail. The third dataset PIT is collected using a Velodyne VLP-16

LIDAR in an open pit and represents an unstructured environment with the average

measured depth ranging from 15 m to 17 m.

The proposed framework was implemented in C++ using the Robot Operating

System (ROS) framework [60] and leveraging the ArrayFire library [87] for a Graph-

ics Processing Unit (GPU)-based parallelized implementation. A comparison to the

implementations of GPOctoMap [85], NDT-OM1 [68] and Octomap2 [28] in terms

of fidelity, memory-footprint and generalizability is also provided. It is important

to note that the same set of parameters are used for the HGMM approach for all

the experiments reported here. The novelty threshold is set to −10.5 and the simi-

larity threshold is initialized to 0.9 and iteratively incremented by 0.2 (Sect. 3.3.4).

The parameters for the competing techniques are tuned per dataset and stated when

required in the following sub-sections.

4.4.1 Fidelity of the Occupancy Representation

The accuracy of the unified occupancy model, H, is characterized in diverse environ-

ments represented by the three datasets (FR ROOM, MINE, PIT) and compared

to Octomap, NDT-OM and GPOctoMap. Figure 4.1 presents the ROC curves for

the three datasets. For FR ROOM, the cell-size for Octomap is set to 5 cm and

1NDT-OM software. https://github.com/OrebroUniversity/perception\_oru-release

[Accessed on 28th June, 2017]
2Octomap software. https://github.com/OctoMap/octomap [Accessed on 28th June, 2017]
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(a) FR ROOM (b) MINE

(c) PIT

Figure 4.1: Receiver Operating Characteristic curves for the proposed probabilistic
occupancy representation (HGMM) and GPOctoMap, NDT-OM and Octomap. The
HGMM approach is observed to maintain level of accuracy across all three datasets,
FR ROOM (a), MINE (b) and PIT (c), while the competing techniques appear
to be sensitive to environmental traits and sensor characteristics.

that of NDT-OM is set to 10 cm. The hyper-parameter training for GPOctoMap is

done on a subsampled version of the data. The characteristic length and σf are 0.1 m

and 0.5 respectively. It is observed (Fig. 4.1a) that the proposed approach matches

the performance of NDT-OM and Octomap in terms of AUC measure, but has a

higher true-positive rate. The continuous nature of the HGMM approach makes it
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more robust to sensor sparsity leading to more correct classifications. GPOctoMap

is observed to have the highest false-positive rate. This is indicative of the fact that

the fixed characteristic length used for GP Regression affects generalization of the ap-

proach to the whole environment. The HGMM approach has a smaller false positive

rate as it is not restricted by a fixed characteristic length.

For MINE, the cell-size for Octomap is increased to 15 cm and that of NDT-OM

to 20 cm. The characteristic length for GPOctoMap is found to be 0.3 m. It is

observed (Fig. 4.1b) that sparsity of the data, induced by a larger-scale environment

and the nature of the sensor, significantly affects the accuracy of both NDT-OM

and Octomap while the proposed approach maintains its precision, matching that of

GPOctoMap. The same set of parameters, as used for MINE, are used for the dataset

PIT for all techniques. The performance of Octomap, NDT-OM and GPOctoMap

are observed to deteriorate while the HGMM approach maintains its level of fidelity,

as shown in Fig. 4.1c. It can be concluded from Fig. 4.1 that the proposed approach

is able to generalize to diverse environments while the performance of the state of the

art is affected by the environment and sensor characteristics.

4.4.2 Multi-Fidelity Representation

The implications of the multi-fidelity representation are quantitatively evaluated in

Fig. 4.2 for PIT. It is observed that the reduction in memory footprint by 50% (from

320 to 160 bytes per point cloud) corresponds to a drop in AUC by 5% (from 0.95 to

0.9). A qualitative visualization of the affect of the hierarchy in terms of reduction

in fidelity is shown in Fig. 4.3 via a plot of the probability of occupancy predicted by

different layers of the hierarchy. The predictions corresponding to the level l = 0 and

l = 4 are shown with the difference in predictions as a consequence of the drop in
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(a) (b)

Figure 4.2: Variation of the accuracy and memory footprint of the models at different
levels of the hierarchy plotted against the variation in KL-Divergence (a). A reduction
in AUC of 0.05 is observed corresponding to a reduction in memory footprint by 50%.
The corresponding ROC curves are shown in (b).

fidelity, highlighted with ellipses. It is observed that the model at level l = 4 is slightly

noisier than that at level l = 0. Specifically, the probability distribution is less sharp

in some sections (shown by white ellipses) and the model struggles to capture the

observations corresponding to the vehicle (shown by red ellipses). A similar pattern

is observed in Fig. 4.4 that evaluates the fidelity of the surface model for FR ROOM

with the GMM at level l = 4 generating slightly lesser fidelity reconstructions as

highlighted by red ellipses.

4.4.3 Memory Footprint

A comparison of the memory footprint of the HGMM approach to the state-of-the-

art approaches is shown in Table 4.1. The same set of parameters, as mentioned in

Sect. 4.4.1, are used and the corresponding model fidelity is reported in Fig. 4.1. For
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(a)

(b) (c)

Figure 4.3: Qualitative evaluation of the implications of the hierarchy on the occu-
pancy distribution. The probability of occupancy, visualized via a heat-map (proba-
bility increases from blue to green), for the levels l = 0 (b) and l = 4 (c) for the input
point cloud dataset, PIT (a). The lower-fidelity model is observed to be less sharp
(white ellipse) and tends to miss on the vehicle in the dataset (red ellipse).
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(a)

(b) (c)

Figure 4.4: Qualitative evaluation of the implications of the hierarchy on the surface
model. The reconstruction of a snapshot from FR ROOM (a), for the higher-fidelity
level l = 0 (b) and lower-fidelity level l = 4 (c). The lower-fidelity model is observed
to generate noisier reconstructions for complex surfaces (red ellipses) as compared to
the higher-fidelity representation. RGB information is for illustration only and not
obtained from the model.

all techniques, the footprint increases with the scale of the environment. However,

the memory footprint of the proposed approach is observed to be significantly less

than all the other techniques for all datasets. The proposed approach is thus able to

provide a high-fidelity representation at significantly reduced memory footprint.
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Dataset Scans Method Memory (KB) Memory / Scan (KB)

FR ROOM 1361

Octomap 8987 6.60

NDT-OM 1020 0.75

GPOctoMap 3794 2.79

HGMM 274 0.20

MINE 3043

Octomap 191126 62.41

NDT-OM 41785 13.73

GPOctoMap 145550 47.83

HGMM 1792 0.59

PIT 2006

Octomap 646718 322.42

NDT-OM 83263 41.53

GPOctoMap 156218 77.88

HGMM 2362 1.18

Table 4.1: Comparison of the memory footprint for the lowest level of the proposed

hierarchy with competing techniques for three datasets (corresponding to Fig. 4.1).

The HGMM approach is observed to have a significantly reduced memory footprint

for all datasets.

4.4.4 Variance Estimate Characterization

A comparison of the proposed technique with GP Regression is provided to assess

correctness of the variance estimate associated with the model predictions. For this,

a dataset is generated consisting of samples xi ∈ R and the target function value

corrupted with noise given as

yi = sin(3xi) +N (0, σ2) (4.19)

Both the HGMM model and GP Regression are trained with a sequence of 25 sample-

sets with each set containing 500 uniformly sampled values xi ∈ [−2, 2] and corre-

sponding corrupted output with σ = 0.05. The models are then queried for mean and
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(a) Noisy Input (b) Converged GP

(c) GMM: Point cloud 1 (d) GMM: Point cloud 25

(e) GP: Entropy Curve (f) GMM: Entropy Curve

Figure 4.5: Characterization of the variance estimate from the proposed framework
and Gaussian Process Regression. (a) A sequence of 25 sample-sets each consisting of
500 samples from the simulated noisy function (4.19) (σ = 0.05) is provided as input
to a GP and the proposed framework. The converged GP mean and variance for a
test-set (b) and the initial and final state of the GMM with λf = 14 (d,e) are shown.
The rate of convergence is demonstrated via differential entropy curves (c) and (f).
Both approaches converge to the correct variance estimate and similar entropy values.
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variance estimates for a fixed test set. Figure 4.5 shows the results of this experiment.

The proposed approach estimates the fidelity threshold as λf = 14. The initial

and final configuration of the GMM components is shown in Figs. 4.5c and 4.5d and it

is observed that the proposed approach converges to a variance estimate same as the

injected input noise. The rate of convergence of the proposed approach is compared

to that of GP Regression in Figs. 4.5f and 4.5e via a differential entropy curve. It

is observed that given the same sequence of points, both approaches converge to a

similar entropy value, even though the initial entropy for GP Regression is lower than

that of the HGMM. The proposed approach, thus, yields similar performance to a

GP Regression framework while eliminating the need to store input data in memory.

A qualitative visualization of the measure of uncertainty is provided in Fig. 4.6 via

a heat-map of the variance estimate associated with the model. The model is trained

on dataset FR ROOM and queried for variance at a set of uniformly sampled points

on the surface. It is observed that the regions with a higher variance estimate corre-

spond to regions with noisier sensor observations such as table-edges and edges of the

monitor (caused by state-estimation noise) which aligns with reasonable expectation.

4.4.5 Real-time viability

The high-degree of parallelizability of Expectation-Maximization, likelihood estima-

tion, and posterior probability calculation is exploited via a GPU based implementa-

tion of the proposed framework. Also, the sequential nature of the motion of mobile

robots (aerial or ground) helps to bound the computation required per point cloud,

as the percentage of novel information is limited. The run-time complexity of the

framework thus scales with the amount of novelty in subsequent sensor observations.
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(a)

(b)

Figure 4.6: Qualitative evaluation of the variance estimate obtained from the pro-
posed framework. For a snapshot from FR ROOM (a), the variance estimate is
calculated for a set of uniformly sampled locations on the surface and visualized via a
heat-map (b) ( variance growing from blue to yellow). The variance estimate is higher
at locations where the sensor measurements are expected to be noisy (table-edges)
and the monitor surface which is visibly noisy in the input point cloud.

The robustness of the HGMM formulation to sparsity of measurements is leveraged

via subsampling of the input point cloud.
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The proposed approach was implemented on NVIDIA Jetson TX23, an embedded

level System-on-Chip with a discrete CUDA-enabled GPU designed for constrained

autonomous systems. The framework operated at a rate of 24 point clouds per second

on the TX2 for FR ROOM dataset and 18 point clouds per second for MINE and

PIT datasets.

4.5 Summary

The spatial model is extended into a probabilistic representation of occupancy in this

chapter. To accomplish this, the surface model is augmented into a 4-tuple HGMM

with the fourth variable being the distance function. The distance function maps

every point on the surface to zero and points outward from the surface to a distance

from the surface along a ray emanating from the sensor.Thus, it is zero for points on

the surface and positive for points in free-space. A natural formulation to enable a

probabilistic representation of occupancy based on the distance function is introduced.

The training procedure is slightly perturbed to introduce free-space observations to

enable correlation between X and W to be learned.

A free-space model is introduced to enable incorporation of free-space information

into the model. Free-space is defined as the space through which sensor rays pass.

In other words, it is space bounded by the point cloud on one end and the sensor

on the other. The surface model is leveraged to estimate the number of components

in free-space model and the structural sparsity in free-space is leveraged to obtain a

constant-time algorithm to generate the model. The free-space model and the surface

3NVIDIA Jetson TX2. https://developer.nvidia.com/embedded/buy/jetson-tx2 [Accessed

on 9th July, 2017]
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model are then merged to obtain a unified probabilistic model of occupancy.

The proposed representation is evaluated in terms of fidelity, memory footprint

and generalizability to diverse environments and compared to the state-of-the-art ap-

proaches including Octomap, GPOctomap and NDT-OM. The proposed approach

is shown to be more robust to environment peculiarities than competing techniques

while having a significantly smaller memory footprint. The implicatons of the hier-

archy are also investigated and the real-time viability of the proposed approach is

assessed via a GPU-based implementation.
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Chapter 5

Multimodal Belief Distribution

A homogeneous representation of information from multiple sensing modalities that

allows efficient reasoning of the correlation between the modes of information enables

absolute abstraction of the underlying sensor and its characteristics. Also, homoge-

nization of information from multiple channels introduces robustness to sporadic loss

of data resulting from sensor malfunction or adverse environment conditions . A mul-

timodal representation enables a compact representation of the various properties of

the operating environment, such as color, temperature, pressure, and texture, that, in

turn, would enable numerous diverse robotic applications ranging from manipulation

to active perception. A key challenge in modeling multimodal information is the de-

pendence of computational complexity of any learning technique on the dimensionality

of the data. This computational burden associated with training high-dimensional

data renders online learning of a model practically infeasible. A multimodal model is,

however, essential to enable reasoning over the correlation between different informa-

tion modalities. This chapter develops an efficient strategy to generate multimodal

models of the environment that gets around the curse of dimensionality by enabling
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principled and efficient approximation of the correlation between the modes of infor-

mation based on prior belief. Preliminary results demonstrating the implications of

the proposed approach are also presented.

5.1 Multimodal Model

The proposed approach enables an efficient multi-fidelity, multimodal representation

of the environment by training a set of J Hierarchical Gaussian Mixture Models

(HGMMs) for J information modalities, instead of learning a single J-tuple HGMM.

Employing a set of HGMMs is computationally feasible as the training for each model

is independent of the others enabling parallelization of the training procedure. How-

ever, learning independent models for each sensing modality precludes the ability to

learn correlations between the information modalities. An approach to enable ap-

proximation of the correlation via inference based on prior observations is proposed

and developed in this section.

5.1.1 Definition

Let a location in space be represented by the random variable X ∈ R3. Let there be

J modes of information available as input and the ith mode be given as Λi, i ∈ {1..J}.

It is assumed that the data from different sensors is registered. This implies that,

for instance, the R, G, and B values at each location in space observed by the range

sensor is known. It is also assumed that the sensor observations for all information

modalities are real-valued, (Λi ∈ R).

The proposed multimodal model consists of a set of Hierarchical Gaussian Mix-

ture models, one per information modality. For each sensing modality, an HGMM to
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represent the joint density p(X,Λi) is learnt based on the input data. This results

in J 4-tuple Hierarchical Gaussian Mixture Models. Considering the independence

of the hierarchy generation on multimodal inference, the discussion going forward is

based on the lowest level of the HGMM. Let the lowest level GMM corresponding to

the ith modality contain K component Gaussian distributions specified by parame-

ters, Θk = (µk, Σk, πk), where µk, Σk, and πk represent the mean, covariance, and

mixing weight for the kth component. Then, the ith model is expressed as

p(X,Λi) =
K∑
k=1

πkN (x, λi;µk,Σk) (5.1)

where

K∑
k=1

πk = 1 µk =

µkX
µkΛi

 Σk =

ΣkXX ΣkXΛi

ΣkΛiX ΣkΛiΛi



Based on the regression framework developed in Sect. 4.1.2, the value of Λi at any

spatial location X = x can be obtained as the expected value of

pΛi|X(λ|x) =
K∑
k=1

wk(x) φ(λ;mk(x), σ2
k), (5.2)

with the mixing weight

wk(x) =
πkφ(x;µkX ,ΣkXX)∑K

k′=1 πk′φ(x;µk′X ,Σk′XX)
(5.3)

and

mk(x) = µkΛi
+ ΣkΛiX Σ−1

kXX(x− µkX) (5.4)

σ2
k = ΣkΛiΛi

− ΣkΛiX Σ−1
kXX ΣkXΛi

(5.5)
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The expected value (for 5.2) is given as

m(x) = E[Λi|X = x] =
K∑
k=1

wk(x) mk(x) (5.6)

and the associated variance estimate as

v(x) = E[(Λi|X = x)2]− E[Λi|X = x]2

=
K∑
k=1

wk(x)(mk(x)2 + σ2
k)− (

K∑
k=1

wk(x)mk(x))2
(5.7)

5.1.2 Training

The training for each HGMM essentially follows the same procedure outlined in Al-

gorithm 1 with the only difference being that a 4-tuple HGMM is learned instead of a

3D model. Registered point cloud data and Λi values are used for training the models.

The training dataset consists of 4-tuple data-points of the form {X ∈ R3,Λi ∈ R}.

No augmentation via sampled data as proposed in Sect. 4.1.3 is required for training.

5.2 Cross-modal Inference

The proposed approach learns independent HGMMs for the input information modal-

ities. This precludes the approach from learning the correlation between the modali-

ties which in turn disables querying for the value of one modality given the value of

another. Correlation between input modalities enables inference of the value of a miss-

ing modality (for instance, due to sensor malfunction), given the values of the other

modalities resulting in a robust environment representation. The proposed approach
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enables approximation, via inference, of the correlation between input modalities

thereby enabling a robust representation at a reduced computational cost.

5.2.1 Location-based Priors

The key idea that is leveraged to enable inference of one modality based on another

is that the observations acquired via sensors pertaining to the various modalities are

tied to a physical location in the environment. These observations obtained at some

location in the past can be leveraged as prior belief to infer a missing modality at

the query location. This mechanism based on prior belief is inspired from everyday

human behavior. Humans tend to develop beliefs based on experiences that are then

used to inform their choices and actions in everyday life. For instance, a person who

has operated a car before and comes across another can infer the kind of sound it

would make if turned on. Here, the visual information modality is enabling inference

of the audio modality based on prior belief. A similar framework is proposed in this

work with the prior belief associated with spatial location instead of time. The system

develops a belief distribution as it observes the environment and employs the belief

to infer missing information when required.

5.2.2 Cross-modal Queries

The proposed framework enables inference of correlation via exploiting the prior belief

developed while generating the model. The spatial association of belief is exploited via

the variable, X, that is shared among the 4-tuple joint distributions for all modalities

(5.1). In other words, the correlation between two modalities, Λi and Λj, can be

inferred from the corresponding distributions of Λi and Λj over X.

Consider the task of estimating the value of the modality, Λi, at some location,
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xq, given the value of another modality, Λj = λj. The first step in leveraging prior

belief is to obtain the locations in space at which a similar value of Λj was observed.

This is achieved by obtaining the distribution of X over Λj from (5.2) as

pX|Λj
(xq|λj) =

K∑
k=1

wk(λj) φ(xq;mk(λj),Σk) (5.8)

where

wk(λj) =
πk φ(λj; µkΛj

, ΣkΛjΛj
)∑K

k′=1 π
′
k φ(λj; µk′Λj

, Σk′ΛjΛj
)

(5.9)

and

mk(λj) = µkX + ΣkXΛj
Σ−1
kΛjΛj

(λj − µkΛj
) (5.10)

σ2
k = ΣkXX − ΣkXΛj

Σ−1
kΛjΛj

ΣkΛjX (5.11)

Based on (5.9), the set of components, S, that have a non-zero weight for Λj = λj

is obtained. These components represent regions in the environment where the value

of Λj ≈ λj has been observed. A set of candidate locations, L, is then obtained via

calculation of the expected value of X for every component in S based on (5.10).

From the set of locations, L, where Λj was observed to be close to λj, the location

that provides the most relevant prior, xp, is selected via likelihood maximization.

xp = argmax
x∈L

p(λj|x) (5.12)

Having obtained the most likely location xp to be used as a prior, the expected value

of Λi is regressed based on (5.4) and (5.6).

E[Λi = λi|X = xp] =
K∑
k=1

wk(xp) mk(xp) (5.13)
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5.2.3 Multiple Priors

The formulation developed in Sect. 5.2.2 can be extended to incorporate multiple

priors. Information from multiple other sensing modalities is beneficial when inferring

the expected value of the target modality, Λi, at some location, xq, where the model

for Λi does not exist, or is lesser fidelity than desired. Absence of desired model-

fidelity can occur as a consequence of sensor malfunction, high degree of sparsity, or

adverse environment conditions.

Let there be J observed information modalities, expressed as Λj, j ∈ {1, J}, at the

query location, xq. The target modality is Λi, i /∈ {1, J}. To incorporate information

from multiple priors, the set of locations, L, (Sect. 5.2.2) is augmented to contain

candidate locations based on the models of each of the available modalities, Λj. The

most pertinent prior location, xp, is chosen via maximization of the sum of likelihood

of the models given L.

xp = argmax
x∈L

J∑
j=1

p(Λj = λj | x) (5.14)

The expected value of Λi is regressed based on (5.4) and (5.6).

It is important to note that the proposed formulation is naturally able to handle

contradictory priors. If two locations are equally relevant to be used as priors, the

formulation will arbitrarily select one of them. This approach aligns with human

behavior when confronted with contradicting equal-priority choices.

5.3 Results and Analysis

A qualitative and quantitative evaluation of the proposed approach is presented in this

section. The other modes of information considered include the R, G, and B channels
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of the color spectrum. The dataset used for this evaluation is the publicly available

FR ROOM dataset [73] collected using an RGBD sensor. The dataset represents a

small-scale cluttered environment and provides RGBD data with ground-truth state

estimates.

5.3.1 Fidelity of the Model

A qualitative evaluation of the fidelity of the model is presented in Fig. 5.1. The

proposed multimodal model is trained for R,G, and B channels for a snapshot of the

dataset. The model is then queried for the color information at a set of points on

the observed surface, based on (5.6). The point cloud with R,G, and B information

obtained from the model is shown in Fig. 5.1b. It is observed that the proposed

approach is able to provide a high-fidelity representation of the data. Noise in the

reconstruction is observed at some locations (for instance, on the monitor screen).

However, the associated variance estimate allows quantification and localization of

the noise and enables remedial actions to improve the fidelity of the model at the

noisy locations. Figs. 5.1c, 5.1d, and 5.1e plot the associated variance estimates for

the red, green, and blue models respectively. It is observed that the noise on the

monitor screen is primarily due to a lower fidelity R-model and the noise along the

window-sill is caused by the B-model. The root cause of the noise is deduced to be

related to initialization and is discussed in Sect. 5.3.3.

A quantitative evaluation of the model fidelity is provided in Table 5.1. The

second column provides the Coefficient of Determination1 (R2-score) for the three

1Coefficient of Determination https://en.wikipedia.org/wiki/Coefficient_of_

determination [Accessed on July 19th, 2017].
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(a) (b)

(c) (d) (e)

Figure 5.1: Qualitative evaluation of model fidelity. The proposed model is trained on
a snapshot of FR ROOM (a) and R, G, and B values are regressed to reconstruct
the input point cloud (b). The noise in reconstruction is quantified via variance
estimates (heat-map with variance growing from blue to yellow) for Red (c), Green
(d), and Blue channels (e) respectively that enable deduction of the source of noise.
For instance, the noisy monitor screen is attributed to a low-fidelity Red model.

channels with the input point cloud used as ground-truth. It is observed that the

proposed model is able to explain the variance in the input sensor data.

5.3.2 Cross-modal Queries

A qualitative evaluation of the ability to infer one modality based on another is pre-

sented in Fig. 5.2. The models for the R and G channel are trained on a snapshot of

FR ROOM and the model for B is trained on a heavily subsampled version of the
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Modality R2-Score (Reconstruction) R2-Score (Inference)

Red 0.853 0.814

Green 0.851 0.803

Blue 0.852 0.796

Table 5.1: Coefficient of Determination (R2-scores) for the R, G, and B channels

when reconstructed via regression from the model and when inferred based on other

modalities.

data, containing 10% of the original set of points. The value for color blue is then

inferred at all points in the point cloud based on the values of red and green. Fig. 5.2b

shows the variance plot associated with the low-fidelity blue-model trained on sub-

sampled data. It is observed that the model is significantly noisier than Fig. 5.1e.

Fig. 5.2a shows the reconstructed point cloud with the B channel inferred from the

R and G channel and the variance estimates associated with the inferred blue values

is shown in Fig. 5.2c. It is observed that the multimodal model enables cross-modal

queries and a significant improvement is observed in terms of the blue color fidelity

as evidenced by a comparison of Figs. 5.2b and 5.2c.

A quantitative evaluation is provided in Table 5.1. The third column provides

the R2-score for the R, G, and B channels when inferred based on the other two

channels. It is observed that the proposed approach is able to leverage prior belief

in a principled manner to approximate the correlation between modalities and infer

values of a modality at a location via cross-modal queries.

5.3.3 Discussion

Modeling of multimodal information via the procedure outlined in this work is slightly

limited by the increased dependence of Expectation-Maximization on the initial pa-
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(a) (b) (c)

Figure 5.2: Quantitative evaluation of cross-modal inference. The model for B channel
is trained on 10% of the training data and results in a low-fidelity model as shown by
the associated variance estimates (b). The point cloud is reconstructed via inference
of blue values based on the red and green models (a). A significant improvement in
model’s belief over blue color is observed (c).

rameters for other modes of information. The simplistic strategy to initialize the

component means and covariance for the surface model proposed in Sect. 3.3.4 does

not generalize in terms of performance to other modes of information such as color.

This results in degraded model-fidelity as evidenced by the noise in Fig. 5.1. How-

ever, it must be noted that the associated variance estimate enables localization of

the source of noise (Figs. 5.1c, 5.1d, and 5.1e) that can be leveraged to trigger lo-

cal training of the model to improve fidelity. Also, alternative strategies, based on

Dirichlet Processes, known to provide principled estimates for initial parameters [23],

are being investigated.

5.4 Summary

A framework to incorporate multimodal information into the model is developed in

the chapter. The ability to model information from multiple sensing modalities not

only enables a more powerful representation of the environment via homogenization

of multimodal information but also makes the model robust to sensor malfunction.
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The proposed modeling approach enables cross-modal inference by leveraging the

dependence of prior belief on locations in space. A principled strategy that identifies

the most likely location, based on other available modalities, to enable inference

is proposed and developed. The representation fidelity of the multimodal model is

evaluated by modeling R, G, and B channels of the color spectrum and reconstructing

the input data via regression. Also, cross-modal inference is evaluated via inferring

one of the channels based on the belief distribution over its correlation with other

modalities.
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Chapter 6

Conclusion

6.1 Summary

Autonomous systems are increasingly being deployed for operation in perceptually

challenging, diverse and potentially hazardous environments such as for monitoring

in power-plants, information-gathering in underground mines and tunnels, and search

and rescue operations in disaster-hit areas. The operating environment for such op-

erations is not always known a priori and thus a representation of the environment

to enable reasoning with respect to the surroundings needs to be generated online. A

probabilistic environment representation that allows efficient high-fidelity modeling

and inference towards enabling informed planning (active perception) on a computa-

tionally constrained mobile autonomous system is proposed in this work. The traits

of the technique include its generative nature, high-fidelity, small memory footprint,

hierarchical and support for uncertainty measure.

An overview of the various approaches to enable online spatial modeling and occu-

pancy mapping presented in the literature is provided in Chapter 2 . The techniques
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can be categorized into three main classes: (a) Voxel-Based representations that dis-

cretize the environment into voxels and maintain the likelihood of occupancy per cell

assuming conditional independence with other cells. Several improvements have been

proposed to this representation to address memory concerns (Octomap), artifacts

of conditional independence (forward sensor models) and compactness of the model

(Elevation maps). (b) Generative spatial models that learn a parametric model over

the environment to enable a compact representation. A hybrid strategy, that is a

combination of voxel-based representations and generative models is the Normal Dis-

tribution Transform (NDT) that learns a Gaussian distribution over the rays that

pass through a voxel. (c) Continuous Occupancy representations that learn a contin-

uous distribution over occupancy in the environment. Two approaches of significance

include Gaussian Process Occupancy Maps that employ Gaussian Processes to esti-

mate the occupancy distribution, and Hilbert maps that project the sensor data into

a higher-dimensional space and employ logistic regression as a discriminative model

over occupancy

A multi-fidelity spatial model via a hierarchy of Gaussian Mixture Models is de-

veloped in Chapter 3. The hierarchy consists of a GMM per level and each GMM

differs from the others in terms of the number of components and the fidelity of repre-

sentation. A methodology, governed by information-theoretic principles, to estimate

the required number of components in the levels of the hierarchy is presented. The

distinct knee-point in the growth of divergence when the size of the GMM is reduced

is leveraged to obtain the fidelity threshold, λf . An iterative algorithm to generate the

level l of the hierarchy by merging similar components in the level l − 1 is presented

as a principled strategy to generate an information hierarchy.

The proposed spatial model is also compared in terms of fidelity to Normal Distri-
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bution Transform (NDT) spatial representation and shown to be more accurate with

less manual tuning. A qualitative evaluation is done to demonstrate the fidelity of the

representation via reconstruction of input point-cloud data leveraging the generative

properties of the model

The spatial model is extended into a probabilistic representation of occupancy

in Chapter 4. To accomplish this, the spatial model is augmented into a 4-tuple

HGMM with the fourth variable being the distance function. The distance function

maps every point on the spatial to zero and points outward from the spatial to a

distance from the spatial along a ray emanating from the sensor.Thus, it is zero for

points on the spatial and positive for points in free-space. A natural formulation

to enable a probabilistic representation of occupancy based on the distance function

is introduced. The training procedure is slightly perturbed to introduce free-space

observations to enable correlation between X and W to be learned.

A free-space model is introduced to enable incorporation of free-space information

into the model. Free-space is defined as the space through which sensor rays pass.

In other words, it is space bounded by the point-cloud on one end and the sensor

on the other. The spatial model is leveraged to estimate the number of components

in free-space model and the structural sparsity in free-space is leveraged to obtain a

constant-time algorithm to generate the model. The free-space model and the spatial

model are then merged to obtain a unified probabilistic model of occupancy.

The proposed representation is evaluated in terms of fidelity, memory footprint

and generalizability to diverse environments and compared to the state-of-the-art ap-

proaches including Octomap, GPOctomap and NDT-OM. The proposed approach

is shown to be more robust to environment peculiarities than competing techniques

while having a significantly smaller memory footprint. The implicatons of the hier-
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archy are also investigated and the real-time viability of the proposed approach is

assessed via a GPU-based implementation.

A framework to incorporate multimodal information into the model is developed

in the chapter. The ability to model information from multiple sensing modalities not

only enables a more powerful representation of the environment via homogenization

of multimodal information but also makes the model robust to sensor malfunction.

The proposed modeling approach enables cross-modal inference by leveraging the

dependence of prior belief on locations in space. A principled strategy that identifies

the most likely location, based on other available modalities, to enable inference

is proposed and developed. The representation fidelity of the multimodal model is

evaluated by modeling R, G, and B channels of the color spectrum and reconstructing

the input data via regression. Also, cross-modal inference is evaluated via inferring

one of the channels based on the belief distribution over its correlation with other

modalities.

6.2 Future Work

The objective of this work is to develop a a large-scale high-fidelity environment

representation that scales with the information content of the environment. In or-

der to achieve this goal, a methodology to incorporate global consistency into the

model is essential. Traditionally, global consistency of the map has been achieved via

loop-closure detection followed by bundle-adjustment. A coupled state-estimation

and modeling framework is thus called for that would enable the traditional SLAM

formulation in the space of the continuous belief distribution. This is one significant

avenues of work that would be required to enable deployment of the model on a
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large-scale.

The proposed approach enables representation of the world as a continuous belief

distribution. Another interesting future direction could be to investigate formulating

inspection (or equivalently exploration) as an optimization over the continuous belief

distribution that should ideally eliminate all restrictive assumptions generally made

when using occupancy grid as the map representation. The associated measure of

uncertainty naturally enables inspection with respect to the environment and could

turn out to be even more powerful if the continuous nature of the representation is

leveraged.
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