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Abstract
Autonomous navigation in off-road driving scenarios requires accurate and reli-

able vehicle localization. At the same time, planning for vehicles traversing rough
terrain and cluttered areas necessitates the need of efficient and scalable mapping
on the surrounding environment. This thesis explores methods of efficient local-
ization and mapping for a self-driving all-terrain vehicle in off-road environment.
We present a generalized extended Kalman filtering approach for estimating vehi-
cle state globally and locally with minimal sensor fusion. We then investigate the
capability of a state-of-the-art visual SLAM method using single stereo camera in
off-road driving cases. Finally, we propose a 3D occupancy mapping framework us-
ing stereo vision and integration of visual SLAM. We evaluate our approaches with
real-time driving tests and experiments on the publicly available dataset as well as
our own off-road dataset from the test field.
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Chapter 1

Introduction

1.1 Motivation
Recently, great advancement have been made in the development of self-driving technology.
Leaders in the industry (Fig. 1.1) are pushing forward to put autonomous driving into our life.
Self-driving cars will become a central part of our daily movement. They can improve life quality
by preventing accidents, reducing commuting time and bringing unprecedented utility in all kinds
of applications.

To drive and navigate by itself, an autonomous vehicle must always be aware of its position
and orientation with respect to its surrounding to make the next decision. The essential prob-
lem is known as localization. With no prior knowledge of the environment, this seems to be a
chicken-and-egg problem. Without a map, one cannot know where one is; without knowing one’s
location, one cannot build a map. The paradox can be resolved by simultaneous localization and
mapping (SLAM). Throughout the history of robotics, there have been many effective SLAM
strategies using a variety of different sensors. SLAM methods start to be applied on various
mobile robots and autonomous driving systems. However, the key problem in the urban-driving
domain becomes more challenging when it comes to off-road driving.

Off-road driving requires additional care on both the ground situation and surrounding en-
vironment. Off-road vehicles often need to traverse harsh terrain with high irregularity, rough

Figure 1.1: Well known autonomous driving systems: (a) Tesla Model S (b) Google’s Waymo
project (c) Uber’s self-driving taxi. Image source: (a) Tesla, Inc. (b) Digital Trends (c) Uber
Technologies, Inc.
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(a) (b)

(c) (d)

Figure 1.2: Images of off-road environment (a)(b) and our testing vehicles: (c) Leaf (d) Erik

surfaces and varying elevation as shown in Fig. 1.2. Unlike urban places, the lack of distinct
structured landmarks in wide open area makes it difficult to extract salient features for local-
ization. Driving in unknown areas without regular lanes to follow, an off-road vehicle needs to
navigate itself through the traversable trails while avoiding untraversable and risky terrain. For
example, there could be a deep puddle on the road which can potentially sink the vehicle’s ex-
haust pipe, or the vehicle is driving toward an area with slippery ground because of the ice on
the road. The vehicle has to be able to sense these details in the environment while driving.

Hence, in order to accomplish fully autonomous navigation in off-road environment, it is cru-
cial to have instant information about the vehicle’s location and motion as well as the geometry
representation of the surroundings with spatial details, and as a results, reliable localization and
mapping capability are required.

This thesis builds upon the work in off-road localization and mapping. We investigate tra-
ditional localization method with state estimation using multi-sensor fusion technique. We also
explore the application of the state-of-the-art visual SLAM method in off-road driving scenarios.
In addition, we propose an efficient mapping approach using vision sensing only. Specifically, we
are interested in mapping off-road environment efficiently for navigation using minimal sensory
modality.
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1.2 Outline
In Chapter 2 we briefly go through the system overview and approaches used in this thesis. In
Chapter 3 we present the state estimation approach for off-road driving using filter-based sensor
fusion, followed by the formulation of local and global state estimation, finally the experimental
results on the field are given. In Chapter 4 we evaluate a state-of-the-art visual SLAM method
on the off-road data with experimental results and discussion. In Chapter 5 we propose a 3D oc-
cupancy mapping framework using only stereo vision, followed by introduction of each module
in the system, and finally the mapping results on two different datasets. Finally, we conclude our
work in Chapter 6 and suggests possible future work.
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Chapter 2

Background

2.1 System Overview
Our testing platform is an utility side-by-side vehicle (UTV) manufactured by Yamaha Motor
Company. The UTV is an all-terrain vehicle that is capable of traversing rough terrain in high
speed. The vehicle is equipped with customized drive-by-wire system, velocity controller and
multiple sensors for perception and navigation, including GPS, IMU, stereo camera and wheel
speed sensor. The vehicle also has a high-precision GPS/INS on-board, which we take as the
ground-truth sensor. Fig. 2.1 shows the UTV and sensors that are used in this work.

In this work we use the main on-board sensors shown in Fig. 2.1 for vehicle localization
and environment mapping tasks. For validation, we use measurements reported by the GPS/INS
with RTK signal as our ground-truth data. The on-board IMU comes with the gyroscopes and
accelerometers and it reports inertial data at 200 Hz. The stereo camera has a 80◦ × 45◦ FOV,
54 cm baseline, and takes 0.5 megapixel at 30 fps. The WAAS-enabled GPS reports position
at 1 Hz with error within 3 m. Lastly, the wheel speed sensor (tachometer) reports vehicle’s
instantaneous velocity at 100 Hz.

2.2 State Estimation
For navigation tasks, it is crucial to always know where the vehicle is and how it orients in the
world while driving. The process of estimating the position and orientation with respect to a
certain coordinate system is the key problem of "localization" in robotics or the so-called "pose
estimation" in computer vision. In addition to the pose, one would also need information about
the speed of movement including linear and angular velocities for better control, navigation and
motion planning. Tracking all these information in the same time forms the problem of state
estimation.

There are two main approaches to perform state estimation: filtering and smoothing (batch
optimization). The filtering approach estimates the state probabilistically in a recursive way using
only the latest observations from the sensors, usually in two steps: the prediction and the update.
The smoothing approach maintains a history of sensor observations and performs a nonlinear
batch optimization over the past states to give the optimal solution given all the observations.

5



Figure 2.1: The testing vehicle and on-board sensors.

One popular filtering method is the Kalman filter [5], which is one type of recursive Bayesian
estimation. By assuming the normal distribution of the state, a Kalman filter recursively estimates
the state by incorporating sensor measurements and their uncertainties in the prediction and
update steps. Kalman filters have been studied for over half-century with many extensions,
generalizations and variants. They have numerous applications in modern technology and are
used extensively in navigation and guidance systems.

Moore et al. [6] investigated the problems of state estimation using either a global frame
or the body-centric frame. They described the disadvantages of global-frame-based localization
and mapping due to discontinuity caused by GPS error. They therefore presented the strategy
of using a local frame for simultaneous local and global state estimation. Recently, Moore and
Stouch [7] proposed a generalized extended Kalman filter implementation specifically for robot
localization, which allows the data fusion of unlimited number of navigation sensors (odometry,
IMU and GPS) and the flexibility of choosing the sensor state variables for updating the state
estimate.

2.3 Visual SLAM
Visual SLAM refers to the problem of vision-based simultaneous localization and mapping. In
this type of SLAM system, localization and mapping are performed using image information
only. It has the goal of localizing the camera while reconstructing the environment. By using
graph-based optimization or bundle adjustment, visual SLAM systems have the ability to coun-
teract the drift in the estimated trajectory.

A great advantage of SLAM systems is the capability to recognize the visited places and
detect loop closures for maintaining a globally consistent map. These so-called loop closures
are of great importance for reducing drift. Consequently, visual SLAM is preferred by mobile
platforms traversing unknown areas to other odometry sources for the global consistency.
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There are two dominant visual SLAM methods: feature-based methods and direct methods.
Feature-based methods abstract the images to a sparse set of feature correspondences. Based
on the feature correspondences between subsequent frames, the relative motion between these
frames is computed by minimizing the geometric reprojection error. In contrast to feature-based
methods, direct methods use the whole image for tracking by minimizing the photometric er-
ror. As direct methods minimize the photometric error over all pixels in the images, they are
computationally intense and thus usually slower than feature-based methods.

Over the past few years, there have been many breakthrough in the development of visual-
SLAM systems using keyframe-based design and multi-threading implementation. The recent
S-PTAM by Pire et al. [8] is a feature-based stereo system follows the parallel-tracking-and-
mapping strategy and performs local bundle adjustment. The LSD-SLAM by Engel et al [9, 10]
is a semi-dense direct approach that minimizes photometric error in image regions with high gra-
dient. Both the monocular and stereo version of LSD-SLAM have proved the effectiveness of the
direct method. Mur-Artal et al. [11] proposed a feature-based system using ORB features, named
ORB-SLAM. They recently published the new version, ORB-SLAM2 [2], which can be used on
a monocular, a stereo or a RGB-D camera. The stereo ORB-SLAM2 achieved exceptional ac-
curacy and robustness on various public datasets and benchmarks, arguably the state-of-the-art
feature-based visual-SLAM method. In this work, we would like to test its limit in the more
challenging off-road environment and utilize its localization capability in the proposed mapping
framework.

2.4 Occupancy Mapping
Mapping is a crucial and necessary task for a wide range of robotics applications. The ability
to construct a map allows a robot to localize itself and navigate through the environment au-
tonomously. It is one of the key problems in robot perception and is strongly tied to localization,
since a robot needs to know its location over time to build a consistent map.

For self-driving vehicles, mapping has become an integral part of enabling fully autonomous
driving. This is especially critical for off-road navigation. An off-road vehicle usually drives in
unknown areas where no existed maps with scene details available. In addition, off-road vehicles
often need to traverse irregular terrain along with overhanging objects and obstacles such as tree
branches and tall bushes. Hence, a three-dimensional dense map with spatial details on the field
is important for off-road planning and navigation.

Most of the dense 3D reconstruction methods use a point-based representation by storing 3D
range measurements directly. The occupied space in the environment is modeled with 3D point
clouds returned by range sensors such as laser scanners, stereo sensors or RGB-D cameras. The
point cloud approach has been used in several 3D mapping systems such as those presented by
Geiger et al.[12] and Alcantarilla et al. [13] using stereo images as well as SLAM approach of
Nüchter et al.[14]. The drawbacks of this kind of representation are that neither the free space
nor the unknown areas are modeled and the sensor noise and dynamic objects cannot be dealt
with directly. As a result, point clouds are only suitable for high precision sensors in static
environments without the need to represent unknown areas. Moreover, the memory consumption
of this representation increases rapidly with the number of measurements over time.
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Another approach to model environments in 3D is to use a grid of equal-size cubic volumes,
called voxels, to discretize the space of mapped area. Moravec [15] presented the early work
of using such a representation. However, rigid grids have large memory requirement and need
to be initialized with knowing the extent of mapped area beforehand, which is not tractable for
large-scale out-door mapping. Recently, an octree-based 3D mapping approach is proposed by
Hornung et al [4]. The octree data structure avoids one of the main shortcomings of fixed grid:
they delay the initialization of map volumes until measurements need to be integrated. As a
result, the size of mapped area does not need to be known beforehand and the map only contains
volumes that have been mapped, which significantly reduces the memory consumption.

8



Chapter 3

State Estimation for Off-Road Driving

In this chapter, we present a filtering method to estimate the 3D state of our autonomous UTV
driving in off-road environment. We use a generalized extended Kalman filter to fuse measure-
ment data from the on-board sensors and estimate the position, orientation and velocities of the
vehicle locally and globally in real time. We present the estimation framework and provide
experimental results from the field tests.

3.1 Generalized Extended Kalman Filter
The Kalman filter is by far the most popular and useful estimation algorithm to date [16]. Kalman
filtering is a recursive method of estimating the state of a dynamical system in the presence of
uncertainties. With the assumption of Gaussian distributed errors, Kalman filter gives the optimal
solution for state estimate in linear models. However, for nonlinear systems, an extended version
of Kalman filter is required to deal with the uncertainty propagation through linearization.

In this work, we employ an open-source application of a generalized framework1 to conduct
the state estimation for vehicle localization [7]. The software package is specifically designed for
robot localization via state estimation and is fully implemented for the Robot Operating System
(ROS) [17]. The unique feature of this framework is that it allows for an unlimited number of
sensor inputs and also allows per-sensor control of which variables of a sensor data are fused
with the state estimate.

The formulation and algorithm of extended Kalman filter (EKF) are well-known [5, 16]. Here
we detail the EKF algorithm for state estimation in 3D space. The goal is to fuse the associate
sensor data and estimate the full 3D (6DoF) pose and velocity of the vehicle over time.

The state transition process of a robot can be described as a nonlinear dynamical system,

xk = f(xk−1) + εk (3.1)
εk ∼ N (0,Qk) (3.2)

where xk is the robot’s state (i.e., 3D pose and velocity) at time k, f is a nonlinear state transition
function which encodes the system motion model, and εk is the process noise assumed to be

1http://docs.ros.org/indigo/api/robot_localization/html
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normally distributed with zero mean. The 12-dimensional state vector x comprises the robot’s
3D 6DoF pose and their respective velocities as follows.

x = [x, y, z, φ, θ, ψ, ẋ, ẏ, ż, φ̇, θ̇, ψ̇]> (3.3)

The 3D rotation is expressed as Euler angles. In addition, given the current state the observation
process can be described as

zk = h(xk) + δk (3.4)
δk ∼ N (0,Rk) (3.5)

where zk is the measurement received at time k, h is a nonlinear sensor model which maps the
state into the measurement space, and δk is the normally distributed measurement noise with
zero mean.

For the filter, a state estimate at time k can be expressed as a normal distribution.

X̂k ∼ N (x̂k,Σk) (3.6)

where x̂k is the mean and Σk is the covariance.
In the prediction step, the current state estimate and error covariance are propagated forward

in time through the motion model:

x̄k = f(x̂k−1) (3.7)

Σ̄k = FkΣk−1F
>
k +Qk (3.8)

In our case, without control inputs, f is a standard 3D kinematic model derived from Newto-
nian mechanics which only depends on the current state estimate and the time, see A.1. This
formulation therefore has all the state variables to be updated in the correction step by the cor-
responding sensor data. The error covariance estimate, Σ, is projected via F , the Jacobian of
f , and then perturbed by Q, the process noise covariance. The bar notation here denotes the
predicted estimates.

The correction step is carried out for updating the estimates with sensor measurements:

Kk = Σ̄kH
>
k (HkΣ̄kH

>
k +Rk)

−1 (3.9)
x̂k = x̄k +Kk(zk −Hkx̄k) (3.10)

Σk = (I −KkHk)Σ̄k(I −KkHk)
> +KkRkK

>
k (3.11)

Note that the Joseph form of covariance update equation [18] is used in the correction step to
maintain filter stability by ensuring that Σk remains positive semi-definite.

In the standard EKF formulation, H is specified as the Jacobian matrix of the sensor model
function h. In order to support a broad array of sensors, this framework assumes that each sensor
produces measurements of the state variable directly, i.e. h(x) = Hx. In practice, this allows
for partial updates of the state vector, which accommodates the common situation that a sensor
data does not measure every variable in the state vector. Specifically, when measuring only m
variables, H becomes an m by 12 matrix of rank m, with its only nonzero values (in this case,
ones) existing in the columns of the measured variables, see A.2.
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Figure 3.1: Relation between global pose and local pose

Theoretically speaking, the assumption on the sensor model does not hold for large vehicles
or mobile platforms with on-board sensors placed far apart each other, in which case the "lever-
arm" effect must be taken into consideration. However, for standard size vehicle or small mobile
robot with considerate position error in the sensor, e.g. 3m to 5m for a GPS, the lever-arm effect
is not significant and the assumption can hold for general operations.

3.2 Local and Global State Estimation
Autonomous navigation and planning tasks often require instant report of the robot state which
contains its position and orientation as well as the inertial information including linear velocities,
angular velocities and accelerations.

Global planning algorithms usually perform in an absolute earth-referenced coordinate sys-
tem for navigational task such as waypoint following. On the other hand, local planning policies
usually focus on short-term robot movement and relative motion with respect to a local frame,
for example, path planning for obstacle avoidance. Consequently, the robot’s pose with respect
to a global and a local frame are both necessary for autonomous driving. Fig. 3.1 shows a
2D illustration of the relation between the global and local poses. A global pose refers to the
absolute position and rotation in the Universal Transverse Mercator (UTM) coordinate system
usually reported by a GPS and a magnetometer, and therefore it gives the geographic location
and earth-referenced orientation. A local pose represents the vehicle position and orientation
with respect to a local coordinate system, often called odometry frame or "odom" frame. The
odom frame is a world-fixed frame that is usually represented by the initial pose (initial body
frame) where the motion starts [19]. Combined with the inertial data measured by an IMU, one
can track the overall motion locally and globally, which forms the problems of local and global
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Table 3.1: Sensor measurements and state vectors

Sensor Measurement Description

GPS zGPS = [X, Y, Z]
UTM coordinates in X, Y

altitude in Z

IMU
ΦIMU = [α, β, γ] Roll, pitch and yaw2

ωIMU = [ωα, ωβ, ωγ] Roll rate, pitch rate and yaw rate

Wheel sensor zWheel = vy Vehicle velocity in y-direction

Estimator State vector Description

Global EKF x̂G = [xG, yG, zG, φG, θG, ψG, ẋ, ẏ, ż, φ̇, θ̇, ψ̇] Global state, pose wrt UTM frame
Local EKF x̂L = [xL, yL, zL, φL, θL, ψL, ẋ, ẏ, ż, φ̇, θ̇, ψ̇] Local state, pose wrt odom frame

state estimation.

To achieve both local and global estimation, we utilize two instances of the generalized EKF
introduced in the last section to fuse the data from three main sensors on the vehicle. The sensor
measurements and state vectors of both EKFs are shown in Table 3.1 (all in row vector form).
The layout of the sensor fusion is shown in Fig. 3.2. A superscript either denotes the type of
sensor (GPS, IMU or wheel sensor) that acquires the measurement or the reference frame (local
or global) a state variable is with respect to.

For the local EKF, only the IMU and the wheel sensor are fused to estimate the local state.
The sensor inputs include the forward speed vy measured by the wheel sensor and the orientation
angles and rates, ΦIMU and ωIMU , from the IMU. Note that since there is no side-way velocity
measurements (vx, vz) available in the system, for practical consideration, the zero velocities,
vx = 0, vz = 0 should be fed into the filter to indicate that the vehicle cannot move instanta-
neously sideways. Since at the update step, only the orientation and velocities are corrected by
the measurements, the uncertainties in positions will increase, which will be revealed in the next
section.

For the global EKF, all three sensors are fused together to estimate the global state. GPS
coordinates are used to corrected the positions in the global frame at the update step. For IMU
inputs, we only feed the roll and pitch data into the filter since there is no absolute heading
measurement available. Despite the lack of direct yaw update, the horizontal GPS position and
yaw rate measurements together can help correct the absolute heading estimate since the vehicle’s
motion is constrained from moving sideways.

Regarding the covariances, since it is not trivial to tune the covariance values, we use a set of
nominal covariance values which are given in the appendix, A.3.

2Note that our IMU does not report an absolute earth-referenced heading, the yaw measurement ψ here is the
relative angle with respect to the initial heading when the sensor is turned on
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Figure 3.2: EKF sensor fusion layout

3.3 Experimental Results

To evaluate the performance of the EKFs for off-road driving cases, we collected sensor data from
the test field for offline testing as well as conducted real-time experiments during autonomous
driving.

As shown in Fig. 3.3, the selected off-road sample trails are used to test the EKFs. The loop-
shape routes shown in Fig. 3.3(a) and (b) are good for testing position drift after the loop closure.
In addition, all the locations of picked trails have significant elevation in terrain around 5 to 9
meters difference in height between the lowest and the highest points in a route, which is critical
for testing the estimation of vehicle movement in the vertical direction. We also performed long-
term testing on a long distance trail as shown in Fig. 3.7.

Both the local and global EKFs are tested on the field and compared with the ground-truth
GPS/INS sensor. The ground-truth and estimated trajectories at four different locations are
shown in Fig. 3.4. Note that for consistent comparison the trajectories from ground-truth and
global EKF are both transformed onto the local frame so that all poses in a trajectory are with
respect to the initial pose (start from origin). The full 6DoF pose estimation results at the two
loop-shape trails are shown in Fig. 3.5 and 3.6. In addition to the trajectory, the time series of
position and orientation are given for visualizing the change of vehicle pose over time. Also, to
show the performance of global EKF, the trajectories in the global coordinate frame (UTM) are
shown in Fig. 3.7 with the satellite image.

We use two different evaluation metrics, the absolute translation error proposed in [20] and
the relative pose error proposed in [21]. For estimation with local EKF, we would like to inspect
the drift in pose over the trajectory, for which the relative error is suitable to represent. On the
other hand, for the global EKF, the absolute error metric is preferred to evaluate the accuracy in
global positioning.

13



(a) (b)

(c)

Figure 3.3: Google Maps images of sample trails [1] (a) triangle loop (b) slope loop (c) narrow
trail

The evaluation results of local EKF at four selected trails are shown in Table 3.2. The transla-
tion and rotation errors are both mean RMSE from averaging over intervals of different travelled
distances (100m, 200m to ... 1600m) [20]. The evaluation results of global EKF are shown in
Table 3.3.

3.4 Discussion

The evaluation results shows that the local EKF is effective in short-term localization with an
average 1.7% of position drift and 1.29 degree of rotation error for routes under 700 m distance.
However, without correction from the absolute position update, the local EKF is prone to drift-
ing for long-distance movement due to the error accumulation and wheel slip issue as shown
in Fig. 3.4(d). Additionally, the drifting in the vertical direction is significant due to the mea-
surement bias from IMU as shown in Fig. 3.5 and 3.6, with an average RMSE of 5.5 m in the
Z-direction. Despite the incapability in long-term navigation, the local EKF provides continuous
pose estimates and accurate relative information in the local frame with high update rate, which
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Figure 3.4: Estimated trajectory and ground-truth (a) triangle loop (b) slope loop (c) narrow trail
(d) long trail

is good for tasks involving local planning, navigation and mapping in small area. For the rest
of this work, the local EKF is taken as a baseline pose source for evaluating the localization
performance in the local frame.

For global estimation, the EKF with GPS integration is able to track the vehicle motion with
respect to the absolute earth-referenced coordinates. The evaluation result shows an average
RMSE of 2.4 m in absolute translation error. As shown in Fig. 3.7, the global EKF is proved to
be reliable in long-term driving despite the lack of absolute heading measurement. However, due
to the integration of GPS measurements, the trajectory contains discontinuities in the position,
which is not suitable for mapping or data registration in the local region. As a results, we take the
global EKF as the global pose source which provides the absolute pose information for long-term
and large-scale planning and navigation tasks.
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Figure 3.5: EKF estimation results at triangle loop

Table 3.2: Relative pose error of local EKF

Relative Pose Error
Location Distance (m) Translation (%) Rotation (deg)

Narrow trail 287 1.82 0.84
Slope loop 657 1.87 1.67

Triangle loop 684 1.55 1.35
Long trail 1605 5.02 6.55

· mean translation RMSE (%), avg. over 100m, 200m to ... 1600m intervals.
· mean rotation RMSE (deg/100m), avg. over 100m, 200m to ... 1600m intervals.

Table 3.3: Absolute translation error of global EKF

Absolute Translation Error
Location Distance (m) RMSE (m)

Narrow trail 287 1.50
Slope loop 657 2.69

Triangle loop 684 2.88
Long trail 1605 2.53
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Figure 3.6: EKF estimation results at slope loop

Figure 3.7: Satellite image of global EKF and ground-truth trajectories at long trail
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Chapter 4

Visual SLAM for Off-Road Driving

In this chapter, we introduce the state-of-the-art feature-based visual-SLAM algorithm, ORB-
SLAM2 [2]. We focus on the stereo version of ORB-SLAM2 and conduct experiments using
our off-road image data collected by the autonomous UTV. We then present the results of stereo
ORB-SLAM2 to demonstrate the localization and mapping performance in the off-road environ-
ment. We also compare the evaluation results of ORB-SLAM2 with those of EKF sensor fusion
presented in Sec. 3.2. Finally, we discuss the issues when performing ORB-SLAM2 in off-road
cases.

4.1 ORB-SLAM2

ORB-SLAM2 is an open-source visual-SLAM system for monocular, stereo and RGB-D cam-
eras1. It is one of the state-of-the-art visual SLAM algorithms and arguably the most robust
feature-based method currently. The keyframe-based algorithm is based on the use of ORB
features [22]. ORB features are robust to rotation and scale change in viewpoint and they are
extremely efficient to compute.

The system overview of ORB-SLAM2 is shown in Fig. 4.1. The multi-threading implemen-
tation of ORB-SLAM2 enabling the real-time processing on a CPU. We give brief description
on the main system threads as follows.

The system contains three main threads:
• Tracking thread: Tracks camera pose at every frame by finding ORB feature matches in the

local map and minimizes the reprojection error by applying motion-only bundle adjustment
(BA). Tracking thread also decides the insertion of a new keyframe.

• Local mapping thread: Creates new map points and performs local BA to optimize the
local map.

• Loop closing thread: Detects loops and correct the accumulated drifts by performing a
pose-graph optimization, which launches another thread to perform the full BA to compute
the optimal structure and poses.

1https://github.com/raulmur/ORB_SLAM2
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(a) (b)

Figure 4.1: ORB-SLAM2 system overview [2] (a) system threads and modules (b)Stereo input
pre-processing

At the input pre-processing step, ORB features are extracted at salient keypoint locations.
For stereo cameras, the keypoints are classified and defined as follows:
• Stereo keypoint: The ORB matched point defined by three coordinates xs = (uL, vL, uR)

with (uL, vL) being the pixel coordinates in the left image and uR the horizontal coordinate
of the corresponding point in the right image. A stereo keypoint is further classified to close
and far points.

Close keypoint: a stereo keypoint with depth less than 40 times the stereo baseline.

Far keypoint: otherwise.
• Monocular keypoint: Defined by xm = (uL, vL) on the left image and correspond to all

those ORB features for which a stereo match could not be found.
Close keypoints can be triangulated from one frame as depth is accurately estimated. They
provide scale, translation and rotation information. On the other hand, far points provide accurate
rotation information but weaker scale and translation information. The far points are triangulated
when they are supported by multiple views. The monocular keypoints are only triangulated from
multiple views and do not provide scale information, but they contribute to the rotation and
translation estimation. The stereo matched keypoints are crucial for tracking the camera motion
and the distribution of close and far points in a frame has a impact on the pose estimation, which
will be revealed in the next section.

4.2 Experimental Results

To evaluate the performance of stereo visual-SLAM in off-road driving, we use the same dataset
collected from the off-road trails shown in Fig. 3.3.

We ran the ORB-SLAM2 on each sequence 5 times and show the median results to account
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Figure 4.2: Stereo ORB-SLAM2, local EKF and ground-truth at (a) triangle loop (b) slope loop
and (c) narrow trail

for the non-deterministic nature of the multi-threading system. Our stereo camera has a ∼21 cm
baseline with 30 fps and image resolution of 1024× 544 pixels. Due to the processing time limit
of ORB-SLAM2, we have to downsample our image inputs so that the frame rate is trackable for
ORB-SLAM2, which is about half of the original frame rate (∼15 fps).

The resulting trajectories are shown in Fig. 4.2. For comparison, the trajectories of local
EKF are also shown in the figure. We use the same two evaluation metrics used in Sec. 3.3,
relative pose error and absolute translation error. The evaluation results are shown in Table 4.1.
In addition, the sparse reconstructions of the trails by ORB-SLAM2 are shown in Fig. 4.4

Since ORB-SLAM2 performs the global bundle adjustment on the full graph after detecting a
loop closure, we also like to know the effect of loop closure correction on the estimated trajectory.
For comparison, we save the trajectory right before the loop closure happens in each sequence,
as shown in Fig. 4.3. Table 4.2 shows the comparison of evaluation results on trajectories with
and without loop closure correction.
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Table 4.1: Results of stereo ORB-SLAM2 in the off-road dataset

Stereo ORB-SLAM2 Local EKF Global EKF
Location Distance (m) trel rrel tabs trel rrel tabs

Narrow trail 287 3.28 2.29 2.83 1.82 0.84 1.50
Slope loop 657 6.51 4.60 7.15 1.87 1.67 2.69

Triangle loop 684 2.50 1.66 1.88 1.55 1.35 2.88

·trel: mean relative translation RMSE (%), avg. over 100m to 600m intervals.
·rrel: mean relative rotation RMSE (deg/100m), avg. over 100m to 600m intervals.
·tabs: absolute translation RMSE (m), after 6DoF alignment.
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Figure 4.3: Comparison of stereo ORB-SLAM2 trajectories before and after the loop-closure

4.3 Discussion
The evaluation result shows that stereo ORB-SLAM2 can give good pose estimate in general
off-road driving cases. However it also shows that ORB-SLAM2 is not robust in the off-road
environment in terms of localization performance. One of the possible causes is the lighting
condition. We have seen large variation in image intensity over short period of time in one
sequence (slope loop), which caused the number of matched points to drop significantly and
leads to the concentration of feature points in the far region of the image as shown in Fig 4.5.
Since far points only contribute to the estimation in orientation but provide weak information for
translation, the loss of track on the close points cause the estimation in translation to be off.

Despite the sensitivity to environment, ORB-SLAM2 shows impressive capability in localiza-
tion using only image input in challenging off-road driving tests. For every test on the loop-shape
trails, ORB-SLAM2 successfully detected loop-closure in a short amount of time. The ability
to detect loop-closure and trajectory correction is critical to conduct consistent mapping, which
will be demonstrated in the next chapter.
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Table 4.2: Comparison of stereo ORB-SLAM2, before and after loop-closure

After loop-closure Before loop-closure
(w/ Global BA) (w/o Global BA)

Location Distance (m) trel rrel tabs trel rrel tabs

Slope loop 657 6.51 4.60 7.15 9.61 11.3 12.1
Triangle loop 684 2.50 1.66 1.88 7.10 8.24 9.29

Figure 4.4: ORB-SLAM2 sparse reconstruction of the off-road trails, map points (black and
read), current local map points (red).

(a) (b)

Figure 4.5: Effect of lighting condition. (a) tracked feature points under normal illumination. (b)
feature tracking affected by unpredictable lighting.
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Chapter 5

Occupancy Mapping using Stereo Vision

In this chapter, we present an occupancy mapping framework using stereo vision. We explore
the capability of using single stereo camera for large-scale dense mapping in the off-road en-
vironment. We first introduce the stereo-based mapping framework, followed by the method
of dense stereo matching and point cloud construction. Then, we detail the core 3D occupancy
mapping approach used in this framework. Finally, we present experimental results on the KITTI
benchmark dataset [21] and our own off-road dataset.

5.1 Stereo-based Occupancy Mapping Framework
Stereo cameras can provide depth information at each frame through two-view geometry, which
enables their use for 3D reconstruction. There have been many related work of using stereo
images for large-scale dense 3D reconstruction [12, 13]. However, most of the previous work
requires the storage and registration of large amount of 3D point clouds, which limits the real-
time application in large-scale environment due to the problem of point cloud growth over time.

Instead of using point representation, occupancy grid map [15, 23, 24] provides an memory-
efficient geometric representation of the environment by discretizing the space into cell blocks,
the so-called voxels. Using the 3D range measurements, a robot can sense the environment and
create a 3D grid map with occupancy probability at each voxel.

The pipeline of the proposed stereo-based 3D mapping framework is shown in Fig 5.1. The
main procedures are listed as follows:

1. Acquire stereo images of the current scene and perform stereo image processing.

2. Use the rectified stereo pair and camera parameters to generate the disparity map through
dense stereo matching.

3. Construct the 3D point cloud from the disparity map at the current frame.

4. Estimate the camera pose using stereo visual-SLAM algorithm.

5. Continuously perform 3D occupancy mapping over time with camera pose and point cloud
at each frame.

Note that in a more general framework, the sensor does not have to be a camera, it could be a
lidar, laser scanner, radar, or any type of sensor that is capable of range sensing. Also, the sensor
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Figure 5.1: Stereo-based occupancy mapping pipeline

pose needs not come from the same sensor itself, it could be the pose from estimation and fusion
on other sensor measurements such as odometry, IMU or GPS, provided proper registration.

In our case, we intend to minimize the use of available sensors and exam the ability of lo-
calization and mapping using pure vision with single stereo camera due to the fact that stereo
vision provides a low-cost and non-intrusive alternative for inferring geometric information of
the surrounding world compared to expensive devices such as lidars and laser range finders.

The other thing worth mentioning is that the proposed framework takes a known-pose map-
ping approach rather than a SLAM approach despite the use of a visual-SLAM module inside.
The visual-SLAM subsystem does not correct the resulting occupancy map over time, nor does
the mapping module updates the pose estimation from visual-SLAM. The occupancy mapping
module uses the estimated camera pose directly and builds the map accordingly.

5.2 Stereo Matching and 3D Reconstruction

To perform three-dimensional mapping, first we need to infer the 3D information from 2D im-
ages. This step can be achieved by matching the left and right stereo images using multi-view
geometry.

Stereo matching denotes the classic computer vision problem of finding dense correspon-
dences in a pair of images in order to perform 3D reconstruction. Fig. 5.2 outlines the 3D
reconstruction pipeline using the stereo matching approach. Note that throughout this chapter
we assume that the stereo pair has been rectified such that corresponding points lie on the same
horizontal epipolar line. The image rectification process can be carried out using standard meth-
ods given a calibrated stereo camera [25]. As shown in Fig. 5.2, corresponding points, p and p′,
have different pixel locations in the left and right images when the cameras see the same scene
from different viewpoints. The amount of horizontal displacement (in pixels) is called the dis-
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Figure 5.2: 3D reconstruction via stereo matching [3]

parity, denoted by dp in the figure. The important observation is that disparity of the foreground
pixels (close points, q and q′) is larger than that of the background pixels (far points, p and p′),
i.e. dq > dp. The disparity of a pixel is inversely proportional to the real distance (depth) of the
point to the camera. Storing the disparity value at each pixel gives the so-called disparity map
which is usually represented by an intensity image where dark pixels encode low disparity (high
depth) and bright ones encode large disparity (small depth).

Once a disparity map is obtained, one can easily infer the depth information of the scene and
perform 3D reconstruction by projecting the disparity image back to the 3D space.

5.2.1 Efficient Large-Scale Stereo Matching

In this work we use an efficient large-scale stereo matching algorithm called ELAS (Efficient
LArge-scale Stereo)1 [26] to perform dense stereo matching and produce the disparity map.
ELAS is a local matching method which uses a generative probabilistic model for stereo match-
ing. The method builds a prior over the disparity space by forming triangulation on a set of
robustly matched correspondences, called "support points". Having the piecewise linear prior,
ELAS does not suffer in the presence of low-textured and slanted surfaces and it allows dense
matching with small aggregation windows. The efficient performance of ELAS enables stereo
matching at the frequency close to frame rate which is ideal for our mapping framework. Fig. 5.3
shows a few examples of stereo matching results on the KITTI dataset and our off-road dataset.

1http://www.cvlibs.net/software/libelas/
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Figure 5.3: Examples of stereo matching results on KITTI dataset (upper two rows) and our
off-road dataset (3rd and 4th rows). Left column shows the rectified left image of the stereo pair,
right column shows the registered disparity image from ELAS.

5.3 Octomap

In this section, we introduce the core module of occupancy mapping in our framework, the
Octomap [4]. Octomap is an open-source framework that performs 3D occupancy mapping
based on octrees2.

An octree is a hierarchical data structure used to represent the 3D space as shown in Fig 5.4.
Each node in an octree represents a cubic volume of space usually called a voxel. This volume
is recursively subdivided into eight sub-volumes until a given minimum voxel size is reached.
Hence, the minimum voxel size determines the resolution of the octree.

Essentially, Octomap performs the probabilistic occupancy estimation at each observed voxel
to maintain updatability and to deal with sensor noise. To represent not only the occupied space,
but also the free and unknown areas, Octomap explicitly models the free volumes in the tree
using ray-casting in the sensor model for range measurements. Fig. 5.5 illustrates how Octomap
models the occupied and free voxels through ray-casting. An example of 3D grid map built by
Octomap is shown in Fig. 5.6 where blue volumes denote the occupied voxels while green ones
represent the free voxels.

2https://Octomap.github.io/
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Figure 5.4: Example of an octree [4]. The volumetric model is shown on the left and the corre-
sponding octree representation is on the right. The white squares on the right denotes the free
voxels (shaded) and the black square denotes the occupied cell on the left.

Figure 5.5: Ray-casting from sensor origin to end point, the last voxel is marked as occupied, all
the other voxels along the ray are marked as free.

5.3.1 Occupancy Probability Estimation
Octomap integrates the sensor measurements using occupancy grid mapping method which takes
a Bayes filtering approach. The probability of a leaf node n to be occupied given the sensor data
z1:t is estimated according to

P (n|z1:t) =

[
1 +

1− P (n|zt)
P (n|zt)

1− P (n|z1:t−1)
P (n|z1:t−1)

P (n)

1− P (n)

]−1
(5.1)

The update of occupancy probability depends on the previous estimate P (n|z1:t−1), the current
measurement zt and a prior probability P (n). P (n|zt) denotes the probability of voxel n to be
occupied given the measurement zt. It represents the inverse sensor model and its value depends
on the sensor that generates zt. With the assumption of an uniform prior probability P (n) = 0.5
(unknown) and using the log-odds notation, Eq. 5.1 becomes

L(n|z1:t) = L(n|z1:t−1) + L(n|zt) (5.2)

with

L(n) = log

[
P (n)

1− P (n)

]
(5.3)

Instead of using Eq. 5.2 directly, Octomap updates the occupancy estimate using a clamping
update policy [27]:

L(n|z1:t) = max(min(L(n|z1:t−1) + L(n|zt), lmax), lmin) (5.4)
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Figure 5.6: 3D map example of an urban street scene, blue: occupied volume, green: free volume

where lmin and lmax denote the lower and upper bound on the log-odds value. The modified
update rule limits the number of updates needed to change the state of a voxel, which leads to
two advantages: 1. The confidence in the map remains bounded and 2. The model can adapt to
dynamic change in the environment quickly.

5.3.2 Sensor Model

For a distance sensor, the sensor model relates distance measurements to the probability an ob-
stacle is present. It is used to update the occupancy grid map as explained in Sec. 5.3.1, where
the current probability is combined with the previous belief about the occupancy of a cell.

Due to the measurement noise, the reliability of an occupancy grid map depends on the in-
verse sensor model. This model is responsible for representing the uncertainty in measurements,
and for ensuring that the probabilities describing the occupancy grid map are correctly updated
when new measurements are incorporated.

Octomap employs a beam-based inverse sensor model which assumes the endpoint of a mea-
surement correspond to the obstacle surface and the line of sight between the sensor origin and
the endpoint does not contain any obstacles. To determine which of the map cells need to be up-
dated using ray-casting, Octomap implements a 3D variant Bresenham algorithm to approximate
the beam in 3D [28]. Volumes along the beam are updated using the following inverse sensor
model:

L(n|zt) =

{
locc, if beam hits the volume.
lfree, if beam passes through volume.

(5.5)

We used log-odds values of locc = 0.85 and lfree = −0.4, corresponding to probability of 0.7 and
0.4 for occupied and free volumes, respectively. The clamping thresholds are set to lmin = −2
and lmax = 3.5, corresponding to probabilities of 0.12 and 0.97.

5.4 Experimental Results
We tested the proposed mapping framework on two different datasets, the KITTI dataset [21]
and Yamaha dataset. The KITTI vision dataset contains 22 sequences of stereo images collected
from an urban driving car. The stereo camera has a ∼54 cm baseline and works at 10 fps frame
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rate with image resolution of 1392 × 512 pixels. We selected 2 sequences (00 and 07) from the
training set, both of which contain loops.

The Yamaha dataset is collected by the Yamaha autonomous UTV from the off-road test field
at Gascola, Penn Hills, PA. The on-board stereo camera has a ∼21 cm baseline recording at 30
fps with resolution of 1024× 544 pixels. We tested the mapping at three off-road trails as shown
in Fig. 3.3.

Since ORB-SLAM2 performs the global bundle adjustment (BA) after detecting a loop, it is
expected to see difference between a map built with the trajectory before the loop closure and
the other one created with the optimized trajectory after loop closure and global BA. As a result,
in the following sections, at each sequence that contains a loop, we show the results of two 3D
maps, one is built with the current tracked camera pose till loop closure, the other one is built
with the BA-optimized trajectory after the loop closure.

The following sections show the results of both datasets. For consistency, we use the same
set of parameters in the Octomap for both datasets which are shown in Table 5.1. Note that all
the 3D occupancy maps are shown with color coded height.

5.4.1 KITTI Dataset

The 3D occupancy maps of KITTI sequences are shown in Fig. 5.7 and 5.8. The zoom-in views
are added for details of the 3D map. Additionally, we put two close-up views from different
viewpoints around the loop closure to show the effect of the global bundle adjustment.

Fig. 5.7 shows the partial map of the KITTI sequence 00 from the beginning to the first
loop closure. We successfully mapped out all the area passed by the vehicle using single stereo
camera. Due to the fact of using "front-facing" cameras on a forward moving vehicle, there are
several unmapped areas (white holes) in the resulting map. Most of these areas are the regions
which are visually blocked by the cars parked on the street and are not covered in the camera’s
field of view.

It can be seen from both Fig. 5.7(a) and 5.8(a) that there is a color mismatch at the end of
the sequence before loop closure. The mismatch denotes the different heights at the same place,
which indicates that the trajectory drifts in the vertical direction. Fig. 5.7(b) and 5.8(b) show the
capability of this mapping framework in correcting the mapping errors from odometry drift with
the help of visual-SLAM.

Table 5.1: Main parameters for Octomap

Parameter Value Description

Resolution 0.20 (m) Leaf node voxel size for octree.
Max range 10.0 (m) Maximum range for integrating point cloud measurements

Hit/Miss prob. 0.7/0.4 Probabilites for hit and miss in the sensor model
Min/Max clamping prob. 0.12/0.97 Minimum and maximum probability for clamping

31



5.4.2 Yamaha Dataset
The mapping results of Yamaha off-road datasets are shown in Fig. 5.9 through 5.11. The
mapping performs well in the off-road data both in the wide open areas as shown in Fig. 5.9 and
5.10 or the cluttered narrow trail with tall bush on the sides shown in Fig. 5.11.

Like the case in KITTI dataset, the drifting in pose results in discontinuity and misalignment
in the map which can be corrected by the loop closure. There is a significant drift at the triangle
loop as shown in Fig. 5.10. The corrected occupancy map provides a continuous and smooth
reconstruction of the loop trail.
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(a)

(b)

Figure 5.7: Results of KITTI sequence 00 (a) before loop closure (b) after loop closure.
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(a)

(b)

Figure 5.8: Results of KITTI sequence 07 (a) before loop closure (b) after loop closure.
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(a)

(b)

(c)

Figure 5.9: Results of Yamaha dataset at slope loop (a) Google Map image (b) before loop
closure (c) after loop closure.
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(a) (b)

(c)

Figure 5.10: Results of Yamaha dataset at triangle loop (a) Google Map image (b) before loop
closure (c) after loop closure.
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(a)

(b)

Figure 5.11: Results of Yamaha dataset at narrow trail (a) Google Map image (b) 3D occupancy
map
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Chapter 6

Conclusion and Future Work

This work investigates the localization and mapping for autonomous off-road driving. To achieve
real-time localization of an autonomous off-road vehicle, we employ a generalized EKF frame-
work to perform multi-sensor fusion and estimate the vehicle state locally and globally. Two
instances of EKF are used to fuse different set of on-board sensors for local and global state
estimation. We show the experimental results of local and global EKF running on the vehicle
which drives in the off-road trails. The evaluation results show that the EKF can provide accurate
and reliable pose estimate, both in the local and the global reference frame with high frequency
update and low drift. The state estimation framework provides an compact and off-the-shelf
solution for reliable localization and navigation in off-road driving.

We also explore the SLAM approach in off-road driving by investigating the performance of
a state-of-the-art feature-based visual-SLAM system, ORB-SLAM2. We test the stereo ORB-
SLAM2 on our own off-road dataset and show the evaluation results in both relative and absolute
error metrics along with the EKF results. The results show the weakness and sensitivity of
visual-SLAM system applied in the off-road environment due to the factors such as unpredictable
lighting condition and the lack of salient features in unstructured environment. Nevertheless, the
ability to perform real-time SLAM using single stereo camera is still impressive. The visual
SLAM gives a continuous and globally consistent pose in general off-road driving cases and
provides the alternative pose source for local mapping application.

Lastly, we propose a 3D occupancy mapping framework using stereo camera. We integrate
stereo matching algorithm, visual-SLAM system and the occupancy mapping module together
to achieve efficient dense 3D mapping with accurate camera trajectory estimated by the visual-
SLAM. We show both mapping results on the famous KITTI benchmark dataset and also on our
off-road dataset. The results show that with the help of loop closure correction, the resulting map
do not contain drift and discontinuity, and the scene details are well mapped by the 3D voxels
of occupancy grid. In addition, the output files of the octree maps are with extreme compact
size which is ideal for various applications such as large-scale motion planning and autonomous
navigation in real time.

For future work, we are aiming for the following research directions:
1. Full integration of odometry, IMU, GPS and visual SLAM

The results from the vision-based occupancy mapping demonstrates a proof-of-concept
framework using single stereo camera. However, the lack of absolute positioning limits
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the use of this kind of mapping framework for global registration and navigation. The full
integration with other motion tracking sensors is expected to bring more accuracy, robust-
ness and functionality to both the localization and mapping capability. The full integration
through graph-based optimization is able to provide better and more consistent pose es-
timation with smooth optimized trajectory over time [29], which essentially resolves the
predicament of separating local and global localization due to the drifting and discrete
jumps respectively.

2. Real-time mapping system through parallelization with GPU implementation
The current implementation of the integrated mapping system demands significant pro-
cessing time and memory consumption and it is not optimized for real-time operation yet.
The present bottleneck is the ray-casting process in the mapping module. To achieve the
operation with real frame rate (>30 fps), parallelization in computation is one way to boost
the system processing. GPU implementation will be necessary for such architecture.

3. Octomap-based planning
The ultimate goal of all the work presented in this thesis is to help achieve the fully au-
tonomous driving in off-road. To this end, we are looking forward to the real world in-
tegration of this perception capability. The real use case of Octomap-based planning can
show the power and also the limits of this framework. On the other hand, with planning in
the loop, there is also potential to accomplish autonomous exploration for a driving vehicle
based on the unmapped area.

40



Appendix A

State Estimation Details

A.1 Motion Model

The state transition function f is a 3D kinematic model with constant velocity assumption which
can be expressed as follows:

xk = f(xk−1)

→
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θ
ψ
ẋ
ẏ
ż
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(A.1)

where ∆t is the elapsed time since last update and R denotes the 3D rotation matrix of the
corresponding Euler angels:

R(φ, θ, ψ) =

cθcψ cψsθsφ − cφsψ sφsψ + cφcθsψ
cθsψ cφcψ + sφsθsψ cφsθsψ − cψsφ
−sθ cθsφ cθcφ

 (A.2)

with s and c representing sine and cosine functions.
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A.2 Sensor Model
As mentioned in Sec. 3.1, the generalized EKF framework assumes that each sensor gives direct
measurements of the state variable:

z = h(x) = Hx (A.3)

where H is an m by 12 matrix of rank m with only nonzeros entries (ones) existing in the
columns of the measured variables. Here list the H i for sensor i used in the local and global
EKF with 0m×n and Im×m denoting the m × n zero matrix and m ×m identity matrix respec-
tively.

Local EKF:

Hwheel
L =

[
03×6 I3×3 03×3

]
(A.4)

H imu
L =

[
03×3 I3×3 03×3 03×3
03×3 03×3 03×3 I3×3

]
(A.5)

Global EKF:

Hwheel
G =

[
03×6 I3×3 03×3

]
(A.6)

H imu
G =

[
02×3 I2×2 02×4 02×3
03×3 03×2 03×4 I3×3

]
(A.7)

Hgps
G =

[
I3×3 03×9

]
(A.8)

A.3 Covariances
Here list the nominal covariance values used in the local and global EKF. The diag denotes the
diagonal matrix of entries with the values in the parentheses.

A.3.1 Local EKF
Initial estimates covariance:

Σ0 = diag(1.0e−9, ..., 1.0e−9) (Σ0 is 12 by 12) (A.9)

Process noise covariance:

Q = diag(0.05, 0.05, 0.06, 0.03, 0.03, 0.06, 0.025, 0.025, 0.04, 0.01, 0.01, 0.02) (A.10)

Measurement noise covariance:

Rwheel = diag(0, 0.05, 0) (A.11)

Rimu = diag(0.0175, 0.0175, 0.1571, 4.36e−4, 4.36e−4, 4.36e−4) (A.12)
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A.3.2 Global EKF
Initial estimates covariance:

Σ0 = diag(1.0e−9, ..., 1.0e−9) (Σ0 is 12 by 12) (A.13)

Process noise covariance:

Q = diag(10.0, 10.0, 20.0, 3.0, 3.0, 0.6, 0.025, 0.025, 0.04, 0.01, 0.01, 0.02) (A.14)

Measurement noise covariance:

Rwheel = diag(0, 0.05, 0) (A.15)

Rimu = diag(0.0175, 0.0175, 4.36e−4, 4.36e−4, 4.36e−4) (A.16)
Rgps : time-varying with respect to the status of satellites
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