
Deliberative Perception

Venkatraman Narayanan

CMU-RI-TR-17-67

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy in Robotics

The Robotics Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Thesis Committee
Maxim Likhachev, Chair

Martial Hebert
Siddhartha S. Srinivasa

Manuela M. Veloso
Dieter Fox, University of Washington

August 2017

COPYRIGHT © 2017 VENKATRAMAN NARAYANAN



ii

Abstract

A recurrent and elementary robot perception task is to identify and localize objects of
interest in the physical world. In many real-world situations such as in automated
warehouses and assembly lines, this task entails localizing specific object instances
with known 3D models. Most modern-day methods for the 3D multi-object local-
ization task employ scene-to-model feature matching or regression/classification by
learners trained on synthetic or real scenes. While these methods are typically fast in
producing a result, they are often brittle, sensitive to occlusions, and depend on the
right choice of features and/or training data.

This thesis introduces and advocates a deliberative approach, where the multi-object
localization task is framed as an optimization over the space of hypothesized scenes.
We demonstrate that deliberative reasoning — such as understanding inter-object oc-
clusions — is essential to robust perception, and that discriminative techniques can
effectively guide such reasoning. The contributions of this thesis broadly fall under
three parts:

The first part, PErception via SeaRCH (PERCH) and its extension C-PERCH, formu-
lates Deliberative Perception as an optimization over hypothesized scenes, and devel-
ops an efficient tree search algorithm for the same.

The second part focuses on accelerating global search through statistical learners, in
the form of search heuristics (Discriminatively-guided Deliberative Perception), and
by modulating the search-space (RANSAC-Trees).

The final part introduces general-purpose graph search algorithms that bridge statisti-
cal learning and search. Of these, the first is an anytime algorithm for leveraging edge
validity priors to accelerate graph search, and the second, Improved Multi-Heuristic
A*, permits the use of multiple, inadmissible heuristics that might arise from learning.

Experimental validation on multiple robots and real-world datasets, one of which we
introduce, indicates that we can leverage the complementary strengths of fast learning-
based methods and deliberative classical search to handle both "hard" (severely oc-
cluded) and "easy" portions of a scene by automatically sliding the amount of deliber-
ation required.



iii

Acknowledgements

I cannot sufficiently express my gratitude for my advisor, Max, whose constant sup-
port, patience, and guidance has resulted in an enjoyable journey. I consider myself
fortunate to have been your student, and for having been able to work on a number of
interesting problems over the years. Our association has presented me with practical
lessons in research philosophy, problem-solving, and integrity, that will stay for a long
time to come.

I am thankful to my thesis committee members for their time and critique of this work.
I am grateful to Sidd for the many valuable discussions and advice, to Martial, for the
encouragement, and to Manuela, for all the insightful and big-picture questions. I
thank Dieter for hosting me in his lab and for the collaboration from which I have
learnt much. I must also thank Drew, for serving on my qualifier committee and for
some of the most enriching classes at CMU.

SBPL has been my home away from home, and I am fortunate to have had wonderful
lab-mates over time: Andrew, Ben, Brad, Ellis, Ishani, Fahad, Jon, John, Kalin, Kalyan,
Karthik, Mike, Sameer, Sandip, Shivam, Siddharth, Sung, and Victor. I am particularly
indebted to Mike for teaching me much of what I know today, and for being the best
mentor a fledgling graduate student could ask for. I sincerely hope that your time is
rewarded.

Thanks are due to my fellow robo-grads, Abhijeeth, Arun, Humphrey, and Karthik
for their time in proof-reading manuscripts and providing feedback on practice talks
at different stages of this work. I am also grateful to Varun, for being a permanent
source of wisdom, and Sanjiban, for providing timely feedback and partnering in visa
ordeals. I must thank the administrative staff at the RI, Peggy, Suzanne, and Rachel
for always being there to help and check on, despite their incredible amounts of work.

Life in Pittsburgh has been delightful thanks to a great set of friends. Madhu, Salini,
Shivram, Sreekanth, and Swati: I will cherish forever the music sessions, travels, games,
potlucks, and philosophical discussions. Abhijeeth and Sidzoo, I will miss our cross-
word "breaks". Going back in time, I am thankful to my friends from undergrad, Brain,
Padhu, Prabhu, Praha, Deepak, Guru, RT, and Vijay, for their company, and for leading
me into robotics.

Finally, none of this would have been possible without the support of my family. I
thank my parents, Narayanan and Gomathi, for their unconditional trust and love, my
sister Jayanthi for constantly reminding me of life outside the lab, and my extended
family for providing a stimulating environment to grow in.





v

For Mangala Paati and the Sankarans





vii

Contents

List of Figures 1

List of Tables 3

1 Introduction 5
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Conventional Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Case in Point: The Amazon Picking Challenge . . . . . . . . . . . 8
1.3 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Background 11
2.1 Object Instance Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Local and Global 3D Feature Descriptors . . . . . . . . . . . . . . 11
2.1.2 Generative Approaches . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.3 Learning-based Approaches . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Heuristic Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 A* Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Variants of A* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

I Foundations 17

3 PERCH: Perception via Search for Multi-Object Instance Recognition 19
3.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Optimization Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Monotone Scene Generation Tree . . . . . . . . . . . . . . . . . . . . . . . 22

3.4.1 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.2 Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5 Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.6.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.6.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . 29
3.6.3 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31



viii

4 Extension to Unmodeled Clutter and Optimizations 35
4.1 C-PERCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1.2 Augmented Objective . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1.3 Tractability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Pose Uncertainty Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.5 Search Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.5.1 Depth Image Memoization . . . . . . . . . . . . . . . . . . . . . . 43
4.5.2 Lazy Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.5.3 Edge Cost Normalization . . . . . . . . . . . . . . . . . . . . . . . 45
4.5.4 Precomputed Distance Fields . . . . . . . . . . . . . . . . . . . . . 45

II Discrimination and Deliberation 47

5 Discriminatively-guided Deliberative Perception 49
5.1 Discriminative Heuristic Generation . . . . . . . . . . . . . . . . . . . . . 49
5.2 D2P Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2.1 R-CNN Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2.2 Baseline Implementations . . . . . . . . . . . . . . . . . . . . . . . 53

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.3.1 Comparison with Baselines . . . . . . . . . . . . . . . . . . . . . . 53
5.3.2 Utility of Lazy Edge Evaluations . . . . . . . . . . . . . . . . . . . 56
5.3.3 Discretization vs. ICP Tradeoff . . . . . . . . . . . . . . . . . . . . 57
5.3.4 Synthetic Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6 RANSAC-Trees for 6 DoF Pose 59
6.1 Sampling-based Search and Sample Consensus . . . . . . . . . . . . . . . 59
6.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.3 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.3.1 Asymptotic Properties . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.3.2 PAC-type Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.4 The LOV Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.5 Experiment Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.5.1 Deep Learning for Dense Object Coordinate Regression . . . . . . 67
6.5.2 RANSAC Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.5.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72



ix

III Bridging Heuristic Search and Learning 75

7 Anytime Search on Graphs with Time-consuming Edge Evaluations 77
7.1 Motivating Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.4 Expected Shortest Paths* (ESP*) . . . . . . . . . . . . . . . . . . . . . . . . 81

7.4.1 Problem Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.4.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.4.3 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.5 Optimal Policy for Edge Evaluation under Anytime Interruption . . . . 86
7.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.6.1 Mobile Manipulation Planning . . . . . . . . . . . . . . . . . . . . 90
7.6.2 Synthetic Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . 92

7.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

8 Improved Multi-Heuristic A* 95
8.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
8.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

8.2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
8.2.2 Notation and Terminology . . . . . . . . . . . . . . . . . . . . . . 98

8.3 Multi-Heuristic A* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
8.3.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
8.3.2 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 102
8.3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

8.4 Improved Multi-Heuristic A* . . . . . . . . . . . . . . . . . . . . . . . . . 107
8.4.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
8.4.2 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 111
8.4.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

9 Conclusions 119
9.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
9.2 Directions for Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

9.2.1 Exploiting Object Independences . . . . . . . . . . . . . . . . . . . 119
9.2.2 Physically-based Reasoning . . . . . . . . . . . . . . . . . . . . . . 120
9.2.3 Color and Lighting . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
9.2.4 Deformable and Intertwined Objects . . . . . . . . . . . . . . . . . 122
9.2.5 Active Deliberation . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

9.3 Parting Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Bibliography 125





1

List of Figures

1.1 Examples in warehouse automation and flexible manufacturing. . . . . . 5
1.2 Examples in home automation. . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Warehouse Automation Example . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 Illustration of the “explanation cost”. . . . . . . . . . . . . . . . . . . . . . 21
3.2 The Monotone Scene Generation Tree (MSGT). . . . . . . . . . . . . . . . 24
3.3 States generated during tree search on a toy example. . . . . . . . . . . . 25
3.4 Representative scenes from the dataset. . . . . . . . . . . . . . . . . . . . 28
3.5 Comparison of PERCH with baselines. . . . . . . . . . . . . . . . . . . . . 31
3.6 Qualitative examples of running PERCH on the occlusion dataset. . . . . 32
3.7 An example of PERCH applied to a scene with several chess pieces. . . . 33

4.1 Illustrations for notation used in C-PERCH. . . . . . . . . . . . . . . . . . 38
4.2 Comparison between PERCH and C-PERCH. . . . . . . . . . . . . . . . . 40
4.3 Example to demonstrate pose uncertainty estimation. . . . . . . . . . . . 41

5.1 Discriminative heuristic generation pipeline. . . . . . . . . . . . . . . . . 50
5.2 Qualitative example for D2P. . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3 Comparison of D2P with PERCH. . . . . . . . . . . . . . . . . . . . . . . . 55
5.4 Timing comparison between D2P and PERCH. . . . . . . . . . . . . . . . 55
5.5 Comparison of D2P with OUR-CVFH and BF-ICP. . . . . . . . . . . . . . 56
5.6 Utility of lazy evaluations and analysis of discretization-ICP tradeoff. . . 57
5.7 Synthetic example demonstrating the complementary strengths of dis-

criminative and deliberative methods. . . . . . . . . . . . . . . . . . . . . 58

6.1 RANSAC-Tree Illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.2 Object statistics for the LOV dataset . . . . . . . . . . . . . . . . . . . . . 65
6.3 Representative instances from the LOV dataset . . . . . . . . . . . . . . . 66
6.4 Qualitative results for RANSAC-Tree . . . . . . . . . . . . . . . . . . . . . 72
6.5 Anytime performance of RANSAC-Tree. . . . . . . . . . . . . . . . . . . . 73

7.1 Strategy for interleaving search and edge evaluations. . . . . . . . . . . . 80
7.2 A toy example for ESP* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.3 Conflicting objectives for an anytime algorithm. . . . . . . . . . . . . . . 86
7.4 Illustration of AEE*’s optimization objective . . . . . . . . . . . . . . . . 87
7.5 Mobile manipulation environment for evaluation of AEE*. . . . . . . . . 90
7.6 2D map for synthetic benchmarking experiments. . . . . . . . . . . . . . 92



2 List of Figures

8.1 Utility of multiple heuristics for graph search. . . . . . . . . . . . . . . . 96
8.2 Application of MHA* for mobile manipulation planning. . . . . . . . . . 101
8.3 Illustration showing the operation of Focal-MHA*. . . . . . . . . . . . . . 110
8.4 Environment used for mobile manipulation experiments. . . . . . . . . . 113
8.5 Comparison between original MHA* and MHA*++ for tile puzzles. . . . 118

9.1 Illustration of Object Independence. . . . . . . . . . . . . . . . . . . . . . 120
9.2 Challenging scenes for 6 DoF pose estimation. . . . . . . . . . . . . . . . 121



3

List of Tables

3.1 Symbols and Notation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 Symbols and Notation for C-PERCH. . . . . . . . . . . . . . . . . . . . . . 36

5.1 D2P Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.1 Pose estimation accuracies for RANSAC-Tree . . . . . . . . . . . . . . . . 71

7.1 AEE* results for mobile manipulation planning. . . . . . . . . . . . . . . 91
7.2 Synthetic benchmarking results for ESP*+AEE*. . . . . . . . . . . . . . . 93

8.1 Comparison of MHA* with alternative graph search methods. . . . . . . 105
8.2 Comparison of MHA* with sampling-based planners. . . . . . . . . . . . 106
8.3 Improved MHA* results for mobile manipulation planning. . . . . . . . 114
8.4 Improved MHA* results for sliding tile puzzles. . . . . . . . . . . . . . . 117





5

Chapter 1

Introduction

1.1 Motivation

(a) (b) (c)

FIGURE 1.1: Examples of object instance detection tasks in warehouse automation
and flexible manufacturing settings. (a) Amazon Kiva warehouse. (b) Fetch robot
in an automated warehouse. (c) Baxter robot in a flexible manufacturing setup.

Robots that interact with or monitor objects in the physical world invariably need to
perceive the identity and whereabouts of those objects. Robotic assistants and industrial
manipulators can grasp and manipulate an object of interest with a high degree of pre-
cision only when they know the object’s pose (i.e, location and orientation), while au-
tonomous cars require the poses of nearby actors—the heading of a pedestrian down
the street, the precise location of a bus in the adjacent lane, and so forth—to safely and
smartly interact with them. To deliver the promise of robotics and facilitate the exo-
dus of robots from controlled laboratory environments to the real world, one would
need to endow these systems with robust perception in the face of imperfect and high-
variance sensor data.

Particularly important in settings such as automated warehouses or low-cost manufac-
turing is that of object instance detection, where a specific object needs to be localized.
For example, the system is required to identify the whereabouts of a particular coffee
mug, as opposed to any coffee mug. The specific instance that needs to be localized is
often associated with a 3D model of that object, such as a CAD design, either known
through manual design of the model or by performing a 3D scan on the physical in-
stance. The instance detection problem is arguably simpler than the general perception
problem (e.g, identifying all possible coffee mugs), and yet difficult to solve robustly.



6 Chapter 1. Introduction

(a) (b) (c)

FIGURE 1.2: Examples of object instance detection tasks in home automation. (a)
Automated kitchen from Moley robotics. (b) HERB and (c) PR2 robots perceiving
objects of interest.

For example, in an automated warehouse setting (Fig. 1.1), the inventory of objects is
known ahead of time, and perception systems have a complete database of exact object
instances they expect to encounter. Furthermore, the semi-structured nature of such
warehouses might provide information on what objects are present in each shelf/bin.
Despite the simplification, instance detection remains challenging: can the robot reli-
ably localize an instance which is obscured by other ones, or an instance which has
just been introduced to the warehouse? The same problems arise in low-volume and
flexible automated manufacturing, where one often has knowledge of what objects or
parts are expected to be seen, but precise localization and association is not available.

The task of object instance recognition and localization appears in home automation as
well (Fig. 1.2). Robots that operate in known environments—i.e, environments which
they have been familiarized to, often interact with the same object instances in different
scenarios. As an example, a household robot operating in the kitchen might need to
identify and localize a particular cutlery item to grasp and use it every time such a
need arises.

This thesis focuses on developing robust and efficient approaches for a variety of object
instance detection tasks, studying their theoretical properties, and evaluating them on
real-world examples.

1.2 Conventional Approaches

Traditional methods for object instance detection have relied on matching hand-coded
feature descriptors between the observed scene and 3D models, with recent data-
driven methods permitting automated learning of those feature descriptors. While
these methods, broadly classified as discriminative, provide attractive test-time speeds,
they remain brittle in practice despite numerous variants that have shown promise. As
an example, consider the scene in Fig. 1.3, where we need to identify and localize the
Elmers’ glue bottle, which is almost completely occluded by the shelf. Methods that
employ feature correspondence matching fare poorly as key feature descriptors could
be lost due to occlusion by the shelf, whereas learning-based methods could suffer as



1.2. Conventional Approaches 7

(a)

(b) (c)

FIGURE 1.3: A typical warehouse automation task where the robot needs to iden-
tify, grasp, and move a target item from the shelf to a tote. Here, the system has
access to a list of objects in the bin, their 3D models, as well as the model of the
shelf. (a) Carnegie Mellon University’s robotic system in the 2016 Amazon Pick-
ing Challenge, employing techniques developed in this thesis. (b) An image of
a single bin in the shelf from which we are required to identify and localize the
Elmer’s glue bottle, marked by a red bounding box. (c) An image of the Elmer’s
glue bottle that needs to be localized.

they might have not seen a similar training instance where only such a small portion
of the object is visible.

Multi-object instance localization, the problem of identifying and localizing multiple
objects in a scene, is particularly challenging for discriminative methods. The training
data required to capture subtleties arising from inter-object occlusions scales expo-
nentially with the number of objects that can be simultaneously present in a scene.
Modern-day systems typically ignore the combinatorial aspect of this problem, and
resort to post-hoc fine-tuning instead (Aldoma et al., 2012c).



8 Chapter 1. Introduction

1.2.1 Case in Point: The Amazon Picking Challenge

The persisting challenges of multi-object instance detection are perhaps best captured
in a survey of the recently concluded 2015 Amazon Picking Challenge (Correll et al.,
2016), where participants ranked perception as the most difficult aspect of the overall
system, despite having a priori knowledge of exact object instances. Our own partic-
ipation in the 2016 and 2017 editions of this challenge (picture of our system shown
in Fig. 1.3) and the lessons learned second the survey results. While the most popular
perception techniques used in this challenge were heavily reliant on learning-based
methods, the performance of these systems was shown to degrade quite rapidly in the
presence of occlusions (Zeng et al., 2017).

Let us now go back to the example scene in Fig. 1.3. Knowing that the objects are in
a shelf bin, and that there are five specific objects allows us to jointly reason about or
deliberate on the occlusion caused by the shelf and the positions of the other objects
to infer the exact pose of the Elmer’s glue bottle. Such a “deliberative reasoning" ap-
proach not only appears to address the problems faced by discriminative matching,
but is also appealing from a computational standpoint; computers are adept at search-
ing through millions of hypotheses, which in this case are possible explanations of the
scene that result in the observed image. This deliberative reasoning forms the crux of
our work.

1.3 Proposed Approach

This thesis proposes and advocates a deliberative approach to instance detection with
model-based search as its central tenet. We argue and demonstrate that explicit reason-
ing over the physical structure of the problem (e.g., modeling inter-object occlusions)
is essential for robust multi-object instance detection, study the tractability of such an
approach, and provide principled tools for an efficient implementation of deliberative
perception.

Consider an analogy with classical AI. Successes such as computer chess, and recently
Go, can be attributed to the ability of computers to search through millions of hy-
pothetical scenarios (i.e, deliberate), while using “discriminative” heuristics to focus
the search on likely ones. A very recent example is that of Alpha Go (Silver et al.,
2016), which guides Monte Carlo Tree Search with convolutional neural networks to
achieve impressive results. State-of-the-art methods in machine perception however,
rely solely on discriminative systems that match observed sensor data to training in-
stances. Drawing parallels between the computer chess and machine perception prob-
lems, we argue that while powerful discriminative methods and heuristics are useful
in obtaining a good “guess”, they must be employed by a larger system that can sys-
tematically search through the “generative” state space.



1.4. Thesis Overview 9

In the context of multi-object pose estimation, an approach that can simultaneously
perform global reasoning and be guided by discriminative patterns needs to employ
two seemingly disparate AI tools: classical search techniques for combinatorial rea-
soning, and statistical learning for discriminative matching. Consequently, the thesis
draws from both camps and takes a neoclassical approach to develop algorithms that
integrate learning-based techniques seamlessly into search.

1.4 Thesis Overview

Chapter 2 reviews the related work in the field of object instance recognition, and
presents a primer on graph search. The following chapters then present the core con-
tributions of this thesis, and can be grouped under three parts:

1. Part I introduces and formalizes Deliberative Perception. Chapter 3 sets up the
problem of multi-object instance localization as that of model-based search over
the space of possible scenes that can be observed given the 6 DoF sensor pose
and 3D models of objects. The presented algorithm, PERception via SearCH
(PERCH) (Narayanan and Likhachev, 2016a), exploits structure in the optimiza-
tion objective to cast the problem as one of tree search. In addition, this chap-
ter introduces a notion of completeness for the multi-object localization problem.
Chapter 4 presents an extension of PERCH to scenes containing extraneous clut-
ter for which 3D models are not available (Narayanan and Likhachev, 2017a).
Further, it discusses several algorithmic and implementation optimizations to
improve the computational efficiency of PERCH.

2. Part II deals with the integration of learning-based approaches and global search.
Discriminatively-guided Deliberative Perception, abbreviated D2P (Narayanan
and Likhachev, 2016b) is introduced in Chapter 5 for leveraging arbitrary and
multiple discriminative methods as heuristics in guiding search. Chapter 6 ad-
dresses the curse of dimensionality that arises in 6 DoF object pose estimation.
We explore the use of discriminative learners in directly constructing a sampling-
based search tree that we name RANSAC-Tree. This complements Chapter 5,
where learners are used exclusively as heuristics in guiding a predefined implicit
search tree.

3. Part III presents the core graph search algorithms that connect learning and
search. Chapter 7 delves into graph search problems where edge evaluations
are time-consuming, as is the case in this thesis. A novel anytime algorithm
formulation (Narayanan and Likhachev, 2017b) is presented, with a definition
for anytime algorithm “optimality”. Finally, Chapter 8 presents the Improved
Multi-Heuristic A* (Narayanan, Aine, and Likhachev, 2015) algorithm for lever-
aging multiple, arbitrary functions as heuristics to guide search while preserving
formal guarantees on solution quality. The algorithms presented in both these
chapters are applicable to arbitrary graphs, and we take some digressions here



10 Chapter 1. Introduction

to demonstrate their generality through evaluation on robot motion planning
domains.

The algorithms introduced in these chapters provide attractive theoretical guarantees
on completeness and solution quality. The implication of solution quality guarantees
for practitioners is that it delineates cost-function design from algorithmic efficiency
improvements, thereby providing a clear handle on the accuracy-efficiency tradeoff.

Chapter 9 concludes with a summary of contributions, discussion, and avenues for
future work.

Note for Readers:

Although the primary contribution of the thesis is in the area of 3D perception, associ-
ated contributions and the related work that it builds on span multiple fields including
3D perception, classical AI and search, machine learning, and motion planning. The
thesis is structured such that the first two parts are accessible to the reader with a more
extensive background in perception than heuristic search, whereas readers coming
from a classical AI or planning background would find the final part self-contained.



11

Chapter 2

Background

We first review the literature on object instance detection from 3D sensor data, and
then provide a refresher on heuristic search—the tool of choice in this thesis.

2.1 Object Instance Detection

2.1.1 Local and Global 3D Feature Descriptors

Model-based object recognition and localization in the present 3D era falls broadly
under two approaches: local and global recognition systems. The former class of algo-
rithms operate in a two step procedure: i) compute and find correspondences between
a set of local shape-preserving 3D feature descriptors on the model and the observed
scene and ii) estimate the rigid transform between a set of geometrically consistent cor-
respondences. A final, optional and often used step is to perform a fine-grained local
optimization to align the model to the scene and obtain the pose. Examples of local 3D
feature descriptors range from Spin Images (Johnson and Hebert, 1999) to Fast Point
Feature Histograms (FPFH) (Rusu, Blodow, and Beetz, 2009), whereas final alignment
procedures include Iterative Closest Point (ICP) (Chen and Medioni, 1991) and Bing-
ham Procrustrean Alignment (BPA) (Glover and Popovic, 2013). The survey paper by
Aldoma et al. (Aldoma et al., 2012a) provides a comprehensive overview of other local
approaches.

The second, global recognition systems employ a single-shot process for identifying
object type and pose jointly. Global feature descriptors encode the notion of an ob-
ject and capture shape and viewpoint information jointly in the descriptor. These ap-
proaches employ a training phase to build a library of global descriptors correspond-
ing to different observed instances (e.g., each object viewed from different viewpoints)
and attempt to match the descriptor computed at observation time to the closest one
in the library. Additionally, unlike the local methods, global ones require points in the
observed scene to be segmented into different clusters, so that descriptors can be com-
puted on each object cluster separately. Some of the global recognition systems include
Viewpoint Feature Histogram (VFH) (Rusu et al., 2010), Clustered Viewpoint Feature



12 Chapter 2. Background

Histogram (CVFH) (Aldoma et al., 2011), OUR-CVFH (Aldoma et al., 2012b), Ensem-
ble of Shape Functions (ESF) (Wohlkinger and Vincze, 2011), and Global Radius-based
Surface Descriptors (GRSD) (Marton et al., 2011). Other approaches to estimating ob-
ject pose include local voting schemes (Drost et al., 2010) or template matching (Hin-
terstoisser et al., 2013) to first detect objects, and then using global descriptor matching
or ICP for pose refinement.

Finally, a number of recent works have employed feature-descriptors, either manually
specified or learnt from data, to build complete vision pipelines for RGB-D data. Kevin
Lai’s thesis work (Lai, 2014) was amongst the first to explore the use of RGB-D data for
robotic vision, and focused on efficient learning-algorithms for joint category, instance
and pose estimation from RGB-D images. The MOPED system (Collet, Martinez, and
Srinivasa, 2011) introduced a novel Iterative Clustering-Estimation for scoring object
hypothesis and extended its usage to RGB-D images Fouhey et al., 2012 by developing
techniques for handling missing depth data.

Although both local and global feature-based approaches have enjoyed popularity ow-
ing to their speed and intuitive appeal, they suffer when used for identifying and
localizing multiple objects in the scene. The limitation is perhaps best described by
the following lines from the book by Stevens and Beveridge (Stevens and Beveridge,
2000b):

“Searching for individual objects in isolation precludes explicit reasoning about
occlusion. Although the absence of a model feature can be detected (i.e., no cor-
responding data feature), the absence cannot be explained (why is there no corre-
sponding data feature?). As the number of missing features increase, recognition
performance degrades”.

Global verification (Aldoma et al., 2012c; Aldoma et al., 2013; Doumanoglou et al.,
2016) and filtering (Figueiredo et al., 2013) approaches aim to address the occlusion
problems faced by feature-based methods through a joint optimization procedure over
candidate object poses. However, these are restricted by the fact that initial predictions
for object poses are provided by a system that does not model occlusion. In this thesis,
we aim to explicitly reason about the interactions between multiple objects in the ob-
served data by hypothesizing or rendering scenes, thereby overcoming the limitations
of methods that train on single-object instances.

2.1.2 Generative Approaches

The idea of using search to “explain” scenes was popular in the early years of 2D
computer vision: Goad (Goad, 1987) promoted the idea of treating feature matching
between the observed scene and 3D model as a constrained search while Lowe (Lowe,
1987) developed and implemented a viewpoint-constrained feature matching system.



2.1. Object Instance Detection 13

Grimson (Grimson and Lozano-Perez, 1987) introduced the Interpretation Tree to sys-
tematically search for geometrically-consistent matches between scene and model fea-
tures, while using various heuristics to speed up search. Our work is also based on a
search system, but it differs from the aforementioned works in that the search is over
the space of full hypothesized/rendered scenes and not feature correspondences. In
fact, our proposed approach can operate without any feature descriptors at all.

Several approaches (Hsiao and Hebert, 2014; Xiang and Savarese, 2013; Meger et al.,
2011) have been proposed to incorporate explicit occlusion reasoning in vision sys-
tems. A common motif to these methods is the notion of an “occlusion prior” that
is statistically learnt from data. These priors are integrated with an object detector to
improve performance in cluttered scenes. Broadly speaking, these approaches are top-
down in that they use occlusion reasoning as a “soft”-prior on top of existing object
detectors. On the other hand, the use of exact 3D models in our proposed approach
enables a completely bottom-up model-based search. Yet another related generative
approach is the scene parsing system described by Hager and Wegbreit (Hager and
Wegbreit, 2011). While the authors formulate the scene explanation problem as an
optimization-based one similar to our approach, the focus of their work is on cap-
turing scene dynamics and evolution of the scene over time as objects get removed
and added. Further, their work assumes simple initialization of object poses based on
geometric primitives for the objects. On the other hand, this thesis concentrates on
the multi-object pose estimation problem for static scenes with arbitary objects, and
develops efficient algorithms for the same.

The philosophy of the Render, Match and Refine (RMR) approach proposed by Stevens
and Beveridge (Stevens and Beveridge, 2000a) is congruent with ours. RMR explicitly
models interaction between objects by rendering the scene and uses occlusion data
to inform measurement of similarity between the rendered and observed scenes. It
then uses a global optimization procedure to iteratively improve the rendered scene
to match the observed one. Our proposed approach, although similar in philosophy,
is different in several ways: First, the optimization objective we use to compare the
rendered and observed scene is based purely on 3D sensor data, as opposed to the 2D
edge-feature and per-pixel depth differences used in RMR that make it vulnerable to
the pitfalls of feature-based methods. Second, our optimization objective can be de-
composed over the objects in the scene, thereby overcoming an intractable exhaustive
search over the joint object poses. Finally, our model-based search framework lends
itself to powerful heuristic search tools that can leverage discriminative methods for
guidance.

2.1.3 Learning-based Approaches

Convolutional Neural Networks (CNNs) have revolutionized the field of object detec-
tion in RGB images through excellent representation learning capabilities (Krizhevsky,
Sutskever, and Hinton, 2012). Consequently, recent works in RGB-D object detection



14 Chapter 2. Background

have also focused on using deep learning (Schwarz, Schulz, and Behnke, 2015; Eitel
et al., 2015; Wu et al., 2015) for automatic representation learning. In a related work,
Krull et al. (2015) train a CNN to compare rendered and observed depth images. De-
spite the promise shown, deep learning methods by themselves are ill-suited for multi-
object instance detection problems since the required training data is combinatorial in
the number of objects. Our proposed approach however, can use discriminative learn-
ers such as CNNs as heuristics in guiding model-based search (Chapter 5), thereby
shifting responsibility from discrimination to deliberation.

2.2 Heuristic Search

Heuristic Search is the core of several planning algorithms, in robotics and beyond.
Problems that can be cast as finding cost-minimizing paths in graphs or trees lend
themselves to a rich toolbox of heuristic search algorithms. For example, in the field
of robot motion planning where the task is to find collision-free paths (often with
some cost-minimization objective), the problem can be cast as graph search. Such
an approach has been used with success in a variety of robot motion planning prob-
lems: planning for autonomous navigation (Likhachev and Ferguson, 2008), naviga-
tion in dynamic environments (Phillips and Likhachev, 2011; Narayanan, Phillips, and
Likhachev, 2012), navigation under topological constraints (Vernaza, Narayanan, and
Likhachev, 2012; Narayanan et al., 2013), manipulation planning for robotic arms (Co-
hen, Chitta, and Likhachev, 2010; Cohen, Phillips, and Likhachev, 2014) and naviga-
tion for aerial vehicles (MacAllister et al., 2013; Butzke et al., 2016). Since this thesis
makes use of, and contributes to the field of heuristic search, we provide a brief primer
on the topic.

2.2.1 A* Search

A* (Hart, Nilsson, and Raphael, 1968) is a widely used graph search algorithm for
finding shortest paths in graphs. It takes as input a graph G(S,E) with states s ∈ S,
an edge-cost function c : S × S → R+ that maps every edge to a strictly positive cost ,
a start state sstart and a goal sgoal. The output is a path (sequence of edges) from sstart

to sgoal that has the smallest possible cost accumulated over the edges. A*’s efficiency
arises from a heuristic function h : S → R that estimates the cost-to-goal for any given
state s in the graph. A* is guaranteed to find the optimal (cost-minimum) path only if
the heuristic is admissible: i.e, it does not overestimate the cost-to-goal for any state s.

Algorithm

The algorithm (Alg. 1) assigns three values to each state in the graph: g(s), the cost
of the best known path from sstart to s; h(s), the heuristic estimate for state s; and



2.2. Heuristic Search 15

Algorithm 1 A* Search

1: procedure EXPANDSTATE(s)
2: Remove s from OPEN
3: for all s′ ∈ SUCCESSORS(s) do
4: if s′ was not seen before then
5: g(s′)←∞
6: if g(s′) > g(s) + c(s, s′) then
7: g(s′)← g(s) + c(s, s′)
8: Insert/Update s′ in OPEN with priority f(s′) = g(s′) + h(s′)

9: procedure A*(sstart, sgoal, c, h)
10: OPEN← ∅
11: g(sstart)← 0
12: f(sstart)← h(sstart)
13: Insert sstart in OPEN with priority f(sstart)
14: while sgoal not expanded do
15: if OPEN.EMPTY() then return null

16: s← OPEN.TOP() . State with smallest f(s) in OPEN
17: EXPANDSTATE(s)

18: return RECONSTRUCTPATH(sgoal)

f(s) = g(s) + h(s), an estimate of the best path cost from sstart to sgoal through state
s. Initially, g(s) is set to 0 for sstart, and ∞ for all other states (this is often done
lazily—as and when states are “discovered” for the first time). During its operation,
A* repeatedly expands a state s with the smallest f(s) value until sgoal is about to be
expanded. There are two steps in expanding a state s. First, we look at the successor
states for s and update their g-values if they can be reached via s through a better-cost
path than the currently known path. Second, we mark s as expanded. These steps
are typically implemented by maintaining an OPEN list of not-yet-expanded states
sorted by f(s) values. Once the search terminates, we can reconstruct the solution
path by greedily following the best predecessor (defined by lowest g-value) from sgoal

recursively. A* is guaranteed to not expand a state more than once if the heuristic is
consistent—i.e, it satisfies the triangle inequality h(s) ≤ h(s′) + c(s, s′), ∀s, s′ ∈ S and
h(sgoal) = 0. Note that consistency implies admissibility, but not vice versa. Finally,
A* is complete: it finds a solution if one exists, or reports failure in finite time if there is
no path from start to goal.

2.2.2 Variants of A*

A fundamental limitation of optimal heuristic search techniques such as A* (Hart,
Nilsson, and Raphael, 1968) is their prohibitively large computation time in high-
dimensional state spaces—i.e, large graphs that result from high-dimensional state
representations. Consequently, much of the recent research in applying heuristic search
for high-dimensional problems has focused on achieving practical computation times
by settling for bounded suboptimality. These work by inflating the heuristic, as in



16 Chapter 2. Background

Weighted A* (Pohl, 1970; Likhachev, Gordon, and Thrun, 2004), or using effort esti-
mates (an estimate of how many expansions are needed to terminate) as in Bounded
Suboptimal Search (Thayer and Ruml, 2011; Hatem and Ruml, 2014). Weighted A*
works identically to A* search, except that the heuristic is inflated by a factor w ≥ 1 to
make the search more goal-directed. It can be shown that using a consistent heuristic
yields solutions that are within w of the optimal solution (Pohl, 1970), and that no state
in the graph needs to be expanded more than once (Likhachev, Gordon, and Thrun,
2004).

The notion of anytime search is another pertinent concept to this thesis. An anytime
algorithm is one that finds an initial solution quickly although the found solution
might be suboptimal, and continues to improve the quality of the solution given more
time. For instance, Anytime A* (Hansen and Zhou, 2007) and Anytime Repairing
A* (Likhachev, Gordon, and Thrun, 2004) find initial solution paths quickly by using
a Weighted A* search with large w, and continue searching (using different schemes)
for improving the solution quality over time.

In this thesis, we make two core contributions to the heuristic search literature. The
first one is a technique that can simultaneously utilize multiple inadmissible heuristics
to efficiently search high-dimensional state spaces. This is motivated by the observa-
tion that the performance of A*-like algorithms is dictated strongly by the quality of
the heuristic used—i.e, how correlated is the heuristic with the true “cost-to-go”. De-
tails of these techniques, their theoretical properties and applicability to arbitrary do-
mains are presented in Chapter 8. The second one is an anytime search algorithm for
graphs where evaluating the existence of an edge is time-consuming. This algorithm
introduces a novel criterion for the design of an anytime algorithm, and derives an
“optimal” anytime algorithm for edge evaluation.



17

Part I

Foundations





19

Chapter 3

PERCH: Perception via Search
for Multi-Object Instance
Recognition

This chapter introduces the problem tackled by this thesis and the model-based search
framework that will be employed in the remaining chapters. We begin with a formal
description of the task and the assumptions made.

3.1 Setup

The problem statement is as follows: given 3D models of N unique rigid objects, a
point cloud (I) (equivalently, a depth-image) of a scene containing K ≥ N objects
(possibly containing replicates of the N unique objects), and the 6 DoF pose of the
sensor, we are required to find the 3 DoF pose (x, y, θ) of each of the K objects in the
scene. While rigid objects are fully characterized by their 6 DoF poses, we will assume
for the time being that they are constrained in their other degrees of freedom: roll,
pitch and translation along the z-axis. This assumption is reasonable in settings where
objects rest on a supporting plane, such as in tabletop manipulation or warehouse
bin picking. Further, if we treat distinct stable configurations of an object (typically
much fewer in number than all possible 6 DoF poses) in the absence of other objects
as unique models, the 3 DoF assumption is not as restrictive. Nevertheless, we will
discuss approaches to handle full 6 DoF objects in Chapter 6.

We make the following assumptions:

• The number (K) and type of objects in the scene are known ahead of time (but
not the correspondences themselves).

• The objects in the scene vary only in position (x, y) and yaw (θ)—3 DoF, with
respect to their 3D models.

This chapter is based on material from Venkatraman Narayanan and Maxim Likhachev (2016a).
“PERCH: Perception via Search for Multi-Object Recognition and Localization”. In: ICRA. IEEE.

https://www.ri.cmu.edu/pub_files/2016/5/perch_icra16.pdf


20 Chapter 3. PERCH: Perception via Search for Multi-Object Instance Recognition

TABLE 3.1: Symbols and Notation.

I The input point cloud
K The number of objects in the scene
N The number of unique objects in the scene (≤ K)
O An object state specifying a unique ID and 3 DoF pose
Rj Point cloud corresponding to the rendering of a scene with j objects O1:j

∆Rj
Point cloud containing points of Rj that belong exclusively to object Oj :
∆Rj = Rj −Rj−1

V (Oj) The set of points in the volume occupied by object Oj .
Vj The union of volumes occupied by objects O1:j

• The input point cloud/depth image can be preprocessed (supporting plane, back-
ground filtered etc.) such that the points in it belong to the objects of interest only.

• We have access to the intrinsic parameters of the sensor, so that we can render
scenes using the available 3D models.

We specifically note that we do not make any assumptions about the ability to “cluster”
points into different object groups as is done by most global 3D object recognition
methods such as the Viewpoint Feature Histogram (VFH) (Rusu et al., 2010).

3.2 Notation

Throughout this thesis, we will use the following notation:

• O: An object state characterized by (ID, x, y, θ), the unique object ID, position
and yaw.

• I : The input/observed point cloud from the depth sensor.

• Rj : A point cloud generated by rendering a scene containing objectsO1, O2, . . . , Oj .

• p: A point (x, y, z) in any point cloud.

• ∆Rj = Rj −Rj−1, the point cloud containing points in Rj but not in Rj−1. In
other words, the set of points belonging to object Oj that would be visible given
the presence of objects O1, O2, . . . , Oj−1.

• V (Oj): The set of all points in the volume occupied by object Oj . When it is
not possible to compute this in closed form, this can be replaced by an admissi-
ble/conservative approximation, for example, the volume of an inscribed cylin-
der.

• Vj = ∪ji=1V (Oi), the union of volumes occupied by objects O1, O2, . . . , Oj .

We use upper-case bold-faced letters to denote point clouds (set of points in R3), and
lower-case bold-faced letters to denote a point in R3. Table 3.1 summarizes the notation
used.



3.3. Optimization Formulation 21

FIGURE 3.1: Illustration showing the computation of the explanation cost. The
figure on the left shows the superposition of the observed point cloud (in blue)
and the rendered point cloud (in yellow) of a cylindrical object. Object boundaries
and volumes are shown merely for illustration. The total explanation cost (see
figure on the right) is the number of unexplained points in the observed point
cloud (Jo) and the number of unexplained points in the rendered point cloud (Jr).

3.3 Optimization Formulation

We formulate the problem of identifying and obtaining the 3 DoF poses of objects
O1, O2, . . . , OK as that of finding the minimizer of the following explanation cost:

J(O1:K) =
∑
p∈I

OUTLIER(p|RK)︸ ︷︷ ︸
Jobserved(O1:K) or Jo

+
∑

p∈RK

OUTLIER(p|I)︸ ︷︷ ︸
Jrendered(O1:K) or Jr

(3.1)

in which OUTLIER(p|P ) for a point cloud P and point p is defined as follows:

OUTLIER(p|P ) =

1 if minp′∈P ‖p′ − p‖2 > δ

0 otherwise
(3.2)

for some sensor noise threshold δ. We will use the notation Jo and Jr to refer to the
observed and rendered explanation costs respectively.

The explanation cost essentially counts the number of points in the observed scene
that are not explained by the rendered scene and the number of points in the rendered
scene that cannot be explained by the observed scene. While it looks simplistic, the
cost function forces the rendering of a scene that as closely explains the observed scene
as possible, from both a ‘filled’ (occupied) and ‘empty’ (negative space) perspective.
Figure 3.1 illustrates the computation of the ‘explanation cost’. Another interpretation
for the explanation cost is to treat it as an approximation of the difference between
the union volume and intersection volume of the objects in the observed and rendered
scenes.

In the ideal scenario where there is no noise in the observed scene and where we have
access to a perfect renderer, we could do an exhaustive search over the joint object



22 Chapter 3. PERCH: Perception via Search for Multi-Object Instance Recognition

poses to obtain a solution with zero cost. However, this naive approach is a recipe for
computational disaster: even when we have only 3 objects in the scene and discretize
our positions to 100 grid locations and 10 different orientations, we would have to
synthesize/render 109 scenes to find the global optimum. This immediately calls for a
better optimization scheme, which we derive next.

3.4 Monotone Scene Generation Tree

3.4.1 Construction

The crux of our algorithm exploits the insight that the explanation cost function can
be decomposed over the set of objects in the scene. To see this, we first note that the
rendered scene containing K objects, RK can be incrementally constructed:

RK = ∪Ki=1∆Ri s.t. Ri−1 ⊆ Ri

where ∆Ri = Ri − Ri−1 and R0 is assumed to be an empty point cloud. The con-
straint Ri−1 ⊆ Ri translates to saying that the addition of a new object to the scene
does not ‘occlude’ the existing scene, thereby guaranteeing that every point in Ri−1

exists in Ri as well. In other words, the number of points in the rendered point cloud
can only increase with the addition of a new object. The above constraint implicitly
assumes that the scene does not contain objects which can simultaneously occlude an
object and also be occluded by another object, such as horseshoe-shaped objects1. Us-
ing the above, we can write the rendered explanation cost as follows:

Jr =
∑

p∈RK

OUTLIER(p|I)

=

K∑
i=1

∑
p∈∆Ri

OUTLIER(p|I) s.t. Ri−1 ⊆ Ri

We then similarly decompose the observed explanation cost:

Jo =
∑
p∈I

OUTLIER(p|RK)

=
∑
p∈I

K∏
i=1

OUTLIER(p|∆Ri) s.t. Ri−1 ⊆ Ri

=

K∑
i=1

∑
p∈{I∩V (Oi)}

OUTLIER(p|∆Ri)

+
∑

p∈{I−VK}

OUTLIER(p|RK) s.t. Ri−1 ⊆ Ri

1In theory, we could still handle such objects by decomposing them into multiple surfaces that satisfy the
non-occlusion constraint. We omit the details for simplicity of explanation.



3.4. Monotone Scene Generation Tree 23

With the above decompositions, we can re-write the overall optimization objective as:

J(O1:K) =

K∑
i=1

∆J i s.t. Ri−1 ⊆ Ri (3.3)

=

K∑
i=1

∆J ir + ∆J io s.t. Ri−1 ⊆ Ri

where

∆J ir =
∑

p∈∆Ri

OUTLIER(p|I)

∆J io =
∑

p∈{I∩V (Oi)}

OUTLIER(p|∆Ri) + residual(i)

residual(i) =


∑

p∈{I−VK} OUTLIER(p|RK) if i = K

0 otherwise

Equation 3.3 defines a pairwise-constrained optimization problem, the constraint be-
ing that the assignment of the ith object does not occlude the scene generated by the
assignment of the previous objects 1 through i−1. A natural way to solve this problem
is to construct a tree that satisifies the required constraint, and assigns the object poses
in a sequential order. This is precisely our approach and the resulting tree we construct
is called the Monotone Scene Generation Tree (MSGT), with ‘monotone’ emphasizing
that as we go down the tree, newly added objects cannot occlude the scene generated
thus far (Fig. 3.2). We note that while a particular configuration of objects can be gen-
erated by choosing different assignment orders, only one is sufficient to retain as all
those configurations have identical explanation costs. Thus, we obtain a tree structure
instead of a Directed Acyclic Graph (DAG). Formally, any vertex/state in the MSGT
is a partial assignment of object states: s = {O1:j}, with j ≤ K. For a MSGT state
s with an assignment of j objects, the implicit successor generation function and the
associated cost are defined as follows:

SUCC(s) = {s′|s′ = s ∪Oj+1 ∧Rj ⊆ Rj+1} (3.4)

C(s, s′) = ∆Jj+1 = ∆Jj+1
r + ∆Jj+1

o (3.5)

The root node of the tree sroot is an empty state containing no object assignments, while
a goal state is any state s that has an assignment for all objects. Given the MSGT con-
struction, the multi-object localization problem reduces to that of finding the cheapest-
cost path in the tree from the root state to any goal state.

A Note on the Cost Function

While we choose a relatively simple outlier-based cost function in this work, a larger
class of sophisticated cost functions that accurately model various aspects of sensor



24 Chapter 3. PERCH: Perception via Search for Multi-Object Instance Recognition

FIGURE 3.2: Portion of a Monotone Scene Generation Tree (MSGT): the root of the
tree is the empty scene, and new objects are added progressively as we traverse
down the tree. Notice how child states never introduce an object that occludes
objects already in the parent state. A counter-example (marked by the red cross)
is also shown. Any state on the K th level of the tree is a goal state, and the task
is to find the one that has the lowest cost path from the root—marked by a green
bounding box in this example.

noise can be used. The main constraint on the choice of cost function is that it is
decomposable—a constraint easily satisfied by any “local” cost-function. An example
of a non-decomposable cost function would be a color-difference cost, which depends
on all objects in the scene since lighting and shadow effects are now inter-dependent.
This prevents an object-wise decomposition of the cost function.



3.4. Monotone Scene Generation Tree 25

FI
G

U
R

E
3.

3:
A

su
bs

et
of

al
lt

he
st

at
es

‘g
en

er
at

ed
’d

ur
in

g
th

e
tr

ee
se

ar
ch

fo
r

th
e

sc
en

e
in

Fi
g.

3.
2.

Th
is

fig
ur

e
is

be
st

vi
ew

ed
w

it
h

di
gi

ta
lz

oo
m

.



26 Chapter 3. PERCH: Perception via Search for Multi-Object Instance Recognition

3.4.2 Search

Although we have replaced exhaustive search with tree search, the problem still re-
mains daunting owing to its branching factor. Assume that we have d possible config-
urations (x, y, θ) for each object. Then, the worst-case branching factor for the MSGT is
dK for all levels if we allow repetition of objects in the scene, or dK−i for level i if there
is no repetition. Figure 3.3 illustrates this by showing a subset of the states generated
during the tree search corresponding to the scene in Fig. 3.2. While heuristic search
techniques such as A* are often a good choice for such problems, they require an admis-
sible heuristic that provides a conservative estimate of the remaining cost-to-go. Usual
heuristic search methods are limited by the following: i) admissible heuristics are non-
trivial to obtain for this problem, and ii) they cannot support multiple heuristics, each
of which could be useful on their own. In this thesis, we develop novel graph-search
techniques that can incorporate multiple inadmissible heuristics to guide the search,
without compromising guarantees on solution quality. The next chapter presents the
details of these techniques, and their properties.

While the choice of heuristic search technique is independent of the construction of the
MSGT, Algorithm 2 shows an instantiation of PERCH with the Focal Multi-Heuristic
A* (MHA*)2 search algorithm (Narayanan, Aine, and Likhachev, 2015) as an example.
At a high level, Focal-MHA* operates much like A* search. Like A*, it maintains a
priority list of states ordered by an estimate of the path cost through that state and
repeatedly ‘expands’ the most promising states until a goal is found. The difference
from A* is in that Focal-MHA* interleaves this process with expansion of states chosen
greedily by other heuristics. Finally, Focal-MHA* guarantees that the solution found
will have a cost which is bounded by w ·OPT, where OPT is the optimal solution cost
and w(≥ 1) is a user-chosen suboptimality bound.

Heuristics

Focal-MHA* requires one admissible and multiple inadmissible heuristics. Construct-
ing an informative admissible heuristic is non-trivial for this setting, and thus we set
our admissible heuristic to the trivial heuristic that returns 0 for all states. We next
describe our inadmissible heuristics.

The large branching factor of the MSGT might result in the search ‘expanding’ or open-
ing every node in a level before moving on to the next. To guide the search towards
the goal, a natural heuristic would be a depth-first heuristic that encourages expan-
sion of states further down in the tree. Consequently, our first inadmissible heuristic
for Focal-MHA* is the depth heuristic that returns the number of assignments left to
make:

hdepth(s) = K − |s|

2See next chapter.



3.5. Completeness 27

Algorithm 2 PERCH

Inputs:
The implicit MSGT construction (Eq. 3.4 and Eq. 3.5).
Suboptimality bound factor w (≥ 1).
1 admissible heuristic h and n arbitrary, possibly inadmissible, heuristics
h1, h2, . . . , hn.

Output:
An assignment of object poses sgoal with |sgoal| = K whose cost is within w ·OPT.

1: procedure MAIN()
2: sroot ← {}
3: planner← Focal-MHA*-Planner()
4: planner.SETIMPLICITTREE(SUCC(s), c(s, s′))
5: planner.SETSUBOPTIMALITYFACTOR(w)
6: planner.SETSTARTSTATE(sroot)
7: planner.SETHEURISTICS(h, h1, . . . , hn)
8: planner.SETGOALCONDITION(return true if |s| = K)
9: {sroot, s1, s2, . . . , sgoal} ← planner.COMPUTEPATH()

10: return sgoal

As a reminder, states with smaller heuristic values are expanded ahead of those with
larger values. Next, it would be useful to encourage the search to expand states that
have maximum overlap with the observed point cloud I so far, rather than states with
little overlap with the observed scene. Our second heuristic is therefore the overlap
heuristic that counts the number of points in I that do not fall within the volume of
assigned objects:

hoverlap(s) = |I| −
∑
p∈I

OUTLIER(p|Vj)

where j = |s| and Vj is the union of the volumes occupied by the j assigned objects.
Another interpretation for this heuristic is the number of points in the observed scene
that are outside the space carved by objects assigned thus far.

3.5 Completeness

Finally, we introduce a notion of completeness for the multi-object instance detection
and pose estimation problem:
Definition 1 (Completeness). An algorithm for multi-object pose estimation of K objects is
complete if it returns any feasible solution (i.e, a solution that contains guaranteedly collision-
free pose estimates for all K objects) when one exists, and correctly identifies in finite time that
no solution exists otherwise.

This definition mirrors the notion of completeness in motion planning (LaValle, 2006).
We also say an algorithm is resolution-complete if it satisfies the above requirements in



28 Chapter 3. PERCH: Perception via Search for Multi-Object Instance Recognition

a smaller solution space obtained after discretization. PERCH is resolution-complete
for the chosen discretization. This follows from the completeness property of Focal-
MHA*. We stress upon the notion of completeness since popular approaches to this
problem proceed by obtaining individual hypotheses for each object and then per-
forming a global refinement (Aldoma et al., 2012c), which leads to a restricted solution
space and hence algorithm incompleteness.

3.6 Evaluation

3.6.1 Dataset

(a) (b)

(c) (d)

(e) (f)

FIGURE 3.4: (a) and (b) A subset of the objects in the RGB-D occlusion dataset. (c),
(d) and (e) Representative test scenes from the dataset. (f) Depth image (mapped
to jet color) corresponding to (e) obtained after preprocessing to remove back-
ground and table.



3.6. Evaluation 29

To evaluate the performance of PERCH for multi-object recognition and pose estima-
tion in challenging scenarios where objects could be occluding each other, we pick
the occlusion dataset described by Aldoma et al. (Aldoma et al., 2012a) that contains
objects partially touching and occluding each other. The dataset contains 3D CAD
models of 36 common household objects, and 23 RGB-D tabletop scenes with 82 object
instances in total. With the exception of one scene, all scenes contain objects only vary-
ing in translation and yaw, with some objects flipped up-side down. Since PERCH
is designed only for 3D pose estimation, we drop the one non-compatible scene from
the dataset, and preprocess the 3D CAD models such that they vary only in translation
and yaw with respect to the ground truth poses. Figure 3.4 shows some examples from
the dataset.

3.6.2 Implementation Details

Compensating for Discretization

The most computationally expensive part of PERCH is that of generating successor
states for a given state in the MSGT. This involves generating and rendering every state
that contains one more object than the number in the present state, in every possible
configuration. Several elements influence this branching factor: the number of objects
in the scene, the chosen discretization for object poses, whether objects are rotationally
symmetric (in which case only (x, y) is of interest) etc. In our implementation, we
limit the complexity by favoring coarse discretization and compensating with a local
alignment technique such as ICP (Chen and Medioni, 1991). Specifically, every time
we render a state with a new object, we take the non-occluded portion and perform
an ICP alignment in the local vicinity of the observed point cloud. This allows us
to obtain accurate pose estimates while retaining a coarse discretization. We do note
that the underlying MSGT now becomes a function of the observed point cloud due
to the ICP adjustment. Consequently, the algorithms are still resolution-complete, but
in a solution space that itself depends on the ICP refinement instead of the chosen
discretization. Finally, we plan to investigate multi-resolution approaches to further
improve efficiency by reducing the branching factor.

Parallelization

The generation of successor states is an embarrassingly parallel process. We exploit
this in our implementation by using multiple processes to generate successors in par-
allel. Theoretically, with sufficient number of cores, the time to expand a state would
simply be the time to render a single scene.



30 Chapter 3. PERCH: Perception via Search for Multi-Object Instance Recognition

PERCH Setup

Since PERCH requires that points in the scene only belong to objects of interest, we
first preprocess the scene to remove the tabletop and background. Then, based on
the RANSAC-estimated table plane, we compute a transform that aligns the point
cloud from the camera frame to a gravity aligned frame, to simplify construction of
the MSGT. PERCH has two parameters to set: the sensor noise threshold δ for de-
termining whether a point is ‘explained’ (Eq. 3.2), and the suboptimality factor w for
the Focal-MHA* algorithm. In our experiments, we set δ to 3 mm to account for un-
certainty in the depth measurement from the Kinect sensor, as well as inaccuracies in
estimating the table height using RANSAC. For the suboptimality factor w, we use a
value of 3. While this results in solutions that can be suboptimal by a factor of up to
3, it greatly speeds up the search, since computing the optimal solution typically takes
much more time (Pohl, 1970). Finally, for defining the MSGT we pick a discretization
resolution of 4 cm for both x and y and 22.5 degrees for yaw. The adaptive ICP align-
ment (Sec. 3.6.2) is constrained to find correspondences within 2 cm, which is half the
discretization resolution.

3.6.3 Baselines

OUR-CVFH

Our first baseline is the OUR-CVFH global descriptor (Aldoma et al., 2012b), a state-
of-the-art global descriptor designed to be robust to occlusions. By clustering object
surfaces into separate smooth regions and computing descriptors for each portion,
OUR-CVFH can handle occlusions better than descriptors such VFH and FPFH. Fur-
thermore, it has the added advantage of directly encoding the full pose of the object,
with no ambiguity in camera roll. We build the training database by rendering 642
views of every 3D CAD model from viewpoints sampled around the object. Then, for
computing the training descriptors we use moving least squares to upsample every
training view to a common resolution followed by downsampling to the Kinect res-
olution of 3 mm as suggested in the OUR-CVFH paper (Aldoma et al., 2012b). Since
the number and type of models in the test scene is assumed to be known for PERCH,
we use the following pipeline for fair comparison: for the K largest clusters in the test
scene we obtain the histogram distance to each of the models we know that are in the
scene. Then, we solve a min-cost matching problem to assign a particular model (and
associated pose) to each cluster and obtain a feasible solution. Finally, we constrain
the full 6 DoF poses returned by OUR-CVFH to vary only in translation and yaw and
perform a local ICP alignment for each object pose.



3.6. Evaluation 31

(a) ∆t = 0.01m (b) ∆t = 0.05m

(c) ∆t = 0.1m (d) ∆t = 0.2m

FIGURE 3.5: Number of objects whose poses were correctly classified by the base-
line methods (BFw/oR, OUR-CVFH) and PERCH, for different definitions of ‘cor-
rect pose’.

Brute Force ICP

The second baseline is an ICP-based optimization one, which we will refer to as Brute
Force without Rendering (BFw/oR). Here, we slide the 3D model of every object in the
scene over the observed point cloud (at the same discretization used for PERCH), and
perform a local ICP-alignment at every step. The location (x, y, θ) that has the best ICP
fitness score is chosen as the final pose for that model and made unavailable for other
objects that have not yet been considered. Since the order in which the models are
chosen for sliding can influence the solution, we try all permutations of the ordering
(K!) and take the overall best solution based on the total ICP fitness score.

3.6.4 Results

To evaluate the accuracy of object localization, we use the following criterion: a pre-
dicted pose (x, y, θ) for an object is considered correct if ‖(x, y) − (xtrue, ytrue)‖2 < ∆t

and SHORTESTANGULARDIFFERENCE(θ, θtrue) < ∆θ. We then compute the number
of correct poses produced by each method for different combinations of ∆t and ∆θ.
Figure 3.5 compares the performance of PERCH with BFw/oR and OUR-CVFH. Im-
mediately obvious is the significant performance of PERCH over the baseline methods
for ∆t = 0.01m. PERCH is able to correctly estimate the pose of over 20 objects with
translation error under 1 cm and rotation error under 5 degrees. While the baseline
methods have comparable recall for higher thresholds, they are unable to provide as
many precise poses as PERCH does. Further, PERCH consistently dominates the base-
line methods for all definition of ‘correct pose’. Among all methods, BFw/oR performs



32 Chapter 3. PERCH: Perception via Search for Multi-Object Instance Recognition

FIGURE 3.6: Examples showing the output of PERCH on the occlusion dataset.
Left: RGB-D scenes in the dataset. Middle: Depth images of the corresponding
input RGB-D scenes, Right: The depth image reconstructed by PERCH through
rendering object poses.

the worst. This is mainly due to the fact that it uses the point cloud corresponding to
the complete object model for ICP refinement, rather than the point cloud correspond-
ing to the unoccluded portion of the object. Again, this showcases the necessity to
explicitly reason about self-occlusions as well as inter-object occlusions.

The last column of the histogram in Fig. 3.5d (corresponding to ∆t = 0.2, ∆θ = 180) is
essentially a measure of recognition alone—PERCH can correctly identify 69 of the 80
object instances, where ‘identified’ is defined as obtaining a translation error under 10

cm. Figure 3.6 shows some qualitative examples of PERCH’s performance on the oc-
clusion dataset. Further examples and illustrations are provided in the supplementary
video.

Computation Time and Scalability

Unlike global descriptor approaches such as OUR-CVFH which require an elaborate
training phase to build a histogram library, PERCH does not require any precompu-
tation. Consequently, the run time cost is high owing to the numerous scenes that
need to be rendered. However, as mentioned earlier, the parallel nature of the prob-
lem and the easy availability of cluster computing makes this less daunting. For our
experiments, we used the MPI framework to parallelize the implementation and ran



3.6. Evaluation 33

(a) (b)

FIGURE 3.7: (a) A scene showing multiple chess pieces occluding each other. (b)
Top: The depth image from a Kinect sensor, colored by range. Bottom: The best-
match depth image produced by our algorithm PERCH through searching over
possible poses of the chess pieces.

the tests on a cluster of 2 Amazon AWS m4.10x machines, each having a 40-core virtual
CPU. For each scene, we used a maximum time limit of 15 minutes and took the best
solution obtained within that time. Overall, the mean planning time was 6.5 minutes,
and the mean number of hypotheses rendered (i.e, states generated) was 15564.

Finally, to demonstrate that PERCH can be used for scenes containing several objects,
we conducted a test on a chessboard scene (Fig. 3.7a). We captured a Kinect depth
image of the scene containing 12 pieces, of which 6 are unique and 4 are rotationally
symmetric. We ran PERCH with suboptimality bound factor w = 15 and sensor reso-
lution δ = 7.5 mm, and took the best solution found within a time limit of 20 minutes.
The solution found (i.e., the depth image corresponding to the goal state) is shown in
Fig. 3.7b.





35

Chapter 4

Extension to Unmodeled Clutter
and Optimizations

The optimization formulation presented in Chapter 3 assumes that everything in the
observed scene can be explained through known models. In other words, it does not
account for unmodeled clutter, and assumes that the input scene is comprised solely
of objects for which we have 3D models. Unfortunately, this assumption can fail in
many real-world scenarios where we simply cannot procure models for every object
in the scene.

In this chapter, we first address the above limitation of PERCH, and then discuss sev-
eral algorithmic and implementation improvements for computational efficiency. The
main insight for the former is that we can augment the optimization objective that
PERCH uses with a term that allows the algorithm to treat certain points in the in-
put cloud as “clutter”, thereby still being able to reason about occlusion explicitly. We
present the details of this formulation, named C-PERCH (Clutter-PERCH) below.

4.1 C-PERCH

4.1.1 Notation

We adopt the same notation used in PERCH, and introduce some additional ones that
are summarized in Table 4.1. As a reminder, upper-case bold-faced letters denote point
clouds (set of points in R3), and lower-case bold-faced letters denote a point in R3.

4.1.2 Augmented Objective

The explanation cost used by PERCH is meaningful only when we want both the ren-
dered and input point clouds to exactly match each other. In the presence of unmod-
eled clutter however, this fails on two counts: first, the rendered scene does not account

This chapter is based on material from Venkatraman Narayanan and Maxim Likhachev (2017a). “Delib-
erative Object Pose Estimation in Clutter”. In: ICRA.



36 Chapter 4. Extension to Unmodeled Clutter and Optimizations

TABLE 4.1: Symbols and Notation for C-PERCH.

C
Point cloud containing points in I which are considered as “clutter”
by the algorithm

Rj|C Ditto as Rj , but considering points in C as occluders
∆Rj|C (Rj|C)− (Rj−1|C)
p ≺ P Point p occludes the point cloud P

Cj
Points in the clutter cloud C which occlude Rj :
Cj = {p ∈ C : p ≺ Rj}

∆Cj
Points in the input cloud I which occlude ∆Rj :
∆Cj = {p ∈ I : p ≺∆Rj}

for occlusion by the clutter (the algorithm assumes that all occlusions occur between
objects with known 3D models), and second, the cost function (specifically Jobserved)
would unnecessarily penalize points in the input cloud which are extraneous clutter
that do not belong to the objects of interest. To overcome these limitations, we first pro-
pose a formulation that allows the algorithm to explicitly pick and treat some points
as clutter, and secondly demonstrate that this does not add any significant complexity
to the existing optimization solved by PERCH.

In our proposed extension C-PERCH (Clutter-PERCH), we jointly optimize over the
object poses O1:K and a variably-sized clutter cloud C ⊆ I . The latter allows the al-
gorithm to mark certain points in the input scene as clutter, so that it can use those
as extraneous “occluders" when rendering a scene with known 3D models. However,
complete freedom to mark points as clutter could be disastrous: the optimal solution
might just be to treat the input entire cloud as clutter, claim that the desired object(s) to
be localized are completely occluded by the clutter, and thus incur no cost at all (since
the rendered point cloud would be an empty cloud). To strike a balance between opti-
mizing the explanation cost and allowing the algorithm to treat certain points as clut-
ter, we introduce an additional term to the cost function that penalizes the algorithm
for marking too many points as clutter—in other words, we would like to minimize
the explanation cost while not marking too many points treated as clutter (conversely
maximize the number of points observed on the objects of interest). Of course, the
amount to penalize depends on the scenario at hand as well. In extreme clutter, it
would be okay if the algorithm marks several points as clutter, but in scenes with no
clutter, we really don’t want to mark any point as clutter. We model this using a mul-
tiplicative factor α on the clutter penalty, to represent our uncertainty about the true
nature of clutter in the scene. The augmented cost function to minimize is:

Jα(O1:K ,C) = Jo(O1:K ,C) + Jr(O1:K ,C) + α|C| (4.1)

Jo(O1:K ,C) =
∑

p∈I∩VK

OUTLIER(p|(RK |C))

Jr(O1:K ,C) =
∑

p∈RK |C

OUTLIER(p|I)



4.1. C-PERCH 37

Algorithm 3 C-PERCH: Generation of Successor States and Edge Costs

1: procedure GETSUCCESSORS(O1:j )
2: S ← ∅
3: ∆J ← ∅
4: // Iterate over objects not yet added to scene
5: for all ID ∈ {All Possible IDs} \ IDs(O1:j) do
6: // Iterate over all possible poses the new object can take
7: for all pose ∈ {All Discrete Poses} do
8: Oj+1 = {ID, pose}
9: s = O1:j ∪Oj+1

10: if s is not physically-plausible then
11: continue
12: Rj = render scene with O1:j

13: Rj+1 = render scene with O1:j+1

14: ∆Rj+1 = Rj+1 −Rj

15: if ∆Rj+1 ≺ Rj then
16: // Prune if new object occludes existing scene
17: continue
18: ∆Cj = Points in I which occlude ∆Rj

19: Compute ∆Jj+1
o (Oj+1,∆Rj+1,∆Cj+1) . Eq. 4.3

20: Compute ∆Jj+1
r (∆Rj+1,∆Cj+1) . Eq. 4.4

21: Compute ∆Jj+1
c,α (∆Cj+1) . Eq. 4.5

22: ∆Jj+1
α = ∆Jj+1

o + ∆Jj+1
r + ∆Jj+1

c,α

23: S ← S ∪ {s}
24: ∆J ← ∆J ∪ {∆Jj+1

α }
25: return 〈S,∆J〉

There are three changes from Eq. 3.1. First, both Jo and Jr use the cloud RK |C rather
than simply RK to explicitly acknowledge the occlusions caused by extraneous clutter.
Second, the optimization objective has a penalty term for the number of points marked
as clutter, weighed by α, a term which models the amount of true clutter in the scene.
Third, Jo only penalizes points in the input cloud that fall within the volume of the
modeled objects, rather than every point in I . An illustration of the different point
clouds used is presented in Fig. 4.1. Intuitively, the term α can be viewed as an occlu-
sion prior or regularizer that balances the cost of explaining the rendered scene with
the cost of labeling input points as belonging to extraneous clutter.

4.1.3 Tractability

With this formulation, it appears that we have made the problem intractable by in-
troducing a variably-sized point cloud into the already combinatorial search space.
However, it can be shown that C is only a dependent variable of O1:K , and does
not affect the decomposition used by PERCH under a reasonable constraint. Define
Cintrusive = {p ∈ C : p ≺ RK}, the set of clutter points which occlude the scene ren-
dered by considering only the objects of interest, and Csuperfluous = C − Cintrusive.
Quite clearly, we can replace RK |C with RK |Cintrusive in the optimization objec-
tive (since the superfluous clutter points do not affect the rendering of the objects).



38 Chapter 4. Extension to Unmodeled Clutter and Optimizations

(a) (b)

(c) (d)

FIGURE 4.1: Illustrations for the notation used. (a) The input point cloud I (rep-
resented as a depth image and pseduo-colored). (b) Rendering R1 corresponding
to a state with one object O1 (c) Rendering R1|∆C1, considering points in I that
occlude R1 (d) A profile view of the same scene, showing the volume V (O1), and
the points in I contained in it.

Since C = Cintrusive ∪ Csuperfluos and all terms except the penalty depend only on
Cintrusive, the optimal solution would involve setting Csuperfluos = ∅. Hereon, we
simply set C = Cintrusive to factor this observation in to account.

If we now require the algorithm to definitely mark every occluding input point as
clutter (for a given rendered scene), we can simply drop C from the argument list of
Jα, Jo and Jr because C is now purely a function of RK .

Note that RK can be constructed in a monotone fashion by introducing objects in a
non-occluding order, as shown in the previous chapter. Formally, RK = ∪Ki=1∆Ri, s.t,
Ri−1 ⊆ Ri. If we define ∆Cj = {p ∈ I : p ≺ ∆Rj} and follow a decomposition
procedure similar to the one adopted in PERCH, we obtain:

Jα(O1:K) =

K∑
i=1

∆J iα s.t. Ri−1 ⊆ Ri (4.2)

=

K∑
i=1

∆J io + ∆J ir + ∆J ic,α s.t. Ri−1 ⊆ Ri



4.2. Pose Uncertainty Estimates 39

where

∆J io =
∑

p∈{I∩V (Oi)}

OUTLIER(p|(∆Ri|∆Ci)) (4.3)

∆J ir =
∑

p∈∆Ri

OUTLIER(p|I) (4.4)

∆J ic,α = α|∆Ci| (4.5)

The end result is that we can still maintain the decomposition of the objective function
over individual objects despite introducing the clutter cloud in to the optimization
process. Similar to PERCH, we solve the final optimization as a discrete tree-search
under the constraint that objects are added in a non-occluding order to the Monotone
Scene Generation Tree. The complete procedure followed to generate successor states
for a parent state, and the corresponding edge costs is presented in Alg. 3.

4.2 Pose Uncertainty Estimates

We earlier mentioned how the factor α models the amount of clutter expected in
the scene. Low values correspond to scenes with high anticipated clutter (where the
penalty for marking points as clutter is low), and vice versa. Solving the optimization
problem for different values of α yield potentially distinct solutions:

Oα1:K = argmin
O1:K

Jα(O1:K) (4.6)

Immediately, there is an opportunity to produce uncertainty estimates for the object
poses based on the uncertainty in how much clutter there exists in the scene. If p(α)

denotes the prior for α (which may be obtained by a priori analysis of the scene or
assumed to be uniform), then the density estimate for the object poses (represented by
the random variable Ω) is given by

p(Ω = O1:K) =

∫
α

p(Ω = O1:K , α)dα

=

∫
α

p(Ω = O1:K |α)p(α)dα

=

∫
α

1 (O1:K = Oα1:K) p(α)dα (4.7)

Eq. 4.7 is hard to solve in closed form, but sampling from the distribution is trivial: we
sample an α from p(α), and solve the optimization problem in Eq. 4.6 to get a solution,



40 Chapter 4. Extension to Unmodeled Clutter and Optimizations

∆θ (degrees)
0 30 60 90 120 150 180

C
or
re
ct

P
os
es

(%
)

50

60

70

80

90

100

∆t = 0.01 m

∆θ (degrees)
0 30 60 90 120 150 180

C
or
re
ct

P
os
es

(%
)

50

60

70

80

90

100

∆t = 0.05 m

∆θ (degrees)
0 30 60 90 120 150 180

C
or
re
ct

P
os
es

(%
)

50

60

70

80

90

100

∆t = 0.1 m

∆θ (degrees)
0 30 60 90 120 150 180

C
or
re
ct

P
os
es

(%
)

50

60

70

80

90

100

∆t = 0.2 m

FIGURE 4.2: Comparison of PERCH (�) with C-PERCH for different values of α:
1 (�) 0.5 (�) 0.25 (�) and 0 (�), and for different correctness measures. We omit
α = 0.75 since it yielded identical results to α = 1.

which is a sample from p(Ω). Intuitively, if we find out that several values of α lead to
the same solution for O1:K , it implies that the scene clutter model has minimal effect
on the object poses and we can therefore be confident about our pose estimate. On
the other hand, if solutions are distinct for closely related values of α, we would have
greater uncertainty in our object poses due to a spread-out distribution.

4.3 Experiments

Experiment Setup. We evaluate C-PERCH on the occlusion dataset of (Aldoma et al.,
2012a) used in the earlier chapters. To test the ability of C-PERCH to handle extraneous
clutter in the scene, we setup evaluation such that C-PERCH and the baselines are
required to identify and localize exactly one object in the scene, treating the others as
clutter. The process is repeated for every object in each scene.

For both PERCH and C-PERCH, we use a discretization of 0.05 m for translation and
22.5 degrees for yaw. Note that in this dataset, objects vary only in yaw with re-
spect to the 3D models. We also use a locally-constrained ICP refinement (with a
maximum of 20 iterations) for every rendered state in both PERCH and C-PERCH
to compensate for discretization artifacts. As usual, we measure accuracy of an al-
gorithm by counting the number of objects that fall within a given error bound: an
estimated object pose (x, y, θ) is marked ‘correct’ if ‖(x, y) − (xtrue, ytrue)‖2 < ∆t and



4.3. Experiments 41

FIGURE 4.3: Example that demonstrates how C-PERCH can be used to obtain
pose uncertainty estimates, including multimodal distributions. The object to be
localized in this scene (left) is the milk carton (for which we have a 3D model) and
the other objects are considered as extraneous clutter (no models available). C-
PERCH yields two distinct solutions across multiple values of α, which are over-
laid on top of the input RGB image (right).

SHORTESTANGULARDIFFERENCE(θ, θtrue) < ∆θ. The latter check is ignored for rota-
tionally symmetric objects.

Accuracy Comparisons. Figure 4.2 compares the performance of PERCH (baseline)
with C-PERCH configured with different values of α, the clutter model parameter. All
experiments were run on an m4.10x Amazon AWS instance. The first takeaway is that
C-PERCH consistently outperforms PERCH, for α ∈ {1, 0.5, 0.25}. This supports our
hypothesis that modeling clutter explicitly in the optimization formulation will lead
to better performance. A second observation is that C-PERCH with α = 0.5 performs
marginally better than α = 1, and significantly better than α = 0. This indicates
that there is no one “correct” way to pick α unless we have some prior information
about the clutter conditions. In some sense, being cautious (α = 0.5) yields the best
performance across a variety of scenes.

Timing. The average time taken by PERCH for a scene was 19.17 s and for C-PERCH
(across all values of α) was 17.98 s. While both methods generated the same number
of scenes on average (792.31), PERCH takes slightly longer than C-PERCH since it
computes the observed cost (Jo) over all points in the input point cloud, as opposed to
C-PERCH which only looks at input points within the volumes of the assigned objects.

Illustration of Uncertainty Estimation

Next, we provide an example that demonstrates how C-PERCH can be used to gen-
erate uncertainty estimates for an object pose. In Fig. 4.3, the object desired to be
localized is the milk carton, which is partially occluded by the milk jug. Large flat
portions on the milk carton as well as on the Odwalla jug (far back on the right) cause
some ambiguity to the algorithm since it deals only with the depth image (RGB is not
used). If we proceed to estimate the object pose uncertainty (Eq. 4.7), by running the



42 Chapter 4. Extension to Unmodeled Clutter and Optimizations

optimization for values of α ∈ [0, 1] in steps of 0.01 (i.e., assuming an uniform prior for
α), we observe that only two distinct solutions turn up, corresponding to the ranges
[0, 0.21] and (0.21, 1]. The pose uncertainty distribution can thus be represented as a
particle distribution with two particles of weight ∼ 0.2 and ∼ 0.8 respectively, with
the former corresponding to the partially occluded configuration.

4.4 Discussion

In summary, we presented C-PERCH, an extension to Perception via Search (PERCH),
that allows deliberative perception algorithms to operate in scenes with unmodeled
extraneous clutter. This significantly extends their practical relevance to real-world
scenarios where 3D models cannot be obtained for every object in the scene. In addi-
tion, we also showed how C-PERCH can produce pose uncertainty estimates by rea-
soning about the amount of clutter in the scene. This is useful to systems with active
sensing, and when introspection capabilities are required.

C-PERCH is rife with opportunities for future extensions. In the work presented, the
occlusion prior / regularizer α was a free parameter for the algorithm. One line of
future work would be to automatically determine the value of α to use for a given
scene, by statistical or geometric analysis of the scene. First, note that α does not need
to be uniform across the entire scene; one could use different values at different points
in the input scene, depending on our estimate of how likely each point in the scene
is occluded by extraneous clutter. This estimate could be generated statistically, as in
the occlusion-predictive sensor model of (Herbst et al., 2011), or through geometric
modeling of the occluder as in (Hsiao and Hebert, 2014). In the former, the occlu-
sion likelihood produced by the sensor model increases as the difference between the
predicted (“rendered”) and measured depth increases, so long as the predicted depth
is larger than the measured one. The latter models extraneous occluders as 3D boxes
of varying dimensions to produce point-wise occlusion priors. With either of these
models, one could obtain an α for every input point that can then be used in the opti-
mization objective.

Another direction concerns the efficiency of generating solutions for different values of
α. In Sec. 4.2, multiple solutions were generated by solving the optimization for differ-
ent values of α, each independently of the other. However, one could use incremental
search techniques such as LPA* (Koenig, Likhachev, and Furcy, 2004) to re-use search
effort between successive episodes as the value of α is gradually increased. Note that
solving the problem for intermediate values of α corresponds to finding solutions be-
tween the two extremes: labeling all input points as extraneous clutter, and labeling
none of the input points as extraneous clutter. In some sense, the intermediate solu-
tions can be viewed as pareto-optimal solutions (Choudhury, Dellin, and Srinivasa,
2016) corresponding to a bi-objective cost: the original PERCH cost and the penalty



4.5. Search Optimizations 43

cost. Nevertheless, the order in which the α values need to be traced out remains an
open question.

4.5 Search Optimizations

A naive implementation of PERCH can result in poor computational performance. In
the following, we will discuss three important optimizations for improving run times.

One of the most computationally expensive components of PERCH is the rendering of
successor scenes when expanding a state in the tree. This is aggravated by the need to
render each scene twice (first to obtain the point cloud that is used for ICP adjustment,
and the second post-ICP to get the point cloud on which the edge-cost is computed).
We propose two optimizations to accelerate this process: the first is memoization of
first-level states (states with single objects) to quickly produce depth images for multi-
object states in deeper levels of the tree. The second one is lazy evaluation (i.e, post-
poning exact evaluation until necessary) of edge costs. This minimizes the number of
renderings required when expanding (generating successors of) a state in the tree. The
final improvement is related to the efficient implementation of cost computation using
distance fields. These are next discussed in detail:

4.5.1 Depth Image Memoization

Upon expanding the root node of the tree, successor states corresponding to all poses
of individual objects are rendered. During this expansion, we cache depth images
D(Oj) corresponding to individual object states Oj . This allows to reconstruct the
depth image for a multi-object state comprising of objects O1:k simply by taking the
element-wise minimum of depth imagesD(O1), D(O2), . . . , D(Oj). Consequently, this
eliminates the need to render multi-object successors for the most part, upon expand-
ing a state in the tree.

There is an subtle detail however when the tree construction is interleaved with ICP
for the visible portion of a newly added object. It is not guaranteed that the element-
wise minimum of first-level depth images would produce the same result as the non-
memoized depth image. Therefore, an additional step of performing ICP on the non-
occluded portion is still needed to determine the final depth image.

4.5.2 Lazy Search

Depth-image caching by itself however, is not sufficient to accelerate successor gener-
ation. This is because the point cloud corresponding to the newly rendered object goes



44 Chapter 4. Extension to Unmodeled Clutter and Optimizations

through ICP refinement and subsequent re-rendering before the edge-cost can be eval-
uated. A similar bottleneck exists in heuristic search-based motion planning, where ex-
panding a graph state requires time-consuming collision checking of the edges. This
was addressed by (Cohen, Phillips, and Likhachev, 2014) in their lazy weighted A*
algorithm. The key idea is that if we have a mechanism to inexpensively compute
admissible estimates of the edge cost, then weighted A* search can simply use these
proxy costs while inserting states into the frontier and look up the true cost only when
a lazily evaluated state is about to be expanded. By using these admissible estimates
(i.e, the estimated edge cost is lesser than or equal to the true cost), lazy weighted A*
retains theoretical properties of bounded suboptimality. We apply the same idea to
Focal-MHA*, albeit with minor differences. Since Focal-MHA* interleaves admissi-
ble expansions with expansions from inadmissible heuristics, we require that the true
edge cost be evaluated any time it is about to be expanded, irrespective of whether it
was chosen by the admissible heuristic, or an inadmissible one. This ensures bounded
suboptimality of the solution returned by Focal-MHA* (the proof follows a similar
structure to that of lazy weighted A*, but is omitted here for simplicity).

Next, we describe how a lazy admissible estimate of the edge cost can be obtained
without rendering the successor state. Let sj be a newly generated successor state of
sj−1 with Oj as the last introduced object, and ∆Rj be the point cloud corresponding
to the visible portion of object Oj given the other objects in sj . The lazy cost of the
edge to sj is computed as follows:

1. Obtain the depth image corresponding to sj by composing the cached depth
image of its parent (which exists by induction) with the cached depth image of
Oj .

2. The differential partial cloud ∆Rj of the newly introduced object is subject to
ICP refinement, resulting in R′j .

3. Points in ∆R′j that are self-occluded and occluded by other objects in sj are re-
moved to obtain ∆R̃j . Removal of self-occluding points is done by projecting all
points in R′j to the depth image and retaining only the minimum depth for each
pixel when multiple points project to the same one. Points occluded by existing
objects in sj are similarly removed by taking the element-wise minimum of the
re-projected depth image with the cached depth image of the parent state. Fi-
nally, ∆R̃j is obtained by “unprojecting” the depth image pixels corresponding
to Oj , following the above process.

4. The lazy edge cost is then computed as

c̃(sj−1, sj) =
∑

p∈∆R̃j

OUTLIER(p|I) (4.8)

Theorem 1. Lazy estimates of the edge cost obtained by the above procedure are guaranteed to
be admissible estimates of the true edge cost.



4.5. Search Optimizations 45

Proof (Sketch): Let sj be the considered successor state of sj−1 and ∆Rj,true the dif-
ferential point cloud corresponding to object Oj . By construction, we have ∆R̃j ⊆
∆Rj,true. Intuitively, re-rendering an object after ICP refinement will only introduce
new unseen portions of the object, while the existing parts continue to be visible or
become self-occluded/occluded by other objects. The true cost c(sj−1, sj) is given by

c(sj−1, sj) = ∆Jjr + ∆Jjo (From Eq. 3.5)

≥ ∆Jjr ∵ ∆Jjo ≥ 0

=
∑

p∈∆Rj,true

OUTLIER(p|I)

≥
∑

p∈∆R̃j

OUTLIER(p|I) ∵∆R̃j ⊆∆Rj,true

= c̃(sj−1, sj)

4.5.3 Edge Cost Normalization

The computation of edge costs as defined in Eq. 3.5 (i.e, the total number of unex-
plained rendered points and unexplained observed points for an object) can result in
dramatically different values for objects of different sizes and depths. Objects that are
small or further from the camera tend to have fewer points and consequently smaller
edge costs. It is well-established in the heuristic search literature that having diverse
edge costs (as opposed to a uniform cost for all edges) without a concentrated dis-
tribution of solution costs often results in a more difficult problem with many more
expansions needed to find the best solution (Wilt and Ruml, 2011; Fan, Müller, and
Holte, 2017) than otherwise. Secondly, if the scene were comprised of both small and
large objects, large pose errors for the small object would incur the same cost as small
pose errors for the large objects. Consequently, this could have the untoward effect of
producing solutions where large objects have better accuracies than the smaller ones.

To address both of the above pitfalls, we normalize edge costs by taking the ratio of
the explanation cost to the number of points over which the explanation cost was com-
puted. Formally, we set ∆J ir to ∆J ir/|∆Ri| and ∆J io to ∆J io/|I∩V (Oi)|. Consequently,
all edge costs, no matter the size or depth of the corresponding added object, range
from 0 (best possible with perfect explanation cost) to 2 (worst possible with all points
being unexplained).

4.5.4 Precomputed Distance Fields

The final optimization is on the implementation side. A vanilla implementation for
computing the explanation cost would need to make several nearest neighbor calls.
This is not a problem for Jrendered because the points in the observed scene remain con-
stant across the search and we can construct a nearest neighbor data structure such a



46 Chapter 4. Extension to Unmodeled Clutter and Optimizations

k-d tree once before the start of search. However, computing Jobserved is more prob-
lematic; we would have to construct a k-d tree for the newly rendered points of every
single successor. While the number of points in the newly rendered successor is typi-
cally much smaller than the number of observed points, there is still an efficiency loss
arising from repeated k-d tree construction.

Using a precomputed distance field for every object eliminates the above problem.
Distance fields are simply voxel grids where the value for each voxel is the distance to
the closest point on the object. The first step is to generate a distance field for every
object with a voxel resolution that is at most twice the explanation cost outlier thresh-
old, and using the reference frame of the 3D model. Then, for computing Jobserved

for a newly added object Oi, we simply transform all observed points in the enclosed
volume of the object V (Oi) to the model’s reference frame, and look up their distance
values. Finally, the distances can be used in determinig the explanation cost (Eq. 3.1).



47

Part II

Discrimination and Deliberation





49

Chapter 5

Discriminatively-guided
Deliberative Perception

In Chapter 3, we formulated multi-object localization as model-based search over the
joint object poses. This formulation was completely generative, relying solely on the
object models and rendered hypotheses at test-time to find the most likely scene.
While this approach was robust to occlusions and required no training, it could be
prohibitively slow at test-time.

In practice, scenes encountered by a perception system typically contain a mix of some
“easy" portions, where objects are sitting in isolation, and some “hard” portions, where
there might be severe occlusions. The former case is an example where fast discrim-
inative methods do tend to work well, since testing and training data match. Conse-
quently, it would be beneficial to have a system that can automatically figure out the
tradeoff between the amount of deliberation versus discrimination required to pro-
duce high-quality solutions while being computationally efficient. To this end, we in-
troduce the Discriminatively-guided Deliberative Perception (D2P) paradigm, which
extends PERCH by leveraging discriminatively-trained algorithms to guide deliber-
ative reasoning. This is made possible through the Focal-MHA* algorithm, whose
details will be covered in Chapter 8. D2P has the following desirable properties: a) it
is a single search algorithm that looks for the ‘best’ rendering of the scene that matches
the input, b) can be guided by any and multiple discriminative algorithms, and c) gen-
erates a solution that is provably bounded suboptimal with respect to the chosen cost
function.

5.1 Discriminative Heuristic Generation

We first discuss an approach for generating multiple discriminative heuristics. At a
high level, the idea is to obtain a set of hypotheses for every object in the scene and

This chapter is based on material from Venkatraman Narayanan and Maxim Likhachev (2016b).
“Discriminatively-guided Deliberative Perception for Pose Estimation of Multiple 3D Object Instances”. In:
Robotics: Science and Systems.

http://www.roboticsproceedings.org/rss12/p23.pdf


50 Chapter 5. Discriminatively-guided Deliberative Perception

C
lustered Point C

loud
Input R

G
B

-D
 Im

age

C
lusters back-projected to obtain R

O
Is

O
btain Instance Probabilities from

 R
-C

N
N

O
dwalla Jug 

0.936
T

ide 
0.707 

A
ll D

etergent 
0.463

A
ll D

etergent 
0.418

H
euristics G

enerated from
 D

etections
F

IG
U

R
E

5.1:D
iscrim

inative
heuristic

generation
pipeline:First,the

pointcloud
corresponding

to
the

inputscene
is

clustered
into

K
com

ponents
(for

e.g.,using
PC

L’s
Euclidean

cluster
extraction)and

the
points

in
each

cluster
are

back-projected
to

obtain
R

O
Is

in
the

depth
im

age.Then,the
R

O
Is

are
fed

to
an

R
-C

N
N

objectdetector
trained

on
the

com
plete

objectinstance
database,after

appropriate
scaling

and
colorization.

Finally,
every

high-confidence
class

prediction
for

an
R

O
Iis

converted
to

a
heuristic

for
globalsearch.In

this
exam

ple,w
e

see
thatthe

R
-C

N
N

predicts
tw

o
possible

hypotheses
for

the
center

R
O

I,w
hich

results
in

tw
o

heuristics
being

created
for

thatR
O

I.



5.2. D2P Implementation 51

treat each hypothesis as a separate heuristic in the Focal-Multi-Heuristic A* (MHA*)
framework. This permits the global search to independently explore different routes
down the tree by chaining different hypotheses. For instance, hypothesis 1 might help
in selecting state s1 from level 1 of the tree, while hypothesis 2 could then be used to
evaluate all the states in level 2 that were generated as a consequence of expanding s1.
As a result, the search can quickly progress along the optimal route if the hypotheses
turn out to be useful, while at all times retaining the ability to backtrack and explore
alternative explanations.

While the proposed method is applicable to arbitrary learning algorithms that produce
posterior distributions of individual object poses in the scene, we will describe our
methodology in the context of object detectors that produce confidence scores for a
given bounding box in the depth image, without additional information about 3 DoF
pose. Evidently, this is motivated by the availability of successful object detectors from
the 2D vision community (Krizhevsky, Sutskever, and Hinton, 2012).

Let l denote the label associated with a unique object model,Bi the set of ROIs (bound-
ing boxes) in the depth image and c(l|Bi) the confidence score for object instance l be-
ing present in Bi. For every detection with c(l|Bi) ≥ cthresh, we generate a heuristic as
follows:

p̄ = PROJECTTOSUPPORTPLANE(CENTROID({p|p ∈ Bi}))

hbbox(sj) =


∞ if id(Oj) 6= l

0 if ‖p̄− T (Oj)‖p ≤ rdetector

‖p̄− T (Oj)‖p otherwise

(5.1)

where ‖ · ‖p is the p-norm and T (Oj) is object Oj ’s center (assuming all models have
been preprocessed such that the z-coordinate of their origins have been set to the
height of the supporting surface), ignoring the orientation. Essentially, every heuristic
acts as “do not care" when the last added object is different from the detection’s la-
bel and equally prefers all states within the rdetector p-ball of the detection’s centroid if
the labels match. Figure 5.1 illustrates the heuristic generation process. Note that we
could have multiple hypotheses for the same ROI (e.g., when the bounding box covers
multiple objects in the scene), and the onus falls on the search to resolve conflicts and
produce a globally feasible solution.

We evaluate D2P on the real-world occlusion dataset of (Aldoma et al., 2012a), which
was also used in Chapter 3.

5.2 D2P Implementation

Parameters. Table 5.1 lists all the parameters used in D2P. Unless otherwise specified



52 Chapter 5. Discriminatively-guided Deliberative Perception

in particular experiments, we use the following values: δ = 0.003 m, dx = dy = 0.1 m,
dθ = 22.5°, w = 10, max_icp_iter = 20, num_procs = 40. We perform local ICP adjust-
ments for newly added objects by constraining ICP to match correspondences only if
they are within a distance of dx/2. All experiments are performed on a single Amazon
AWS m4.10x instance with 40 virtual cores, using MPI parallelization to compute edge
costs for successor states in parallel.

TABLE 5.1: D2P Parameters.

δ Sensor noise resolution used in Eq. 3.2
dx, dy, dθ The discretizations for (x, y, θ) coordinates
w Suboptimality factor used by Focal-MHA*
max_icp_iter Max. number of ICP iterations for refinement
rdetector, cthresh Heuristic-generation parameters (Eq. 5.1)
num_procs Number of processors used for parallelization

5.2.1 R-CNN Heuristics

We generate heuristics for Focal-MHA* using an object detector as described in Sec. 5.1.
We leverage a state-of-the-art implementation of region-based convolutional neural
networks: Faster-RCNN (Ren et al., 2015). A common trend in the 2D object detec-
tion community is to use networks pre-trained on large training datasets such as Im-
agenet (Russakovsky et al., 2015) to initialize training on a custom dataset. We have
two major concerns to address: the generation of training data for the 36 object models
in our dataset, and a method to encode depth-images as 3-channel images—the in-
put format used by available deep neural network implementations. We generate our
training data by synthetically rendering every object in isolation from camera poses
sampled uniformly on concentric cylinders around the object. We also create dupli-
cates of the generated scenes by a) adding artificial noise—treating a randomly chosen
15% of pixels in the rendered image as no-returns, and b) introducing occlusions in
the form of a circle placed at a random valid image pixel. The radius of these circles
is chosen to be one-third of the rendered object’s bounding box. Finally, we obtain
108864 training images in total, with each annotated by a bounding box and label for
the object present in it. For encoding depth-images as 3-channel images, we follow the
method adopted by (Eitel et al., 2015) who apply a jet-coloring of the [0− 255] rescaled
depth-image. While there is no theoretical justification for this process, the intuition
is that jet-color maps encode discontinuities in depth as discontinuities in color, mak-
ing them suitable for networks pre-trained on RGB images. We use the ZF network
architecture (Ren et al., 2015) by modifying the final fully-connected (FC) layer train
to span 36 object clases, and use the default 4-stage Faster-RCNN training settings.
The training takes ∼ 30 hours on an Amazon g2.2xlarge GPU-enabled instance. For
generating heuristics for the search from object detections in the depth image, we use
cthresh = 0.2 (confidence scores are normalized to [0,1]), rdetector = 0.1 and p = 1 for the
norm in Eq. 5.1. Note that we are able to use a high recall threshold because spurious



5.3. Results 53

detections simply translate to uninformative heuristics for the search, without affect-
ing the final solution quality. However, misleading heuristics could have a negative
impact on the time taken to find a solution. In addition to the heuristics generated by
the deep-learning procedure, we use one additional depth-first heuristic described in
PERCH: hdepth(s) = K − |s| , where |s| is the number of objects in state s. This serves
to prefer expanding states deeper in the tree that are closer to a potential goal state.
Finally, the consistent heuristic used by Focal-MHA* is the trivial zero heuristic. A
qualitative example of running D2P on a test instance is shown in Fig. 5.2.

5.2.2 Baseline Implementations

We compare the performance of D2P with PERCH, OUR-CVFH (Aldoma et al., 2012b)
and a brute-force ICP (BF-ICP) baseline described in Chapter 3. We configure PERCH
to use the same parameters as D2P where applicable, and include lazy edge-cost evalu-
ation. We setup OUR-CVFH and BF-ICP identical to how it was used in the evaluation
for PERCH.

5.3 Results

5.3.1 Comparison with Baselines

As in Sec. 3.6.4, we measure accuracy of an algorithm by counting the number of
objects that fall within a given error bound. Specifically, an estimated object pose
(x, y, θ) is declared ‘correct’ if the translation error ‖(x, y) − (xtrue, ytrue)‖2 < ∆t and
rotation error SHORTESTANGULARDIFFERENCE(θ, θtrue) < ∆θ. The second portion is
ignored for rotationally symmetric objects. Figure 5.3 compares the performance of
D2P with PERCH configured with identical parameters (including lazy edge evalua-
tion), but for the discriminative heuristics. We set an upper limit of 5 minutes for each
scene and take the best solution discovered thus far if time runs out. While all experi-
ments are done on m4.10x AWS instances, the objector detector outputs for D2P alone
are precomputed for all scenes on an Amazon AWS g2.2xlarge GPU instance (which
takes ∼ 0.2 seconds per scene). The first four plots show the cumulative number of
correct poses as ∆θ is increased, for a fixed value of ∆t. Two trends are evident: a)
D2P dominates PERCH consistently, and b) lower suboptimality factors (w) produce
more correct poses than higher ones. The latter is expected from the behavior of Focal-
MHA*; however it comes at the price of a longer time to find a solution.

Figure 5.4 compares the run times of D2P and PERCH for every scene in the dataset,
for a common suboptimality bound of w = 10. As we expect to see, D2P has a speedup
over PERCH for majority of the scenes. An interesting observation is that there are also
few cases where D2P is slower than PERCH. We find this to occur either in scenarios
where the heuristics are misleading (e.g., false positives from the RCNN detector), or



54 Chapter 5. Discriminatively-guided Deliberative Perception

(a) (b)

(c) (d)

FIGURE 5.2: (a) The input RGB-D scene. (b) The depth image reconstructed by our
algorithm superimposed on the input. (c) & (d) High confidence detections from
a region-based convolutional neural network for the milk jug and carton. This
example shows how D2P can use the hypotheses generated by a discriminative
learner in a global search for the best explanation of the scene.

when there are too many heuristics (due to very high recall) resulting in significant
overhead for Focal-MHA*. We believe both these problems can be alleviated to some
extent by following a technique similar to the one of (Phillips et al., 2015), where the
“progress” made by each heuristic is monitored to intelligently schedule computation
to each heuristic, rather than following the naive round-robin scheme used by Focal-
MHA*.

Figure 5.5 depicts an identical comparison to OUR-CVFH and BF-ICP. We follow the
same methodology as for the comparison with PERCH, and give D2P a maximum
time limit of 5 minutes to find a solution. OUR-CVFH being a descriptor-matching
method requires no time limit, whereas BF-ICP is provided sufficient time to exhaust
all possible orderings of the objects. The results show that D2P consistently dominates
the baselines, while showing most gain for strict error measurement criteria. Although
BF-ICP performs an exhaustive search over all possible orderings of the object, the lack
of any intermediate rendering to account for self-occlusions and occlusions by other
objects inhibits its performance. The mean computation time per scene for BF-ICP,
OUR-CVFH and D2P (w = 5) were 104.35, 5.02, and 139.74 seconds respectively. BF-
ICP required no training, while OUR-CVFH needed ∼ 14 hours to render the objects
from different viewpoints and build the descriptor database (Sec. 5.2.2). The training



5.3. Results 55

0 30 60 90 120 150 180
30

40

50

60

70

80

90

100

∆θ (degrees)

C
o
rr
ec
t
P
o
se
s
(%

)

∆t = 0.02 m

 

 

D2P (w = 5)
D2P (w = 10)
PERCH (w = 5)
PERCH (w = 10)

0 30 60 90 120 150 180
30

40

50

60

70

80

90

100

∆θ (degrees)

C
o
rr
ec
t
P
o
se
s
(%

)

∆t = 0.05 m

 

 

D2P (w = 5)
D2P (w = 10)
PERCH (w = 5)
PERCH (w = 10)

0 30 60 90 120 150 180
30

40

50

60

70

80

90

100

∆θ (degrees)

C
o
rr
ec
t
P
o
se
s
(%

)

∆t = 0.1 m

 

 

D2P (w = 5)
D2P (w = 10)
PERCH (w = 5)
PERCH (w = 10)

0 30 60 90 120 150 180
30

40

50

60

70

80

90

100

∆θ (degrees)

C
o
rr
ec
t
P
o
se
s
(%

)

∆t = 0.2 m

 

 

D2P (w = 5)
D2P (w = 10)
PERCH (w = 5)
PERCH (w = 10)

FIGURE 5.3: The first four plots show the percentage of correct poses produced
by D2P and PERCH for suboptimality bounds of 5 and 10, where correctness is
defined as having translation error within ∆t and rotation error within ∆θ. The
discriminative heuristics used by D2P help produce a larger number of correct
poses within the given time limit of 5 minutes, for identical suboptimality factors.

D2P (seconds)
0 30 60 90 120 150

P
E
R
C
H

(s
ec

on
d
s)

0

30

60

90

120

150

speedup 5 1

1 5 speedup 5 2

2 5 speedup 5 3

Speedup Ratios for w = 10

FIGURE 5.4: Each data point in the scatter plot shows the time taken by D2P and
PERCH (both run with w = 10) for every scene, with different shaded regions
representing distinct speedup intervals.

time for D2P depends on the discriminative learner used, which in our particular im-
plementation is the R-CNN. As noted in Sec. 5.2, the training time for the ZF R-CNN



56 Chapter 5. Discriminatively-guided Deliberative Perception

0 30 60 90 120 150 180
0

20

40

60

80

100

∆θ (degrees)

C
o
rr
ec
t
P
o
se
s
(%

)

∆t = 0.01 m

 

 

D2P (w = 5)
OUR-CVFH
BF-ICP

0 30 60 90 120 150 180
0

20

40

60

80

100

∆θ (degrees)

C
o
rr
ec
t
P
o
se
s
(%

)

∆t = 0.05 m

 

 

D2P (w = 5)
OUR-CVFH
BF-ICP

0 30 60 90 120 150 180
0

20

40

60

80

100

∆θ (degrees)

C
o
rr
ec
t
P
o
se
s
(%

)

∆t = 0.1 m

 

 

D2P (w = 5)
OUR-CVFH
BF-ICP

0 30 60 90 120 150 180
0

20

40

60

80

100

∆θ (degrees)

C
o
rr
ec
t
P
o
se
s
(%

)

∆t = 0.2 m

 

 

D2P (w = 5)
OUR-CVFH
BF-ICP

FIGURE 5.5: Comparison of D2P with OUR-CVFH and BF-ICP for different cor-
rectness criteria. D2P outperforms the baselines consistently, with the margin be-
ing larger for stricter correctness conditions.

was ∼ 30 hours.

5.3.2 Utility of Lazy Edge Evaluations

We next study how useful lazy edge cost evaluations are, with regard to the branch-
ing factor of the tree and the amount of parallelization available. Figure 5.6a plots
the mean speedup of lazy D2P over non-lazy D2P for a varying number of processors
available, setting w = 10. We observe that lazy evaluation is most useful when paral-
lelization is limited and vice versa. If t were the time required to compute the true cost
of an edge, tlazy(<< t) the time to compute the lazy edge cost, E the number of expan-
sions required to find a solution for both lazy and non-lazy variants, N the number of
processors used to compute edge costs in parallel, and b the branching factor for every
tree state, then non-lazy D2P would take t(b/N)E time to return a solution, whereas
lazy D2P would take tE+ tlazy(b/N)E to return a solution. Clearly, the benefits of lazy
D2P are pronounced when the effective branching factor (b/N ) is large. While we vary
effective branching as a function of N in Fig. 5.6a, a similar trend would show if we
vary b instead, e.g., using a finer discretization or more objects in the scene.



5.3. Results 57

0 10 20 30 40
0

0.5

1

1.5

2

2.5

3

3.5

Number of Processors

L
a
zy

E
v
a
lu
a
ti
o
n
S
p
ee
d
u
p

(a)

0.04 0.08 0.12 0.16 0.2
30

40

50

60

70

80

90

100

dx (m)

C
o
rr
ec
t
P
o
se
s
(%

)

 

 

∆t = 0.2,∆θ = 90◦

∆t = 0.2,∆θ = 60◦

∆t = 0.2,∆θ = 30◦

 

 

∆t = 0.05,∆θ = 90◦

∆t = 0.05,∆θ = 60◦

∆t = 0.05,∆θ = 30◦

(b)

FIGURE 5.6: (a) Speedup obtained by lazy evaluation of edge costs as a function
of parallelization. The values are mean speedups across every input scene, with
the error bars representing one standard deviation. (b) Performance as a func-
tion of the translation-discretization, with each trace corresponding to a specific
correctness criterion.

5.3.3 Discretization vs. ICP Tradeoff

A key implementation detail is that of local ICP refinement for every newly added ob-
ject to a successor state. In our implementation, we restrict ICP refinement to only use
correspondences that are within dx/2 when iteratively estimating the 3 DoF transfor-
mation, to keep ICP ‘local’ to the grid cell at which an object is placed by the search.
This immediately introduces the following tradeoff: for coarse discretizations, ICP
would have a larger basin of attraction to get to the best fit; the price being that the ini-
tial object locations generated by the search might altogether miss small objects. While
using a finer resolution might help, it comes at the cost of a larger branching factor
and restricted locality for ICP. This tradeoff is captured in Fig. 5.6b, which suggests a
sweet-spot somewhere in the middle. More generally, our future work here entails us-
ing adaptive-resolution search as well as smarter local refinement techniques to com-
bat the aforementioned problems. This experiment uses a maximum time limit of 10
minutes, to accommodate large branching factors resulting from finer discretizations.

5.3.4 Synthetic Example

We conclude the chapter with a synthetic example that reiterates the complementary
strengths of discriminative guidance and systematic search. Figure 5.7 shows two
scenes containing the same set of 5 objects in different configurations. In the first scene,
the objects are mostly isolated and non-occluded. Search by itself takes a long time to
obtain a solution (over 13 minutes for dx = 0.1 and 8-core parallelization) since it has
no informative heuristic. However, by using the guidance from the discriminative
R-CNN which correctly identifies all objects, the time to obtain a solution is reduced



58 Chapter 5. Discriminatively-guided Deliberative Perception

FIGURE 5.7: Synthetic example demonstrating the complementary strengths of
discriminative and deliberative methods.

to just under 7 minutes. The second scene is more complex and features severe oc-
clusions. Here, D2P manages to reconstruct the complete scene although the R-CNN
correctly identifies only the 3 non-occluded objects.

Source Code and Reproducibility. Our implementation of D2P, and the complete
experimental setup is available as open-source code at http://www.github.com/
venkatrn/perception.

http://www.github.com/venkatrn/perception
http://www.github.com/venkatrn/perception


59

Chapter 6

RANSAC-Trees for 6 DoF Pose

The efficiency of global reasoning is dictated by two factors: heuristics that guide
search, and the size of the search tree itself. While the previous chapter discussed the
role of discriminative learners as heuristics, the current one considers the complemen-
tary role of statistical learners in constructing the search tree. The primary motivation
here is to enable Deliberative Perception for multi-object 6 DoF pose estimation. While
a simple discretization of the state space in combination with local alignment (ICP)
sufficed for 3 DoF pose estimation, the curse of dimensionality thwarts a similar ap-
proach for the 6 DoF case. It becomes essential to consider “smarter” generation of
object poses so that the search tree remains small and yet meaningful – i.e, there exists
a solution in the tree which is close to the truly optimal one. Towards this objective,
we introduce the “RANSAC-Tree" algorithm in this chapter.

6.1 Sampling-based Search and Sample Consensus

In tree search problems that deal with large state spaces, sampling-based strategies
have been very effective. For instance, in the game of Go, Monte Carlo Tree Search
(MCTS) (Kocsis and Szepesvári, 2006; Silver et al., 2016) has had great success in bal-
ancing exploration and exploitation despite the large branching factor. While a similar
approach might seem applicable in the context of PERCH, there is a key difference to
take into account: game trees are typically deep and care only about the “cost-to-go",
whereas the PERCH tree is typically shallow, broad, and considers the “cost-to-come".
The role of sampling in game trees is often to approximate the cost-to-go value for a
search node, as opposed to limiting the branching factor.

Yet another domain in which sampling-based techniques have been popular is that of
robot motion planning, where continuous action and state spaces lead to large search
graphs. Over the years, a number of methods have been developed for sampling-
based construction of compact search trees and graphs that lead to both feasible (Lavalle,

This chapter presents joint work with Tanner Schmidt, Yu Xiang, and Dieter Fox at the University of
Washington, Seattle.



60 Chapter 6. RANSAC-Trees for 6 DoF Pose

FIGURE 6.1: A toy example showing the incremental growth of a RANSAC-Tree
for a scene with two objects (colored brown and blue respectively), batch size of
one, and three episodes. The initial tree has one candidate pose for each object.
The second episode adds a new candidate pose for the blue object, the final one
introduces a new pose for the brown object. Notice how the additional candidates
at each episode are added as successors in both levels of the tree.

Kuffner, and Jr., 2000; Kavraki et al., 1996), as well as close-to-optimal motion plans
(Karaman and Frazzoli, 2010).

Sampling methods have a rich history in the computer vision field. Traditional pose es-
timation methods built on top of feature-matching between scene and model points of-
ten use a sample consensus technique, such as Random Sample Consensus (RANSAC)
(Fischler and Bolles, 1981; Papazov and Burschka, 2010) to reject outlier matches and
determine a set of matches that leads to the best “consensus”. Of course, the effective-
ness of these sample consensus methods relies heavily on the quality of the initial fea-
ture matches, which in turn is dependent on the discriminative technique employed.

Inspired by the successes of sampling-based search for large state spaces and sample
consensus in single-object pose estimation, we propose the RANSAC-Tree algorithm.
The algorithm is based on three observations: i) sampling is essential to control the
branching factor of the search-tree, ii) RANSAC is a proven sampling-based technique
to generate “good” pose candidates given a set of matches between scene and model
points, and iii) discriminative learners can match scene points to model points accu-
rately for the “most” part. Later, we discuss how the vague terms “good” and “most”
can be translated to more formal notions of solution quality and likelihood.

Finally, we introduce the LOV (Learning about Objects from Video) RGB-D videos
dataset comprising of 6-DoF pose annotated multi-objects scenes, with the objects cho-
sen from the YCB dataset (Calli et al., 2015). The LOV dataset not only permits the
study of multi-object pose estimation in complex scenes, but also allows us to leverage
contemporary data-hungry deep learning methods in the context of scene-to-model
point matching.



6.2. Algorithm 61

6.2 Algorithm

The Monotone Scene Generation Tree (MSGT) and PERCH from Chapter. 3 provide
the framework for the RANSAC-Tree algorithm. However, unlike PERCH which is a
single-shot algorithm (i.e, returns a single final solution), RANSAC-Tree is designed to
be an anytime, incremental search which continuously provides better quality solution
over time, while re-using search efforts over time. The intuition is that search can be
conducted on an increasingly dense tree, where the so-called “densification” arises
from using a growing set of individual object poses over time. Algorithm 4 presents
the details of the approach and Fig. 6.1 illustrates the construction of a RANSAC-Tree.

As usual, we assume that the number of objects in the scene K is known, and that the
objective is to localize all of them (find their 6 DoF poses) in a depth image / point
cloud of the static scene. The inputs to the algorithm are similar to that of PERCH
(Alg. 2), except for an additional parameter, the batch count l. While the approach in
previous chapters has been to start off with a fixed set of poses for each object (obtained
by discretizing the 3 DoF configuration), we will use l poses for each object to begin
with, and consequently increment the number of available poses for an object by l for
successive episodes of the search using RANSAC. The object whose candidate pose set
is expanded is chosen in a round-robin fashion between episodes (line 4).

To re-use search efforts between episodes rather than planning from scratch, RANSAC-
Tree updates the latest search tree (line 26) by inserting edges corresponding to newly
available object pose candidates. This is done by iterating through all states that were
expanded by the planner during all previous episodes, and re-generating their suc-
cessors. Consequently, new edges might be added in all K levels of the tree, thereby
“fattening” the tree. The newly generated successors are also inserted into the plan-
ner’s current OPEN list, to make them available for expansion in the next episode. The
termination condition for the algorithm could be one of several events: a time limit is
exceeded, a maximum allowed number of episodes have been completed, or no more
unique object candidate poses can be produced by RANSAC.

6.3 Theoretical Analysis

The questions of interest when dealing with sampling-based algorithms are a) is the
approach complete and/or optimal given enough time (asymptotically)? and b) what
can we say about the solutions that are obtained in the interim?

For the purposes of analysis, we will assume that there is a discriminative method that
produces a set of mi matches between scene and model points for each object i in the
scene. Note that a RANSAC procedure operating on mi matches can produce at most
Mi =

(
mi
3

)
distinct object poses.



62 Chapter 6. RANSAC-Trees for 6 DoF Pose

Algorithm 4 RANSAC-Tree Search

Inputs:
The implicit MSGT construction: SUCC(S) (Eq. 3.4) and edge cost c(s,′ s) (Eq. 3.5).
Suboptimality bound factor w (≥ 1), and decrement ∆w
Batch count l
1 admissible heuristic h and n arbitrary, possibly inadmissible, heuristics h1, h2, . . . , hn.

1: procedure UPDATECANDIDATEPOSES()
2: poses← RANSAC(object_idx, l)
3: Oobject_idx ← Oobject_idx ∪ poses
4: object_idx← object_idx + 1 mod K

5: procedure FATTENTREE()
6: for all s ∈ planner.EXPANDEDSTATES do
7: for all s′ ∈ SUCC(s) do
8: planner.ADDEDGETOTREE(s, s′, c(s, s′))

9: procedure MAIN()
10: for all i ∈ 1 . . .K do
11: Oi ← RANSAC(i, l)

12: object_idx← 0
13: sroot ← {}
14: planner← Focal-MHA*-Planner()
15: planner.SETIMPLICITTREE(SUCC(s), c(s, s′))
16: planner.SETSUBOPTIMALITYFACTOR(w)
17: planner.SETSTARTSTATE(sroot)
18: planner.SETHEURISTICS(h, h1, . . . , hn)
19: planner.SETGOALCONDITION(return true if |s| = K)
20: while time limit not exceeded do
21: success← planner.COMPUTEPATH()
22: if success then
23: {sroot, s1, s2, . . . , sgoal} = planner.SOLUTIONPATH()
24: publish sgoal . Incumbent solution

25: UPDATECANDIDATEPOSES() . Increase available object poses
26: FATTENTREE() . Update tree with newly available successors
27: w ← max(1.0, w −∆w)
28: planner.SETSUBOPTIMALITYFACTOR(w)

6.3.1 Asymptotic Properties

Let Tuniversal denote the PERCH tree constructed using the maximum possible pi can-
didate poses for each object. Extending the notion of completeness from Chapter. 3,
we define an algorithm as probabilistically complete with respect to Tuniversal if the
probability of finding a valid solution (i.e, a path from the root to a node on level K)
approaches 1 asymptotically.
Theorem 2. The RANSAC-Tree algorithm is probabilistically complete with respect to Tuniversal.

Proof. Let {O∗0 , O∗1 , . . . , O∗K} denote the object poses of a feasible solution in Tuniversal.
Without loss of generality, assume that the object indices also correspond to the levels
of the tree. Assume for the sake of contradiction that the algorithm is not probabilis-
tically complete, i.e, it fails to publish any solution at all, despite the existence of one



6.3. Theoretical Analysis 63

in Tuniversal. This implies that the planner was unable to find a path from the root to a
leaf on levelK in all episodes and expanded every node in the tree during the process.
Now, since RANSAC uses uniform random sampling to pick 3 from the mi possible
matches in each episode, the probability that it will pick the three which produce O∗i
in any given episode (for object i) is non-zero, and approaches 1 as the number of
episodes tends to infinity. Consequently, the probability that {O∗o} will be added as
a successor to the root node tends to 1. Since the planner failed to return a solution
in every episode, the probability that it expanded {O∗0} also tends to 1. This implies
that {O∗0 , O∗1} will be added as a successor for {O∗0} with probability 1 (since every
expanded state over all previous episodes is re-opened in a new episode). Recursing
on the object index i, we can conclude that the probability that the planner generated
{O∗0 , O∗1 , O∗K} also tends to 1, implying that a solution was found. This contradicts our
original assumption.

Theorem 3. The RANSAC-Tree algorithm is asymptotically optimal (or bounded sub-optimal)
with respect to Tuniversal.

Proof. For simplicity, we will provide a proof sketch for asymptotic optimality when
using optimal A* instead of FOCAL-MHA*. By construction of the RANSAC-Tree,
there is always a prefix path of the optimal solution in the planner’s OPEN list at the
start of an episode (previously expanded states are added back to OPEN). Since A*
expands nodes in the order of non-decreasing g-values (recall that the admissible h is
zero), the prefix path of the optimal solution is guaranteed to be expanded ahead of
any other goal state (on the lines of A*’s optimality proof). Now, the probability that
expanding the prefix path produces the next optimal successor approaches 1 as the
number of episodes tends to infinity, following similar reasoning as in the proof for
Theorem 2. Finally, using induction on the prefix path we can conclude that RANSAC-
Tree is asymptotically optimal.

6.3.2 PAC-type Bounds

Notwithstanding favorable asymptotic properties, we would like to understand the
quality of every intermediate solution published for practical purposes. The Probably
Approximately Correct (PAC) framework (Valiant, 1984) has been a popular choice in
machine learning for relating sample count to high-probability bounds on low error
rates. While ours is a different problem setup, we follow a similar analysis to establish
a relationship between the number of batches or candidate object poses, and the qual-
ity of the found solution. Fortunately, the theoretical underpinning of RANSAC lends
itself naturally to this analysis.

Let ti be the number of candidate object poses that have been generated for object i
at any given instant and let ri be the ratio of inliers (correct matches) to total number
of matches for object i. While ri is not known precisely in practice, one can obtain an



64 Chapter 6. RANSAC-Trees for 6 DoF Pose

estimate—for example, by looking at the discriminative learner’s confidence or uncer-
tainty in generating those matches. Let p be the probability that the optimal solution
(with respect to Tuniversal) is returned by the RANSAC-Tree algorithm in the current
episode. The probability with which the optimal will not be returned is then the same
as the probability with which at least one of the optimal object poses was not generated
during a RANSAC call until the current episode:

1− p = P(∃ at least one i such that O∗i was not generated)

≤
∑
i

P(O∗i was not generated) (union bound)

=
∑
i

P(none of the ti candidates include O∗i )

=
∑
i

P(at least one of 3 selected matches is an outlier)ti (independent events)

=
∑
i

(1− P(a randomly selected match is an inlier)3)ti (independent events)

=
∑
i

(1− r3i )ti

p ≥ 1−
∑
i

(1− r3i )ti (6.1)

Eq. 6.1 provides a handle on relating the confidence of discriminative learners (i.e, the
inlier ratio) to the number of candidate object poses needed for guaranteeing a lower
bound on the probability of returning the optimal solution. As an example, if we have
a scene containing 5 objects and a discriminative learner produces scene to model point
matches of which 50% are correct, then using 30 candidate poses for each object will
suffice to guarantee that we will find the optimal solution with probability at least 0.9,
or 47 object poses for probability at least 0.99. The number of candidates for each object
could also be different, depending on the individual object’s outlier ratio. Finally, we
note that this result is valid only in case of using optimal A*, and that further analysis
is required for the w-suboptimal solution case.

6.4 The LOV Dataset

The efficiency of the RANSAC-Tree algorithm is contingent on the ability to obtain
a fairly accurate set of matches between scene and model points. Conventional ap-
proaches for obtaining scene-to-model point matches involve computing some kind of
local feature descriptor (e.g., FPFH (Rusu, Blodow, and Beetz, 2009), Spin Images (John-
son and Hebert, 1999)) for scene and model points, and then matching those based on
a distance metric.



6.4. The LOV Dataset 65

Master Chef Can
Cracker Box

Sugar Box
Tomato Soup Can

Mustard Bottle
Tuna Fish Can

Pudding Box
Gelatin Box

Potted Meat Can
Banana

Pitcher Base
Bleach Cleanser

Bowl
Mug

Power Drill
Wood Block

Scissors
Large Marker
Large Clamp

Extra Large Clamp
Foam Brick

0 4 8 12 16

FIGURE 6.2: The number of occurrences of each object in the LOV dataset, with
dark bars representing the UW portion and light bars representing the CMU por-
tion.

Unfortunately, the manual design of feature descriptors is often cumbersome and brit-
tle. In recent times, deep learning methods, especially convolutional neural networks,
have enabled automatic feature learning for visual data. These methods however re-
quires large-scale labeled datasets—which in our case would require knowing corre-
spondences between scene and model points in all of the data, or equivalently, 6 DoF
pose annotation for all objects.

Publicly available datasets for multi-object pose estimation, such as the LINEMOD
dataset (Hinterstoisser et al., 2013), Imperial College London dataset (Tejani et al.,
2014), Occlusion Dataset (Aldoma et al., 2012a), MIT-Princeton Amazon Picking Chal-
lenge dataset (Zeng et al., 2017), Rutgers APC dataset (Rennie et al., 2016) and the
T-LESS dataset (Hodan et al., 2017) usually contain an insufficient number of frames
or limited variability in the scenes (such as controlled lighting and environment), that
makes them unsuitable for deep learning methods. While learning from synthetic
datasets (based on rendering) is a promising area of research for augmenting labeled
data, a clear methodology has not yet been established.

In the absence of existing large scale real-world datasets that contain 6 DoF annotated
scenes comprising of multiple object instances, we prepared our own dataset using
21 objects from the YCB dataset (Calli et al., 2015). To do so, we collected a set of
RGB-D videos, each of which contains a distinct scene composed of multiple object



66 Chapter 6. RANSAC-Trees for 6 DoF Pose

FIGURE 6.3: Representative frames from the LOV dataset (odd rows), along with
2D overlays of the annotated 6 DoF pose (even rows). Scenes include large and
small objects that occlude, touch, and rest on each other, all of which present chal-
lenges for state-of-the-art techniques.



6.5. Experiment Details 67

instances and the camera capturing different perspectives of the scene. In all, we cap-
tured 92 video sequences—60 of them in the University of Washington (UW) campus,
and 32 in the Carnegie Mellon University (CMU) campus. The total number of frames
across all videos is 134,028. Finally, to obtain 6 DoF pose annotation for all objects
in all frames, we manually annotate the initial frames of all videos by selecting point
correspondences, perform global multi-object optimization based on the depth image
to refine those poses, and finally use a state-of-the-art tracker DART (Schmidt, New-
combe, and Fox, 2014) to track the object across the whole video. The tracking step is
also interleaved with global refinement of the camera poses at each frame, à la bundle
adjustment. Figure 6.2 displays the number of occurrences of each object across the
entire dataset, and Fig. 6.3 shows some representative frames from the videos, along
with their annotations. This dataset contains some particularly challenging scenes that
target the weaknesses of state-of-the-art pose estimation methods. Firstly, many of the
scenes contain objects that are touching or resting on each other (including partly con-
tained in the other), which causes problems for methods that rely on perfect segmenta-
tion of the scene into distinct clusters for each object. Secondly, the camera perspectives
in the videos cover a wide range of angles leading to varying degrees of inter-object
occlusions, ranging from no occlusion to completely occluded.

6.5 Experiment Details

6.5.1 Deep Learning for Dense Object Coordinate Regression

We first describe our pipeline for discriminative scene-to-model point matching, which
is integral to the RANSAC-Tree algorithm. Rather than manual design of local geomet-
ric features for obtaining matches, we take advantage of the large scale LOV dataset
and contemporary deep learning methods to directly learn mappings from raw image
pixels to 3D vertex coordinates of an object model, in other words, doing “object co-
ordinate regression". This approach has two distinct advantages over more traditional
feature-matching based approaches: i) the discriminative system is trained directly to
regress scene pixels to model coordinates (in the so called end-to-end fashion), rather
than using a two-step procedure which requires defining a distance function on the
feature space, and ii) the approach can regress every single image pixel to an object
coordinate in a dense manner, as opposed to obtaining matches only on a sparse set of
keypoints, as is typically done. Finally, in addition to the object coordinate regression,
the learner is simultaneously trained to produce object class probabilities for all pixels.

Let d be the number of object instances in the dataset, andMi = {(x, y, z)} be the 3D
model for object i ∈ {1, 2, . . . , d} represented by a set of 3D vertex coordinates (for
example, the vertices of a polygon mesh model). Then formally, the regessor learns
the mapping f : I → {V,L}, where I is a h× w × 3 RGB image (depth channel is not
used), V is a h×w×3 ·d image where every pixel is essentially a concatenated vector of
(x, y, z) object coordinate predictions for the d objects, and L is a h×w×d label image,



68 Chapter 6. RANSAC-Trees for 6 DoF Pose

Algorithm 5 Dense RANSAC

Inputs:
Vertex coordinate predictions image V
Label probabilities image L
Depth image D
Object modelsMi∀i ∈ {1, 2, . . . , d}
Maximum trials T

Output:
m candidate poses for object i

1: procedure RANSAC(i,m)
2: for all t ∈ 1 . . . T do
3: candidate_poses← {}
4: mask← (argmaxj∈{1,2,...,d} L) == i
5: probability_map← L[mask]
6: probability_map← NORMALIZE(probability_map)
7: integral_image← COMPUTEINTEGRALIMAGE(probability_map)
8: matches← {}
9: for all j ∈ 1, 2, 3 do

10: pixel_index← SAMPLE(integral_image)
11: s← UNPROJECT(pixel_index,D[pixel_index])
12: v ← V[pixel_index, i]
13: matches← matches ∪ (s, v)

14: candidate_pose← FITPOSE(matches)
15: candidate_poses← candidate_poses ∪ {candidate_pose}
16: scores← PREDICTIONFITNESSSCORE(candidate_poses)
17: return m candidate poses with best scores

where every pixel is a vector of object probabilities. Here, h and w represent the height
and width of the input RGB-D image. The LOV dataset contains labeled data for this
regression: the 6 DoF annotated poses for each scene and known camera calibration
allows us to render and compute the pixel-wise object coordinates and labels for the
object class.

We use a Fully-Convolutional deep net architecture similar to the single stream net-
work of Yu et al. (Xiang and Fox, 2017), except for an additional output layer that
produces object coordinate predictions in addition the softmax probabilities for object
classes. For training, we use 48 of the 60 UW videos, and 24 of the 32 CMU videos. All
object coordinates (in meters) are normalized by a factor of 10 to reduce output mag-
nitude. The publicly available Tensorflow framework (Abadi et al., 2016) was used for
training the network.

6.5.2 RANSAC Details

The dense object coordinate regressor provides us for each pixel its most likely object
class, the corresponding probability in relation to those for other objects, as well as the



6.5. Experiment Details 69

3D object coordinate prediction for that pixel. A RANSAC procedure for generating m
object poses for an object i in the scene is given in Alg. 5. Two key differences from a
vanilla RANSAC implementation include using biased sampling (based on the object
class probability) rather than uniform sampling of matches, as well as using a depth-
image based fitness score for evaluating the candidate poses instead of counting inliers
based on Euclidean distance between matched points. The former is done efficiently
using an integral image of the probability map, and the latter is described below:

• Pre-compute a 3D distance field for every object model.

• Unproject all observed pixels that fall within the rendered mask of the predicted
pose.

• Transform all unprojected points to the coordinate frame of the target object
model.

• Compute the sum of scores for all transformed points using the pre-computed
distance field.

6.5.3 Evaluation

The RANSAC-Tree algorithm was evaluated in two modes: the first is a one-shot set-
ting where we take the first solution returned by the algorithm, and the second is
the anytime setting where we analyze the solutions generated over time. Both set-
tings have practical applications; the former is useful in situations where a solution
is needed as quickly as possible, although not completely accurate (e.g., objects in the
foreground might be better localized than the ones in the background), and the latter
when more computation time is available for perception, such as when the robot is
finishing execution of a previous task.

For the one-shot setting, we compare the results of RANSAC-Tree using different con-
figuration parameters with a greedy baseline. The greedy baseline simply takes the
best pose for each object according to the RANSAC fitness score, without doing any
global search.

RANSAC-Tree Implementation

While the RANSAC-Tree implementation follows that of PERCH for the most part,
we incorporate a few of the optimizations that were discussed in Ch. 4 in addition to
a variation specific to this algorithm. First, we improve the efficiency of computing
Jrendered and Jobserved by using distance fields as discussed earlier. In addition, to com-
pute Jobserved for an object O, we do not consider the observed points with the volume
of the placed objectO, but instead the observed points that fall within the 2D rendered
mask (taking into account occlusions from other placed objects) of the object. It is easy
to see that this modification preserves the monotone nature of the cost function. More



70 Chapter 6. RANSAC-Trees for 6 DoF Pose

importantly however, the cost computation for an edge can now be entirely performed
using the predicted and observed depth images, without having to consider a point
cloud per se. This paves way for efficient parallelized computation of an edge cost in
the future (in addition to evaluating multiple edges in parallel as is already done). The
second variation is specific to RANSAC-Tree. Since the LOV dataset is contact-rich,
candidate poses generated by RANSAC often tend to have small overlaps. Using the
traditional occlusion-based pruning in the Monotone Scene Generation Tree therefore
leads to poor results, as in most cases there is no collection of candidate poses that are
collision-free. Consequently, we modify the successor generation routine in PERCH
to allow occlusions of an existing object in the scene, thereby converting the tree to a
directed acyclic graph (DAG). Again, it is is easy to convince oneself that if there exists
a shortest path in the PERCH tree from root to a final level node, that would still be
the shortest path in the DAG. Finally, the use of discriminative object coordinate re-
gression to produce candidate poses instead of discretizing poses eliminates the need
to perform ICP at every successor generation step.

Accuracy Metric

Predicted object pose accuracy is evaluated based on the Average Distance (AD) crite-
rion (Hinterstoisser et al., 2013) used in recent works on 6 DoF object pose estimation.
The AD criterion checks whether the average distance between nearest points in the
predicted and true object pose (computed using the known 3D model of the object) is
within a fraction η of the object’s diameter. If T̃ and T ∗ represent the predicted and
true poses (transformation matrices) for object i, the average distance is computed as:

ei(P̃ , P
∗) =

1

|Mi|
∑
p∈Mi

min
p′∈Mi

‖T̃ p− T ∗p′‖2,

with the prediction considered correct if ei ≤ ηi · DIAMETER(Mi). This metric is
especially useful for evaluating object pose accuracies when objects have symmetric
structure, where simple rotation and translation errors are difficult to characterize pre-
cisely. Further, the average distance can be computed reasonably efficiently by using a
nearest neighbor datastructure for each model. Note however that the AD criterion is
not ambiguity-invariant (Hodaň, Matas, and Obdržálek, 2016), meaning that the error
could be non-zero even if the predicted and ground truth poses appear exactly identi-
cal in the camera image (for e.g., consider a situation where the coffee mug handle is
self-occluded).

6.5.4 Results

Table 6.1 shows the object pose estimation accuracies for the UW test data. We used
η = 0.1 in the AD criterion, suboptimality factor w = 5 and batch count m = 5 for the
RANSAC-Tree. The first observation is the variance in accuracy for different objects.



6.5. Experiment Details 71

TABLE 6.1: Object-wise pose estimation accuracies for RANSAC-Tree and the
greedy baseline, for two different “correctness" thresholds (η).

η = 0.075 η = 0.1
Object RANSAC-Tree Greedy RANSAC-Tree Greedy

Master Chef Can 90.00 87.50 100.00 97.50
Cracker Box 63.33 56.67 76.67 70.00
Sugar Box 88.00 88.00 96.00 98.00
Tomato Soup Can 80.00 76.67 91.67 88.33
Mustard Bottle 75.00 75.00 90.00 85.00
Tuna Fish Can 67.50 85.00 92.50 92.50
Pudding Box 100.00 100.00 100.00 100.00
Gelatin Box 100.00 100.00 100.00 100.00
Potted Meat Can 70.00 66.67 80.00 70.00
Banana 100.00 100.00 100.00 100.00
Pitcher Base 96.67 96.67 100.00 100.00
Bleach Cleanser 62.50 62.50 82.50 80.00
Bowl 65.00 55.00 65.00 70.00
Mug 95.00 90.00 95.00 100.00
Power Drill 100.00 100.00 100.00 100.00
Wood Block 10.00 0.00 30.00 20.00
Scissors 60.00 50.00 80.00 90.00
Large Marker 100.00 100.00 100.00 100.00
Large Clamp 45.00 45.00 55.00 50.00
Extra Large Clamp 35.00 35.00 40.00 40.00
Foam Brick 50.00 60.00 70.00 80.00

While a majority have greater than 90% accuracy, few objects such as the bowl, scissors,
wood block, clamp and foam brick have lower numbers. The reasons are two-fold:
first, symmetric objects such as the bowl and wood block are challenging for RANSAC
(scene-to-model matches need to account for the symmetry)) and produce poor-quality
candidate poses. Second, objects such as the scissor and clamp often tend to lie flat on
the resting surface, leading to low observed cost (points get explained by the surface)
even when they are offset from their true poses. Next, we can see that the accuracy for
RANSAC-Tree is better or about the same compared to the greedy baseline for most
objects. The cases where an improvement is seen are especially in scenes containing
occlusions, where we indeed expect global reasoning to play a part. Figure 6.4 shows
some qualitative results of the approach.

Figure 6.5 demonstrates the anytime behavior of RANSAC-Tree. Each plot shows the
average solution cost for a scene/video as a function of available time, where the aver-
age is computed over 10 uniformly sampled frames from the video. The shaded region
represents one standard deviation error, and the dashed red line marks the mean time
to find the first solution for that scene. Solution costs are normalized by the number
of objects in the scene, and a maximum of 5 minutes was provided for each run. From
the plots, it is evident that the time to find the first solution increases with the number
of objects in the scene, and that solution cost improves over time, albeit at different
rates depending on the scene composition.



72 Chapter 6. RANSAC-Trees for 6 DoF Pose

FIGURE 6.4: Qualitative results showing the performance of RANSAC-Tree on
three scenes from the LOV dataset. Left: Input RGB image, Middle: Input depth
image (preprocessed to remove “holes” by applying a median filter), and Right:
Output depth image returned by the algorithm. Note that no local optimization
such as ICP has been applied to the result.

6.6 Discussion

The work presented in this chapter was motivated by the neccecssity to scale Delib-
erative Perception to full 6 DoF multi-object pose estimation. The proposed approach
was an anytime algorithm that asymptotically approached the best solution that could
be obtained given the discriminative learner. While we showed that one could relate
sample size to some notion of high-probability, high-quality solution, a lingering ques-
tion remains: how do we determine which object to add more candidate poses for in
successive episodes, and how many samples should we add? The present algorithm
simply proceeds in a round-robin fashion and adds a fixed number of candidate object
poses in each episode. However, this is a rather arbitrary choice.

The above question in fact leads to a more fundamental one: what should be the objec-
tive of an anytime algorithm? Do we want to see some improvement in every succes-
sive episode of the algorithm, or do we want something less myopic? This question,
and a related problem are dealt with extensively in the following chapter.



6.6. Discussion 73

Time (s)
0 100 200 300

S
o
l.

C
o
st

30

35

40

45

Time (s)
0 100 200 300

S
o
l.

C
o
st

30

35

40

Time (s)
0 100 200 300

S
o
l.

C
o
st

30

35

40

Time (s)
0 100 200 300

S
o
l.

C
o
st

15

20

25

30

Time (s)
0 100 200 300

S
o
l.

C
o
st

20

25

30

35

Time (s)
0 100 200 300

S
o
l.

C
o
st

20

25

30

Time (s)
0 100 200 300

S
o
l.

C
o
st

25

30

35

40

Time (s)
0 100 200 300

S
o
l.

C
o
st

25

30

35

Time (s)
0 100 200 300

S
o
l.

C
o
st

15

20

25

30

Time (s)
0 100 200 300

S
o
l.

C
o
st

20

25

30

35

Time (s)
0 100 200 300

S
o
l.

C
o
st

10

15

20

Time (s)
0 100 200 300

S
o
l.

C
o
st

15

20

25

30

FIGURE 6.5: Anytime performance showing the average solution cost as a func-
tion of time for each scene in the UW test set. The shaded region represent one
standard deviation, and the dashed red line shows the average time to find the
first solution for that scene.





75

Part III

Bridging Heuristic Search and
Learning





77

Chapter 7

Anytime Search on Graphs with
Time-consuming Edge
Evaluations

Chapter 6 introduced an anytime algorithm for continuously improving solution qual-
ity over time, by gradually increasing the set of candidate poses from the discrimi-
native learner. However, there are two related, unanswered questions: what should
be the behavior of the anytime algorithm?, and how can use discriminative guidance
to further reduce the number of edges considered during the search? The latter has
profound impact on the performance of the search, especially in the context of Delib-
erative Perception. The evaluation of edge costs is a multi-step process that involves
rendering, ICP, and nearest neighbor calls, which together dominate the total run time
of the algorithm.

In this chapter, we propose an approach to address the time-consuming edge eval-
uations by leveraging edge-existence probabilities provided by a third party (e.g., a
statistical learner) to “skip” as many unnecessary edge evaluations (consequently, ren-
dering and ICP calls) as we can while ensuring provably good solution qualities. We
discuss a general formulation and algorithms for this problem as well as their theoret-
ical properties. Further, we take a digression to the motion planning domain in which
a similar problem of time-consuming edge evaluations arise.

7.1 Motivating Examples

Consider the problem of finding shortest paths in graphs where some edges have
a prior probability of existence, and their existence can be verified during planning
with time-consuming operations. Although Deliberative Perception is our target do-
main for this problem, we will consider robot motion planning as a proxy since it is

This chapter is based on material from Venkatraman Narayanan and Maxim Likhachev (2017b).
“Heuristic Search on Graphs with Existence Priors for Expensive-to-Evaluate Edges”. In: International Con-
ference on Automated Planning and Scheduling (ICAPS).



78 Chapter 7. Anytime Search on Graphs with Time-consuming Edge Evaluations

easier to grasp and shares several common features. Specifically, in real-world robot
motion planning, edge existence is often expensive to verify (typically involves time-
consuming collision-checking between the robot and world models), but edge exis-
tence probabilities are readily available.

Our goal is to develop an anytime algorithm that can return good solutions quickly by
somehow leveraging the existence probabilities, and continue to return better quality
solutions or provide tighter suboptimality bounds with more time. En route to this
goal, we develop two algorithms applicable to generic graphs with probabilistic edges.
They are: a) an algorithm for efficiently computing all relevant shortest paths in a graph
with probabilistic edges, and as a by-product, the value of the expected shortest path
cost, and b) an anytime algorithm for evaluating (verifying the existence of) edges in
a collection of paths, which is optimal in expectation under a chosen distribution of the
interruption time.

Many real world graph search problems involve expensive computation for determin-
ing the cost or existence of an edge in the graph. Aside from the expensive edge evalu-
ation in the Monotone Scene Generation Tree, another example is that of robot motion
planning, where states in the graph correspond to full configurations of the robot (e.g.,
a 7 degree-of-freedom manipulator’s graph state would be a 7-dimensional vector)
and edges between two states exist if the robot can get from the first configuration to
the second in a collision-free and kinematically feasible fashion. This existence check
requires expensive collision checking between the robot mesh model and the world
representation, as well as kinematic feasibility checks, which often turn out to be the
most time-consuming parts of the graph search.

In several scenarios however, we do have some prior probabilistic information about
the existence of an edge. In the example of robot motion planning, a crude probabilis-
tic model could compute an approximate distance between the robot and the world
(without doing the full-blown collision checking) and use that to compute edge ex-
istence probabilities. Sophisticated schemes for learning edge existence probabilities
online during the graph search are also possible. In this work, we seek to exploit any
such probabilistic edge existence information to develop an anytime graph search al-
gorithm that can return feasible solutions quickly. As a step towards this goal, we
develop two principled algorithms that are applicable in a variety of related problems:

• Shortest Paths in Graphs with Probabilistic Edges: Our problem setup requires
finding the shortest path in a graph where some edges have a prior probability of
existence as well as a true state (measurable by evaluating those edges). This can
be viewed as solving the shortest path problem on a graph which is drawn from
a distribution over graphs defined by the edge existence probabilities. The first
algorithm, Expected Shortest Paths* (ESP*), efficiently computes the set of all
unique shortest paths that could result from this distribution, and consequently
the expected shortest path cost. To our knowledge, this is the first algorithm



7.2. Background 79

that can efficiently (defined more rigorously later) compute the expected short-
est path cost for a graph distribution defined by independent Bernoulli edge
existence priors.

• Optimal Anytime Edge Evaluation: Assume that we are presented with a set
of candidate paths from start to goal that include probabilistic edges. Now at
any time, we have the ability to query the true state of an edge, albeit by a time-
consuming process. The second algorithm, Anytime Edge Evaluation (AEE*)
answers the question of deciding how to evaluate these edges, so that the sub-
optimality bound we provide on the solution quality is minimum in expectation
whenever the algorithm is interrupted.

7.2 Background

The problem of time-consuming edge evaluation in robot motion planning has been
touched upon in a number of recent works. These works adopt one of the follow-
ing strategies to tackle slow collision-checking: i) lazily build the search graph as in
Lazy PRM Bohlin and Kavraki, 2000, ii) use collision probabilities, which could be
learnt online during planning Huh and Lee, 2016 to bias sampling-based motion plan-
ners, or heuristically guide search-based planners as in POMP Choudhury, Dellin, and
Srinivasa, 2016, or iii) use lazy search techniques to defer as many edge evaluations as
possible, as in LazySP Dellin and Srinivasa, 2016 or Lazy Weighted A* Cohen, Phillips,
and Likhachev, 2014. Our work mostly falls under the last camp, where we use edge
existence probabilities and estimated evaluation times to determine how to evaluate
edges in a lazy fashion.

Other works related to minimizing edge evaluations include Partial Expansion A*
(PEA*) Yoshizumi, Miura, and Ishida, 2000 and its enhancement EPEA* Felner et al.,
2012, and BEAST Kiesel and Ruml, 2016. The former methods minimize unneces-
sary node insertions (and hence edge evaluations) when dealing with large branch-
ing factors, while the latter provides a method for online estimation and utilization
of edge-existence probabilities in the context of abstraction-guided sampling-based
motion planning. Another well-known problem that bears resemblance to ours is the
Canadian Traveler Problem (CTP) Papadimitriou and Yannakakis, 1991. The major dif-
ference between the two is that in CTP, the existence status of an edge is known only
when the agent physically moves to the location, as opposed to being able to evalu-
ate an edge at any point in our case. Therefore, we deal with a deterministic shortest
path problem (albeit with priors for edge existence), as opposed to the CTP—a deter-
ministic Partially Observable Markov Decision Process (POMDP) Eyerich, Keller, and
Helmert, 2010.

In comparison to existing lazy search methods, ours provides the ability to compute an
optimal edge-evaluation strategy for a given set of candidate paths en masse (which
could also be partial paths to the goal), as opposed to just one path. Moreover, our



80 Chapter 7. Anytime Search on Graphs with Time-consuming Edge Evaluations

Search 
Algorithm

Graph 
(Implicit)

Start,
Goal(s)

Edge
Evaluator

Meta-
Algorithm

Solution(s)

Path Set

Search
meta-data

Evaluation
meta-data

(anytime)

(revealed 
on-demand)

Evaluated Edges

FIGURE 7.1: Strategy for interleaving search and edge evaluations. The search
module provides a candidate set of paths (not necessarily from start to goal) to
the edge evaluator whenever the meta-algorithm commands to. The evaluated
statuses of the edges are then returned to the search algorithm for future use.
Also, the search algorithm may choose to publish solutions in an anytime fashion
as opposed to just once. Search and evaluation meta-data could include statis-
tics such as time used, number of expansions made, number of paths found, or
number of edges evaluated.

method provides greater flexibility in terms of determining when to evaluate edges
and when to continue planning—either after a complete set of candidate paths has
been found, after a single candidate path has been found, or using some other arbitrary
interleaving strategy.

Finally, our approach has an attractive anytime property in that it is provably optimal
under expectation with respect to stochasticity in both edge existences and the inter-
ruption time, assuming all interruptions occur only after the candidate set of paths has
been found. This is a novel definition of optimal anytime behavior, distinct from the
one proposed in Thayer, Benton, and Helmert, 2012, where an ideal anytime algorithm
is defined as one that reduces the time between distinct solutions. On the other hand,
our notion of ideal anytime behavior in AEE* includes both solution quality and the
expected interruption time.

In addition to the above distinguishing features, ESP* is the first algorithm to our
knowledge that can efficiently compute the exact expected shortest path cost for a
distribution of graphs defined by Bernoulli edge existence probabilities.

7.3 Overview

The overarching goal of this work is to leverage edge existence probabilities to find
solutions as quickly as possible. Right away, this leads to two questions: a) do we care
only about the optimal solution or would we rather have an anytime algorithm that
returns a feasible path very fast and continues to improve it with time, and b) should
the objective be to minimize edge evaluations, or rather minimize the total planning



7.4. Expected Shortest Paths* (ESP*) 81

time, in which case we also need to consider the overhead of the search algorithm as
well (i.e, operations such as inserting and deleting from a data structure). If we cared
only about minimizing edge evaluations, we could find all possible paths between
the start and goal, and then use an “optimal” edge evaluator on those paths for some
notion of optimality. The other extreme would be to evaluate every edge that is being
considered by the search algorithm, which reduces to a typical search implementation.

Our strategy (shown in Fig. 7.1) is to interleave search and edge evaluations, with
flexibility in the choice of how to interleave them. This is similar to the LazySP ap-
proach Dellin and Srinivasa, 2016, but has two key novelties : i) the search algorithm
can present an arbitrary set of paths to the edge evaluator rather than just 1 path from
start to goal, and ii) the search and edge evaluation modules are moderated by a meta-
algorithm that determines when each module should be active, instead of using a fixed
interleaving policy. The intuition for the first is that the edge evaluator can make more
informed decisions by considering paths en masse along with individual existence
probabilities of edges. For instance, it might be worthwhile jointly considering the
time required for evaluating a path and its probability of existence, if we are interested
in an anytime setting. However, a complicated edge evaluator might lead to another
time-consuming entity, and that motivates our meta-method. Finally, we assume that
the run time of the meta-algorithm is negligible compared to either of the other two
modules, so that the planning time is only a function of the search and edge evalua-
tion modules. In the following sections, we will describe our contributions for each
module.

7.4 Expected Shortest Paths* (ESP*)

The first algorithm, ESP*, is towards the search module whose job is to generate a set of
(possibly partial) paths for the edge evaluator. Naturally, we would like these paths to
be a diverse sampling of shortest, likeliest, and fastest-to-evaluate paths (which could
all be different) so that the edge evaluator can hedge its bets. ESP* answers the ques-
tion: what are all the paths we might care about in making the best edge evaluation
decisions under uncertainty? This results in the problem of finding the shortest paths
in the graph under all combinations of edge existences— any more information would
be unnecessary to the edge evaluator (assuming all deterministic edges have the same
evaluation time). Incidentally, an algorithm that achieves this could also compute the
expected shortest path cost.

7.4.1 Problem Setup

Formally, we have

• Γ = (X,E), a finite graph with vertices X and possible edges E. We use xstart
and xgoal to denote the start and goal vertices.



82 Chapter 7. Anytime Search on Graphs with Time-consuming Edge Evaluations

• c : X × X → R+, cost of an edge between two vertices (∞ if an edge does not
exist).

• p : E → [0, 1], Bernoulli prior for existence of e ∈ E.

• Eb = {e ∈ E|p(e) 6= 1}, the set of all edges in Γ that are stochastic (i.e, there is
some chance that the edge might not exist).

• k = |Eb|, the number of stochastic edges in Γ.

The Bernoulli prior p implicitly defines a distribution P (G) over the graphs G that
can be generated as sub-graphs of Γ. The problem we consider is that of finding the
set of shortest paths across all (2k) samples drawn from P (G), and consequently the
expected shortest path cost c∗µ for this graph distribution. If we let c∗(G) denote the
cost of the shortest path on graph G,

c∗µ = E
G∼P (G)

[c∗(G)] =

2k−1∑
i=0

c∗(Gi)P (Gi), (7.1)

where P (Gi) is the probability that graph Gi is drawn from P (G) (product of the ex-
istence and non-existence probabilities of the edges present and absent respectively).
Note that c∗µ is infinite if there is no deterministic path from start to goal.

7.4.2 Algorithm

While a trivial algorithm to compute c∗µ would be to find c∗(G) for every realization of
G, it is impractical due to the exponential cardinality of the sample space. The insight
we leverage here is that the set of unique shortest paths Sσ across all the realizations
has a much smaller cardinality than 2k typically, and that it is sufficient to find this
set to compute c∗µ. Clearly, the shortest path amongst all paths in Sσ is the one where
all stochastic edges are extant, and the longest path in the set is the one where all
stochastic edges are nonexistent. The problem now reduces to finding the in-between
paths.

Expected Shortest Paths* (ESP*) presented in Alg. 6 solves this task. At heart, it is very
much simply A* search, albeit with two modifications: i) it operates on an augmented
graph where every state s in the graph is the original graph node x augmented with a
bit vector b of length k that represents which stochastic edges have been traversed by
a path to x, and ii) it applies a state dominance relationship to prune partial paths that
are guaranteed to not belong in Sσ . Intuitively, the augmented graph (Fig. 7.2) keeps
track of partial paths along with the set of probabilistic edges that are part of those
partial paths. This allows us to apply efficient dominance relationships: given two
partial paths to an original graph vertex x each of which traverses probabilistic edges
a, b and a, b, c (in any order), and have costs 10 and 20 respectively, the latter partial
path definitely cannot belong to Sσ . That is, the existence or non-existence of edge c is



7.4. Expected Shortest Paths* (ESP*) 83

a

xstartxgoal

5 06

4 15

3 24

1 22

2 33

3 44

sgoal sstart

{a}

{}

FIGURE 7.2: Left: An undirected graph with 1 stochastic edge a and unit costs on
all edges. Right: The augmented graph searched by ESP*. The upper layer corre-
sponds to paths that have not traversed a, and vice versa for the lower one. The
numbers next to the vertices represent their g-values and the shaded vertices are
those expanded by ESP*, assuming a zero heuristic. Notice how some states in the
augmented graph are “pruned" despite having smaller g-values than g(sgoal) = 6,
through the dominance relationships. For e.g., assuming (0, 0) is bottom-left, the
state [(2, 1), {a}] with a g-value of 3 is dominated by [(2, 1), {}) with a g-value of 1.
Intuitively, this is because the path (2, 0)—(1, 0)—(2, 0)—(2, 1) cannot be part of
an optimal solution in any instantiation of the graph (sampled edge existences),
given that we know the path (2, 0)—(2, 1) is shorter and traverses only a subset
(in this case empty set) of stochastic edges in the other path.

irrelevant to the shortest path from xstart to xgoal through state x, for every G ∼ P (G)

in which a and b are existent.

Notation. In the algorithm, g(s) represents the cost-to-come to s from the start state
sstart, c̃(s, s′) = c(s.x, s.x′) is the cost of an edge between s and s′, and h̃(s) = h(s.x)

is a consistent heuristic for state s.x in Γ (and hence also consistent for the augmented
graph). In addition, p(s) is the probability of arriving at state s from sstart, and OPEN
is a priority queue sorted by f(s) = g(s) + h̃(s). The methods OPEN.TOP() and
OPEN.MINKEY() return the best state in OPEN and its f -value respectively, while
OPEN.EMPTY() returns true if the priority queue is empty. We will use the subset
notation b1 ⊂ b2 on bit vectors b1 and b2 to indicate that the “set” (equal to 1) bits in
b1 are also set in b2. The method NUMNONZEROS(b) returns the number of set bits in
b. Finally, we use an edge struct e with three members: the parent vertex e.first, the
child vertex e.second, and the index of the edge in Eb denoted by e.index.

The algorithm proceeds like usual A* except for two main differences: Lines 25–27
codify the dominance pruning through checking if the set of traversed edges in a path



84 Chapter 7. Anytime Search on Graphs with Time-consuming Edge Evaluations

Algorithm 6 ESP*
1: procedure COMPUTEEXPECTEDCOST(Sσ)
2: // #Graph instances where all edges traversed by si are existent

(augmented states si are paths in the original graph).
3: ν[1 . . . |Sσ|] = 0
4: // Probability of getting si as the shortest path.
5: ρ[1 . . . |Sσ|] = 0
6: for all i ∈ 1 : |Sσ| do
7: ν[i] = 2k−NUMNONZEROS(si.b)

8: ρ[i] = p(si) · ν[i]
9: for all j ∈ 1 : i− 1 do

10: if si.b ⊂ sj .b then
11: ρ[i] = ρ[i]− p(sj) · ν[j]

12: return
|Sσ|∑
i=1

g(si) · ρ[i]

13: procedure SUCC(s)
14: S = ∅
15: for all e ∈ OUTEDGES(s.x) do
16: s′ = [e.second, s.b]
17: p(s′) = p(e) · p(s)
18: if e ∈ Eb and s′.b[e.index] 6= 1 then
19: s′.b[e.index] = 1 . Update s.b if the new edge is stochastic.
20: S = S ∪ {s′}
21: return S
22: procedure EXPANDSTATE(s)
23: Remove s from OPEN
24: for all s′ ∈ SUCC(s) do
25: C = {z ∈ CLOSED|z.x = s′.x ∧ z.b ⊆ s′.b}
26: if |C| 6= 0 then
27: continue . Prune path if it satisfies dominance condition
28: if s′ was not seen before then
29: g(s′) =∞
30: if g(s′) > g(s) + c̃(s, s′) then
31: g(s′) = g(s) + c̃(s, s′)
32: if s′ /∈ CLOSED then
33: Insert/Update s′ in OPEN with priority g(s′) + h̃(s′)

34: procedure MAIN()
35: bempty = [0, 0, . . . , 0] . Bit-vector representing stochastic edges tra-

versed
36: sstart = [xstart, bempty], sgoal = [xgoal, bempty]
37: p(sstart) = 1, p(sgoal) = 0
38: g(sstart) = 0, g(sgoal) =∞
39: OPEN = ∅,CLOSED = ∅
40: Sσ = ∅ . Set of paths from xstart to xgoal ordered by cost
41: Insert sstart in OPEN with priority h̃(sstart)
42: while g(sgoal) > OPEN.MINKEY() do
43: if OPEN.EMPTY() then return (Sσ,∞)
44: s = OPEN.TOP()
45: CLOSED = CLOSED ∪ {s}
46: if s.x = xgoal then
47: Sσ = Sσ ∪ {s}
48: // Prune paths from OPEN which traverse
49: // all stochastic edges traversed by s
50: OPEN = OPEN \ {o ∈ OPEN|o.b ⊇ s.b}
51: continue
52: EXPANDSTATE(s)

53: Sσ = Sσ ∪ {sgoal}
54: return (Sσ,COMPUTEEXPECTEDCOST(Sσ))

to x is a superset of traversed edges in previously computed paths to state x. Lines 47–
51 save a newly found path to xgoal, and prune any states in OPEN that cannot lead
to a better solution given the edges traversed by the newly saved path. Note that the



7.4. Expected Shortest Paths* (ESP*) 85

SUCC method not only generates the successor states for an augmented graph state
but also computes the arrival probabilities p(s) to those successor states. Finally, the
COMPUTEEXPECTEDCOST method processes the set of saved paths and returns the
expected shortest path cost.

7.4.3 Theoretical Analysis

Theorem 4 (Correctness). The COMPUTEEXPECTEDCOST function in ESP* (Line. 54) re-
turns the expected shortest path cost c∗µ (Eq. 7.1).

Proof. (Sketch) A*’s monotone property Hart, Nilsson, and Raphael, 1968 guarantees
that states are expanded in non-decreasing order of f -values, which for states s where
s.x = xgoal, are simply g-values. Thus, if we terminate the search either when OPEN
is empty, or when we are about to expand the state s with s.x = xgoal and s.b =

[0, 0, . . . , 0] (i.e, corresponding to a deterministic path), we are guaranteed to have
found (put in CLOSED) every path to the original goal state xgoal that is shorter than
the shortest fully deterministic path. The pruning step only removes paths which
are longer than an existing path with a subset of traversed stochastic edges, and is
therefore admissible. Finally, COMPUTEEXPECTEDCOST simply partitions the 2k pos-
sible graph instances into |Sσ| groups with distinct shortest paths for each (in non-
decreasing order of path costs) much like a priority encoder, and computes the proba-
bilities of occurrence for each group.

Theorem 5 (Efficiency). A vertex x in the underlying graph Γ is expanded at most 2k · (1−
1
2l

) + 1 times, where l is the number of stochastic edges in the shortest path from xstart to x on
Γ.

Proof. (Sketch) Again, by A*’s monotone property, the first instance a state with under-
lying original vertex x is expanded will be through a path with l stochastic edges. The
pruning step (Line 25) guarantees we will never expand a path to xwith a combination
of stochastic edges that is a superset of the l stochastic edges. The number of ways we
can get to x through a superset of those l edges is 2k−l, implying that the maximum
number of additional paths to x that may not get pruned is 2k − 2k−l. Including the
first path with l stochastic edges, we arrive at 2k · (1− 1

2l
) + 1.

Corollary 1. If the shortest path from xstart to x on Γ is deterministic (i.e, l = 0), ESP*
expands at most one state corresponding to each vertex x in the underlying graph.

Finally, we note that these properties hold only when running optimal A* on the aug-
mented graph. The investigation of these properties when using bounded suboptimal
versions such as Weighted A*, as often the case in practice for large graphs, is left for
future work.



86 Chapter 7. Anytime Search on Graphs with Time-consuming Edge Evaluations

start goal

c: 1
p: 0.2
t: 100

c: 1
p: 0.2
t: 1

c: 2
p: 1.0
t: 1

c: 1
p: 0.9
t: 100

c: 2
p: 0.9
t: 1

c: 100
p: 0.9
t: 99

FIGURE 7.3: An anytime algorithm must jointly consider the edge costs, proba-
bilities and evaluation times in deciding what edges to evaluate, as well as define
explicitly what its desired “anytime" behavior is. In this example, evaluating the
shortest (c) or likeliest (p) path will be suboptimal for an anytime algorithm that
wants to return a feasible solution as fast as possible. On the other hand, evaluat-
ing the path with the smallest expected evaluation time (t) will be suboptimal for
an anytime algorithm that tries to minimize its expected solution suboptimality at
an arbitrary interruption time.

7.5 Optimal Policy for Edge Evaluation under Anytime

Interruption

Let us now assume we have a set of paths Sσ = {σ1, σ2, . . . , σn} between xstart and
xgoal produced by ESP*, and c(σi) be the cost of path σi, assuming all stochastic edges
exist. Let E = {e ∈

n
∪
i=1
σi|p(e) 6= 1} be the set of all probabilistic edges across the set

of paths Sσ and |E| = k. Let ti denote the (estimate of) time taken to evaluate the
probabilistic edge ei ∈ E. Clearly, there are multiple ways (Fig. 7.3) one can go about
evaluating these edges. If all we care about is the optimal path, then we simply order
the paths by increasing cost and evaluate edges in each until we find a path that is
valid. If instead, we care only about a feasible solution, we would order the paths by
likelihood of their existence.

Our next proposed algorithm, Anytime Edge Evaluation* (AEE*) strives to find a bal-
ance between conflicting objectives of finding good quality solutions and finding feasi-
ble solutions quickly. We formulate the edge-evaluation problem as a Markov decision
problem where the objective is to minimize the expected suboptimality bound of the
returned solution at any given interruption time. Formally, let a state s ∈ S (different
from the s used in ESP*) be a ternary k-vector {−1, 0, 1}k, where the element s[i] takes
the value 1 if edge ei is valid, −1 if invalid and 0 if unknown (not yet evaluated). In
other words, state s captures information about what edges have been evaluated and
what the outcomes were. An action ai ∈ A corresponds to evaluating edge ei. Let
Iσ = {i | ei ∈ σ ∧ p(ei) 6= 1} denote the index set of stochastic edges in a path σ. For



7.5. Optimal Policy for Edge Evaluation under Anytime Interruption 87

Time t

0 2 4 6 8 10 12 14 16 18 20

S
u
b
o
p
ti
m
a
li
ty

B
o
u
n
d
B
(t
)

0

5

10

15

20

FIGURE 7.4: Illustration of AEE*’s optimization objective. Consider three hypo-
thetical anytime profiles (the suboptimality bound as a function of time) corre-
sponding to distinct edge-evaluation policies. AEE* finds the policy correspond-
ing to the solid line, since it has the least area under its curve. Note that each curve
is only a possible realization dependent on the edge existence probabilities, and
that AEE*’s objective is to minimize the expected area under the curve.

any state s, define B(s) as:

B(s) =
B(s)

B(s)

B(s) = min
j
c(σj) s.t. s[i] = 1 ∀i ∈ Iσj

B(s) = min
j
c(σj) s.t. s[i] 6= −1 ∀i ∈ Iσj ,

where we assume the minimum of an empty set is ∞ and ∞/∞ = 1. Here, B(s)

represents the lowest path cost amongst all paths which we know definitely exist (all
stochastic edges have been evaluated as valid), and B(s) represents the lowest path
cost amongst all paths that are not yet proven to be invalid (i.e., those paths may or
may not exist based on the current edge evaluations). If the cost of the optimal path
is c∗, then we have B(s) ≤ c∗ ≤ B(s). If the algorithm always returns the path corre-
sponding to the argmin ofB(s) with cost c = B(s) whenever it is interrupted, we have
c ≤ B(s) · c∗, implying that B(s) is a multiplicative suboptimality bound.

From the perspective of an anytime algorithm, we could have the algorithm be inter-
rupted at any time t, which for simplicity is presently assumed to be drawn uniformly
at random from [0, T ], with T exceeding the time taken to evaluate all stochastic edges.
At any such time t, the algorithm can provide a suboptimality bound corresponding to
the last published solution before being interrupted. This suboptimality bound is de-
noted B(t), with some abuse of notation. We now define the decision making problem
(i.e, a mapping from state s to action a) as that of choosing actions in a way to mini-
mize the expected suboptimality bound, where the expectation is over the interruption
time, as well as the inherent stochasticity in evaluating edges.



88 Chapter 7. Anytime Search on Graphs with Time-consuming Edge Evaluations

Let p(s′|s, a) denote the transition probability, and a policy be denoted by π : S → A.
Then,

π∗ = argmin
π

E
t∼U(0,T )

[B(t)] = argmin
π

1

T

T∫
t=0

B(t)dt. (7.2)

Let sm represent the state at (discrete) stepm obtained by following the policy π, t(sm)

represent the (continuous) time at which sm is reached and t(am) represent the time
taken to execute action am = π(sm). Let us use sm+1 to denote the outcome of action
am.

Now, the bound at time t, B(t) is the suboptimality bound for state sm, such that
t(sm) ≤ t < t(sm+1). However note that sm itself is a random variable drawn from the
distribution over states obtained at stepm by following the policy π. If [s0, s1, . . . , sm, . . . , sM ]

denotes a trajectory obtained by following policy π, and Tπ(sm|sm−1) = p(sm|sm−1, π(sm−1))

the transition probability between states sm−1 and sm under policy π, we have,

B(t) = E
sm∼

Tπ(sm|sm−1)

[ ∞∑
m=0

B(sm) · 1(t(sm) ≤ t < t(sm+1))

]
,

where 1 is the indicator function which evaluates to 1 when the conditional is true,
and 0 otherwise. Using the above in Eq. 7.2, and dropping the expectation distribution
subscript,

π∗ = argmin
π

1

T

T∫
t=0

E

[ ∞∑
m=0

B(sm) · 1(t(sm) ≤ t < t(sm+1))

]
dt

= argmin
π

1

T
E

 ∞∑
m=0

B(sm)

T∫
t=0

1(t(sm) ≤ t < t(sm+1))dt


= argmin

π

1

T
E

 ∞∑
m=0

B(sm)

t(sm+1)∫
t=t(sm)

dt


= argmin

π

1

T
E

[ ∞∑
m=0

B(sm)(t(sm+1)− t(sm))

]

= argmin
π

1

T
E

[ ∞∑
m=0

B(sm)t(am)

]
.

Defining

C(sm) =
1

T
B(sm)t(π(sm)), (7.3)

the optimal policy π∗ = argmin
π

E
[ ∞∑
m=0

C(sm)

]
.

Note that the expectation in this equation is only with respect to transition uncertainty



7.6. Evaluation 89

due to stochastic edges (the one due to interruption time has been integrated out).
Therefore, the decision making problem has been reduced to a stochastic shortest path
(SSP) problem, where we minimize the expected sum of future costs for the specific
definition of cost (Eq. 7.3), and goal states given by {s : B(s) = 1}1.

Intuitively, the term B(sm)t(π(sm)) is simply the area of the rectangle with those two
corresponding sides, and we seek to find the policy that minimizes the area under the
piece-wise constant curve which represents the suboptimality bound as a function of
time, with transition-points on the curve corresponding to time-steps at which an edge
was evaluated. Figure 7.4 illustrates this intuition.

In our experiments, we use LAO* Hansen and Zilberstein, 2001 to solve the resulting
SSP optimally when it is tractable, or in an online fashion (with fixed time budget for
policy computation) when the number of stochastic edges is intractably large. On a
practical note, when the set of paths Sσ are only partial paths from xstart (not all the
way to xgoal), we can still use AEE* on these paths by adding the admissible heuristic
estimate of the last node on every path to its current cost.

7.6 Evaluation

We evaluate our approach on two domains with distinct properties: the first, a 11
degree-of-freedom mobile manipulation planning problem with dense stochastic edges
and the second, a synthetic 2D grid navigation problem with sparse stochasticity. For
both domains, we use the augmented graph construction of ESP*, AEE* for edge eval-
uation, and a meta-algorithm described shortly. An added advantage of using the
augmented graph construction is that interleaved search and evaluation can be done
without an incremental search algorithm—we only need to update the affected states
in OPEN whenever new edge validity information is provided by the evaluator.

Path-Set Selection. While ESP* is capable of producing every relevant path we might
care about in theory, it is impractical to wait until complete termination of ESP* be-
cause of the exponentially large state space. Consequently, we present two methods to
obtain a candidate set of paths at any given time: a) select the set of distinct shortest
paths from OPEN corresponding to unique sets of stochastic edges traversed, b) se-
lect the set of distinct shortest paths from OPEN according to multiple searches, each
with its own heuristic (e.g, Fast Downward Stone Soup Helmert, Röger, and Karpas,
2011 or Multi-Heuristic A* Narayanan, Aine, and Likhachev, 2015). We use the first
strategy for the grid navigation experiments, and the second for mobile manipulation
planning. In the latter case, we specifically add an extra search with a heuristic that
guides the search along the likeliest path to the goal. Note that in both cases, the set
of paths are only partial paths to the goal, but can nevertheless be used in conjunction
with AEE* as discussed.

1It is possible to generalize this result to arbitrary distributions for the interruption time, however with
the added complexity that the cost function C(s) is now dependent on the arrival time to s.



90 Chapter 7. Anytime Search on Graphs with Time-consuming Edge Evaluations

FIGURE 7.5: Left: The kitchen domain for 11 DoF mobile manipulation experi-
ments with randomly positioned tables and randomized clutter on top of the ta-
bles. Middle: The distance transform d(x, y) on the 2D map which is used to com-
pute edge existence probabilities for mobile manipulation. Right: The probability
heuristic hp which is used as part of MHA* to guide the search along likely-to-
exist paths, for a particular end-effector goal (x, y) location marked by a red dot.
Red indicates highest heuristic value and dark blue the lowest value.

Meta-Algorithm. For both domains, we use a simple meta-algorithm to switch be-
tween searching and edge evaluation. If tsearch and teval represent the cumulative
times used thus far for searching and edge evaluation, we pick the operation with
a smaller t at any given instant2. This naturally balances time spent searching ver-
sus evaluating. More sophisticated methods that try to estimate the time required in
the future for each operation might be possible, but as mentioned earlier, the meta-
algorithm’s run time needs to be negligible compared to other modules.

7.6.1 Mobile Manipulation Planning

Our first domain is 11 degree-of-freedom (DoF) full-body motion planning for the
PR2 robot (a dual-arm mobile manipulation robot). The planner’s task is to find a
collision free motion for the robot to approach and pick up objects on cluttered ta-
bles in a kitchen environment, shown in Fig. 8.4. Specifically, the planner controls
the position and orientation (x, y, θ) of the robot’s base, the height of the prismatic
spine which raises and lowers the torso, the 6 DoF pose of the gripper in the robot’s
body frame (xhand, yhand, zhand, rollhand, pitchhand, yawhand), and the arm’s “free an-
gle” (which way the elbow is pointing).

Each vertex in the graph corresponds to a 11-dimensional robot configuration, while
edges correspond to small kinematically feasible motion primitives that the robot can
execute (for e.g., one motion primitive changes rollhand by 4 degrees). These edges
are valid (existent) only if the motion is collision-free with the environment—which
can be verified through expensive collision checking. The cost on an edge is the time

2The resolution for switching is either one expansion, or one complete run of the AEE* policy on the
incumbent set of paths.



7.6. Evaluation 91

TABLE 7.1: Results for 11 DoF motion planning. Legend: A1: Probability Heuris-
tic+AEE*, A2: Probability Heuristic+Lazy WA*, A3: Lazy WA* (all use Focal-
MHA*). Plan times, expands and costs are averaged over instances on which all
algorithms succeeded.

Success (%) Plan Time (s) Expands Base Cost (m) Arm Cost (rad)

A1 80 8.81 971.12 4.33 5.42
A2 77 12.79 1173.19 3.84 4.70
A3 65 10.22 1021.72 3.92 4.76

taken to execute the motion along that edge, based on nominal velocities for base and
joint angle movements. The start state is fully specified in 11 DoF, while the goal state
is underspecified as a 6 DoF gripper configuration to allow the robot to pick up the
object from different (x, y, θ) base locations around the object. We use 16 fixed motion
primitives, and 3 adaptive ones that allow the robot to tuck its arm, untuck its arm,
and snap the end-effector to the goal end-effector pose when close to the goal region.

We compute the priors on edge existence as follows. Let Rc denote the circumscribed
radius of the robot at its fully outstretched configuration and d(x, y) denote the 2D
distance from the (x, y) location to the closest obstacle. Let base(s) and ee(s) represent
the 2D locations of the base and end-effector corresponding to the full robot state s.
Define p(x, y) = min(d(x, y)/Rc, 1.0) and p(s) = min(p(base(s)), p(ee(s))). Finally, the
probability of existence for edge (s, s′) is given by: p(s, s′) = min(p(s), p(s′)).

For the search module, we use Focal-MHA* on the augmented graph with three heuris-
tics described in the same: a weighted version of the admissible heuristic , a base-
heuristic to guide the robot to a location “behind” the goal with the correct gripper
orientation, and another one to guide the base to the same location but with a tucked-
arm configuration. We also add an additional probability heuristic to guide the robot
along the most likely path to goal, which is computed by running a 2D Dijkstra search
outward from the goal on the probability map p(x, y). Additionally, we prioritize ex-
panding from the probability heuristic queue3 when it is making progress (measurable
by monitoring h-values) rather than uniformly alternating between the heuristics.

For evaluation, we generated 100 random trials in which the tables are positioned
differently every 10 trials, in addition to randomizing the clutter on the tables. For each
trial, we choose a random staring configuration (11 DoF) for the robot, and a random
pose (6 DoF) on one of the two tables for the gripper to reach. A trial is counted as
successful if the planner returns a solution within a time limit of 2 minutes.

Table 7.1 compares AEE* and Lazy WA* (Cohen, Phillips, and Likhachev, 2014) (which
is also edge-equivalent to LazySP with the forward edge selector (Dellin and Srinivasa,
2016)) edge evaluation schemes under different configurations. We use a suboptimal-
ity bound of w = 100 for all algorithms and report statistics only for the first solution
found. The main takeaways are the significantly better success rates (solution found

3The probability queue also has restricted sharing—all other queues can expand states generated by
every other queue, but the probability queue is only allowed to expand states it generated.



92 Chapter 7. Anytime Search on Graphs with Time-consuming Edge Evaluations

FIGURE 7.6: The 2D grid map used for synthetic benchmarking experiments. The
15 colored circles represent regions (and consequently edges) in the grid that exist
with some probability, and are also expensive to evaluate.

within time limit) for the methods which produce a diverse path-set (using the prob-
ability heuristic) for edge evaluation, and an improved performance for AEE* due of
its probabilistic edge-existence reasoning.

7.6.2 Synthetic Benchmarking

We also benchmarked our algorithm on a synthetic 2D grid navigation domain with
artificially inflated evaluation times for certain edges. Figure 7.6 shows the 2D map
used for the tests. The colored circles represent distinct probabilistic edge groups that
may or may not exist in the graph. Further, these edges also have an artificial high eval-
uation time to verify their existence. To give an example of its relevance, imagine plan-
ning in (x, y) state space while doing edge evaluations through full 11-DoF planning
that is more expensive. This abstraction is similar to the one used in BEAST (Kiesel
and Ruml, 2016), which focuses on online estimation of edge-existence probabilities,
where edge evaluations are done using a sampling-based motion planner.

We compare ESP*+AEE* with Lazy WA* Cohen, Phillips, and Likhachev, 2014 with
W = 1 (i.e., the optimal variant) under two control parameters: the time to evaluate
existence of an edge group (Te), and the probability of existence of an edge group (Pe).
Both these parameters are held constant across all edge groups. We setup the problem
such that the time to evaluate an edge in a specific group is large only for the first
time, with successive evaluations of other edges in the group taking the same time as
any deterministic edge. The motivation for this is twofold: first, this could represent
spatial correlation between edges in the configuration space, and second, it simulates
the abstraction described earlier in which an expensive edge-group evaluation repre-
sents solving a single subproblem. We chose Lazy WA* (with W = 1) for comparison
since it was shown to perform consistently fast (with regard to total planning time)



7.7. Discussion 93

TABLE 7.2: Comparison between Lazy WA* and our algorithm, ESP*+AEE* on
the synthetic 2D grid navigation domain. Each data point is averaged over 100
trials (10 graph samplings × 10 random start-goal pairs) for the corresponding
settings of edge-evaluation time (TE) and edge existence probability (PE). Leg-
end: A1: ESP*+AEE*, A2: Lazy WA* (W = 1). Speedup values are geometric
means (arithmetic means in parentheses).

PE TE = 500 ms TE = 100 ms TE = 10 ms

A1 A2 A1 A2 A1 A2

0.75 Time (s) 1.95 2.27 0.97 0.49 0.72 0.08
Speedup 1.78 (12.07) 0.83 (3.03) 0.18 (0.40)

0.5 Time (s) 2.53 2.7 1.25 0.58 0.89 0.11
Speedup 1.74 (13.5) 0.77 (2.45) 0.18 (0.38)

0.25 Time (s) 1.83 2.44 0.96 0.53 0.71 0.10
Speedup 2.22 (15.05) 0.91 (2.80) 0.20 (0.44)

on different problems Dellin and Srinivasa, 2016 and also requires no expensive pre-
computation. For both algorithms, we use a 4-connected grid and compute an admis-
sible heuristic by running Dijkstra’s search outward from the goal on the optimistic
map (where all edge groups are assumed to exist). Both algorithms are guaranteed to
eventually return the optimal solution if one exists, or report failure otherwise.

We run each algorithm on 100 trials (10 random samplings of the graph and 10 random
start-goal pairs), for each parameter combination. Table 7.2 presents the average plan-
ning times and speedups obtained by Lazy ESP* over Lazy WA*. We use geometric
means (GM) to present speedups, as they are better suited than the arithmetic mean
(AM) when “averaging” ratios. For instance, two speedup ratios of 2.0 and 0.5 have a
GM of 1 and an AM of 1.25. Since the algorithm was twice faster in one instance and
twice slower in the other, a mean of 1 is more desirable than 1.25.

Readily noticeable is how ESP* dominates Lazy WA* for an edge-evaluation time of
500 ms and vice versa for 10 ms. This is expected: when the evaluation times are small
compared to the overhead of just searching (specifically on the augmented graph as
done by ESP*), using a complicated path generator or edge-evaluation strategy only
hurts. However, the moment edge evaluation becomes a critical bottleneck, using a
sophisticated edge evaluation scheme does provide benefits. The results are more bal-
anced for an evaluation time of 100 ms, implying that the fewer edge evaluations just
about pay for the search overhead. Another interesting observation is how both meth-
ods take longer planning times with PE = 0.5 compared to 0.25 or 0.75, in some sense
confirming the intuition that it is easier to plan under low-entropy distributions.

7.7 Discussion

In this chapter, we presented a) a general strategy for interleaving planning and edge
evaluation, b) a search algorithm (ESP*) for finding expected shortest paths on a graph
with probabilistic edges, and c) a policy for edge evaluation (AEE*) given a set of



94 Chapter 7. Anytime Search on Graphs with Time-consuming Edge Evaluations

candidate paths (possibly partial paths) with unevaluated edges and existence priors.
We proved that ESP* can efficiently compute the expected shortest path cost, and that
AEE* is optimal for edge evaluation in the anytime interruption sense. The experi-
ments showed how the choice of edge-evaluation scheme is dependent on the prob-
lem setting at hand. Practically, we recommend using the ESP* + AEE* combination
in domains where edge evaluations are expensive enough to justify the overhead of
searching in the augmented graph. Typically, these tend to be domains where stochas-
ticity is sparsely distributed, and where edge evaluation dominates the total planning
time. In domains with many stochastic edges, alternative schemes for multiple path
generation work well in conjunction with AEE*. Note that either of ESP* or AEE*
could be used independently of the other, with a suitable complementary algorithm.
For example, one could generate a set of candidate paths (without collision checking)
from a sampling-based planner and use AEE* in an interleaved fashion. An important
future extension would be to develop a bounded suboptimal version of ESP* to im-
prove its tractability in domains with several stochastic edges. Finally, the integration
of ESP* and AEE* into the perception domain and its performance, specifically in the
context of RANSAC-Trees remains to be tested.



95

Chapter 8

Improved Multi-Heuristic A*

In the previous chapters, we treated multi-object localization as a tree search problem.
While this makes the optimization somewhat tractable by obviating the need for ex-
haustive search over the joint object poses, a very large branching factor for the tree
and the lack of an easily-constructible admissible heuristic makes tree search challeng-
ing. In this chapter, we introduce a novel graph search algorithm, Multi-Heuristic A*
(MHA*), and an extension to it, Improved MHA*, which address the challenges of
searching the Monotone Scene Generation Tree. Further, as shown in Ch. 5, these al-
gorithms can be used to incorporate heuristics that arise from learning-based methods
into global search, without compromising solution quality guarantees. Finally, these
algorithms are applicable to arbitrary graphs, and we demonstrate the generality on
various domains.

8.1 Motivation

The quality of the heuristic makes or breaks informed search algorithms such as A* (Hart,
Nilsson, and Raphael, 1968). An admissible heuristic guarantees optimality whereas
an informative (goal-directed) heuristic leads to faster solutions. A common approach
used in several high-dimensional state spaces is to use Weighted A* (WA*) (Pohl, 1970),
which inflates an admissible heuristic by a factor w ≥ 1 to give the search a depth-first
or greedy flavor. Despite making the heuristic possibly inadmissible, WA* can guar-
antee bounded suboptimality—the cost of the returned solution is within w of the
optimal solution cost.

However, the performance of heuristic search algorithms deteriorates if the heuristic
is misguiding or if it causes a depressison region (Hernández and Baier, 2012): a region
of the state-space where the heuristic values are not correlated with the actual cost-
to-go (ideal heuristic) values. This depression region (or “local minimum”) causes

This chapter is based on material from Sandip Aine et al. (2016). “Multi-Heuristic A*”. In: IJRR 35.1-3,
pp. 224–243 and Venkatraman Narayanan, Sandip Aine, and Maxim Likhachev (2015). “Improved Multi-
Heuristic A* for Searching with Uncalibrated Heuristics”. In: Eighth Annual Symposium on Combinatorial
Search (SoCS). This work was completed in collaboration with Sandip Aine, Siddharth Swaminathan, and
Victor Hwang.

http://www.cs.cmu.edu/~maxim/files/mha_ijrr15.pdf
http://www.aaai.org/ocs/index.php/SOCS/SOCS15/paper/viewFile/10820/10638
http://www.aaai.org/ocs/index.php/SOCS/SOCS15/paper/viewFile/10820/10638


96 Chapter 8. Improved Multi-Heuristic A*

(a) Heuristics.

The admissible heuristic 
guides the robot base to 
this position. The robot 
cannot reach the goal from 
here due to the distance 
and presence of obstacles 
on the table.

(b) Greedy search with the admissible heuristic.

The inadmissible heuristic 
takes the robot base closer to 
the goal and away from the 
objects on the table, and thus 
the robot can reach the goal 
following this heuristic. 

(c) Greedy search with the inadmissible
heuristic.

FIGURE 8.1: An example full-body (12D: (x, y, yaw) for the base + spine height
+ 6 DoF object pose + 2 free angles for the arms) planning problem for the PR2
robot depicting the utility of multiple heuristics. Figure 8.1a shows two heuristic
paths that correspond to greedily following the admissible (solid) and inadmissi-
ble (dotted) heuristics greedily. Greedily following the admissible heuristic guides
the search to a depression region where the search gets stuck (Figure 8.1b), having
to expand several states before finding a solution. In contrast, greedily following
the inadmissible heuristic guides the search directly to a location from where the
target object is graspable, and therefore expands much fewer states during the
process (Figure 8.1c).

several unproductive states to be expanded before the search finds a way around. This
problem is further aggravated when using inflated heuristics, since the depression
region only grows in size.

A key observation we make is that designing a single heuristic that is admissible, in-
formative and devoid of local minima is often challenging for high-dimensional state
spaces. On the other hand, it might be easier to come up with several inadmissible
heuristics, that provide complementary guiding powers in different parts of the state
space.

Let us take the example of robot motion planning, where the task is to find a collision-
free path from a given starting configuration to a goal configuration. Figure 8.1 shows
a 12 degree of freedom (DoF) mobile manipulation scenario where the PR2 robot needs
to drive and grasp an object on the table, marked by “end-effector goal". Note that the
goal location for the robot base is not specified—the planner has to figure out where to
move the base so that the object can be grasped by the end-effector.



8.2. Background 97

The admissible heuristic function (path shown by the solid curve, Fig. 8.1a) guides the
search to a local minimum region as the robot cannot reach the object from the left side
of the table (Fig. 8.1b), which in turn causes the search to expand all states in that region
before going around it and eventually finding a solution. However, we could perhaps
do better by computing multiple inadmissible heuristics that guide the robot’s base to
different (x, y) locations around the object to be grasped. In the example (Fig. 8.1a),
we show one such additional inadmissible heuristic function that guides the search
through a different route (shown by the dotted curve to the right side of the table).
Using this heuristic, the search directly goes towards a base location that allows the
robot to grasp the object, i.e., this heuristic does not have a local minimum (Fig. 8.1c).

When used in isolation, these additional heuristics provide little value, as they can
neither guarantee completeness (because they can be arbitrarily inadmissible), nor can
they guarantee efficiency (because each may have its own local minimum). We present
an algorithmic framework called Multi-Heuristic A* (MHA*) that builds on the obser-
vation that different heuristics might be useful in different parts of the state-space, and
together they might yield solutions faster if they can overcome local minima through a
concerted effort. By using these multiple inadmissible heuristics in conjunction with a
single consistent heuristic, MHA* provides guarantees on completeness and bounded
suboptimality of the solution.

8.2 Background

8.2.1 Related Work

The utility of having multiple heuristics has been noted in many search applications
including motion planning (Likhachev and Ferguson, 2008), searching with pattern
database heuristics (Felner, Korf, and Hanan, 2004; Korf and Felner, 2002), AND/OR
graphs (Chakrabarti, Ghose, and Sarkar, 1992) etc. For example, Likhachev and Fergu-
son (2008) use the maximum of two admissible heuristics (one mechanism-relative and
another environment-relative), as it could guide the planner better when compared to
either of the individual heuristics. In (Felner, Korf, and Hanan, 2004), it was shown
that a more informative heuristic function can be created by adding multiple disjoint
pattern database heuristics, and such a heuristic can substantially enhance search per-
formance.

The procedure of deriving suboptimality bounds based on a consistent heuristic and
using inadmissible estimates/constraints to guide the search has also been used in sev-
eral other search algorithms (Aine, Chakrabarti, and Kumar, 2007; Chakrabarti et al.,
1989; Pearl and Kim, 1982; Thayer and Ruml, 2011; Thayer et al., 2012). For example,
the A∗ε algorithm (Pearl and Kim, 1982) uses a distance-to-go estimate to determine
the order of expansion among the states whose f values (computed using a consistent
heuristic) lie within the chosen bound of the minimum f value in the open list. In



98 Chapter 8. Improved Multi-Heuristic A*

the bounded quality version of Anytime Window A* (Aine, Chakrabarti, and Kumar,
2007), the search is confined within a window of fixed size, as long as the f values do
not exceed the bound on the minimum f value among the suspended states (states
that are outside the current window). A more recent algorithm, Explicit Estimation
Search (EES (Thayer and Ruml, 2011)), uses the same technique as in A∗ε to provide
suboptimality bounds, but improves search efficiency using an additional inadmissi-
ble distance function to guide the search.

Algorithms that are closest to Multi-Heuristic A* operationally are Multiple Heuristic
Greedy Best-first Search (MH-GBFS) (Helmert, Röger, and Karpas, 2011), and Mul-
tiheuristic search via Subgoals (Isto, 1996). The former uses multiple search queues,
each of which ranks states greedily with a distinct heuristic. Once a state is expanded,
each of its successors is evaluated by every available heuristic, and put into the corre-
sponding search queue.

In relation to the prior work, Multi-Heuristic A* (MHA*) is the first algorithm to our
knowledge which can use multiple inadmissible heuristics (in conjunction with a sin-
gle consistent one) to explore the state-space in a synergetic fashion while providing
guarantees on a) completeness, b) solution quality, and c) bounded number of expan-
sions.

8.2.2 Notation and Terminology

Consider a state-space planning problem represented as a graph-search problem. Let
S denote the finite set of states of the planning domain. For an edge between s and s′,
c(s, s′) denotes the cost of the edge, and if there is no such edge, then c(s, s′) =∞. The
successor function SUCC(s) := {s′ ∈ S|c(s, s′) 6= ∞}, denotes the set of all reachable
successors of s. An optimal path from state s to s′ has cost c∗(s, s′) and the optimal
path from sstart to s has cost g∗(s). The best predecessor or backpointer for a state s, if
computed, is denoted by bp(s).

Let g(s) denote the current best path cost from sstart to s and h(s) denote the heuristic
for s, typically an estimate of the best path cost from s to sgoal. A heuristic is admissible
if it never overestimates the best path cost to sgoal and consistent if it satisfies h(sgoal) =

0 and h(s) ≤ h(s′) + c(s, s′), ∀s, s′ such that s′ ∈ SUCC(s) and s 6= sgoal. OPEN denotes
a priority queue ordered by some priority function such as g(s)+h(s) or g(s)+w ·h(s)

with w ≥ 1.

8.3 Multi-Heuristic A*

While two variants of Multi-Heuristic A* (Independent and Shared) are presented
in (Aine et al., 2016), we will discuss only the Shared variant here since it is the more



8.3. Multi-Heuristic A* 99

Algorithm 7 Multi-Heuristic A* (MHA*)

1: procedure KEY(s, i)
2: return g(s) + w1 · hi(s)
3: procedure EXPANDSTATE(s)
4: Remove s from OPENi ∀ i = 0, 1, . . . , n
5: for all s′ ∈ SUCC(s) do
6: if s′ was never generated then
7: g(s′) =∞; bp(s′) = null

8: if g(s′) > g(s) + c(s, s′) then
9: g(s′) = g(s) + c(s, s′); bp(s′) = s

10: if s′ /∈ CLOSEDanchor then
11: Insert/Update s′ in OPEN0 with KEY(s′, 0)
12: if s′ /∈ CLOSEDinad then
13: for i = 1, 2, . . . , n do
14: if KEY(s′, i) ≤ w2 · KEY(s′, 0) then
15: Insert/Update s′ in OPENi with KEY(s′, i)

16: procedure MAIN()
17: g(sstart) = 0; g(sgoal) =∞
18: bp(sstart) = bp(sgoal) = null
19: for i = 0, 1, . . . , n do
20: OPENi ← ∅
21: Insert sstart in OPENi with KEY(sstart, i)

22: CLOSEDanchor ← ∅
23: CLOSEDinad ← ∅
24: while OPEN0.MINKEY() <∞ do
25: for i = 1, 2, . . . , n do
26: if OPENi.MINKEY() ≤ w2 ·OPEN0.MINKEY() then
27: if g(sgoal) ≤ OPENi.MINKEY() then
28: if g(sgoal) <∞ then
29: Terminate and return path pointed by bp(sgoal)
30: else
31: s← OPENi.TOP()
32: EXPANDSTATE(s)
33: Insert s in CLOSEDinad

34: else
35: if g(sgoal) ≤ OPEN0.MINKEY() then
36: if g(sgoal) <∞ then
37: terminate and return path pointed by bp(sgoal)
38: else
39: s← OPEN0.TOP()
40: EXPANDSTATE(s)
41: Insert s in CLOSEDanchor



100 Chapter 8. Improved Multi-Heuristic A*

relevant one to Deliberative Perception. Henceforth, we will use MHA* to refer to the
Shared MHA* variant.

8.3.1 Algorithm

MHA* assumes that there is one consistent heuristic h0 and n possibly inadmissible
heuristics hi, i = 1, 2, . . . , n. It maintains an anchor search (OPEN0), where states are
sorted by f0(s) = g(s)+w1 ·h0(s) and n inadmissible searches (OPENi, i = 1, 2, . . . , n),
where states are sorted by KEY(s, i) = fi(s) = g(s) + w1 · hi(s). A key point to note is
that the g-values for all states are shared across the searches, allowing the algorithm to
share paths found by different searches—i.e, we could find a path from sstart to state s
using heuristic h1, and a path from s to sgoal using h2, without explicitly encoding any
switching behaviors. Furthermore, path sharing ensures MHA* expands each state at
most twice—once from an inadmissible search, and once from the anchor search.

MHA* (Algorithm 7) cycles through each of the inadmissible searches in a round-robin
fashion and expands the state at the top of OPENi if the condition mins∈OPENi fi(s) ≤
w2 ·mins∈OPEN0

f0(s) is met, otherwise making an expansion from the anchor search.

When a state s is expanded, its children (s′ ∈ SUCC(s)) are simultaneously updated
in all the priority queues if s′ has not yet been expanded (lines 13-15). If s′ has been
expanded in any of the inadmissible searches (s′ ∈ CLOSEDinad) but not in the anchor
search (i.e., s′ /∈ CLOSEDanchor, check at line 10), it is inserted only in OPEN0. A
state s′ that has been expanded in the anchor search (s′ ∈ CLOSEDanchor) is never
re-expanded and thus, never put back into any of the priority queues.

The only exception to the simultaneous update (for a state s′ not yet expanded) is the
optimization at line 14 which ensures that s′ is not put into OPENi if KEY(s′, i) >

w2 · KEY(s′, 0), because such a state would never be expanded from OPENi anyway
(check at line 26). The ExpandState routine also removes s from all OPENi (line 4)
making sure that it is never re-expanded again in any of the inadmissible searches,
and not re-expanded in the anchor search unless its g-value is lowered.

MHA* terminates when g(sgoal) becomes the minimum key value in any of the searches
(anchor or inadmissible), and returns a solution whose cost is within thew1 ·w2 bound.
The solution path can be reconstructed by greedily following the bp pointers from sgoal

to sstart. In the event of no solution existing, MHA* terminates when OPEN0 becomes
empty.

Figure 8.1 provides an illustration of MHA*’s ability to use different heuristics in a syn-
ergetic fashion. By sharing partial paths found by different heuristics, it can overcome
nested local minima that would be problematic for any single heuristic.



8.3. Multi-Heuristic A* 101

(a) Problem Instance: Start
and Goal

(b) Consistent Heuristic (Base
Distance)

(c) Local Minimum: Base
Distance Heuristic

(d) Local Minimum: Goal
Orientation Heuristic

(e) Local Minimum: Vertical
Orientation Heuristic

(f) Solution Path Produced by
MHA*

FIGURE 8.2: Illustration of using MHA* for a 12 DoF mobile manipulation plan-
ning problem where no individual heuristic can escape all the depression regions
by itself (nested depression regions). Here the task for the robot (PR2) is to carry
a large object (picture frame) through a narrow corridor and a doorway, and then
to put it down on a table. The problem instance is shown in (a), with left and
right poses depicting the start and end configurations, respectively. Figure (b)
shows the vector field for a consistent heuristic (h0), computed by performing a
backward (from goal to start) 2D search for the PR2 base. Figure (c) shows how
a search using h0 gets stuck (at the door) as it cannot orient the end-effector cor-
rectly, and thus ends up expanding a large number of states at the shown posi-
tion without moving toward the goal (deep local minimum) before running out
of time (1 minute). To address this, we compute two additional (inadmissible)
heuristics by including the orientation information for the end-effector, one tar-
geting the goal orientation (h1) and another targeting a vertical orientation (h2).
Unfortunately, none of these heuristics are powerful enough to take the search to
the goal state as they both suffer from their own depression regions (the searches
using h1 and h2 gets stuck at different positions as shown in Figures (d) and (e)).
However, as shown in Figure (f), MHA* can efficiently find a plan by using partial
paths from different heuristics. It uses the base and vertical orientation heuristics
(in parts) to go through the corridor and the door, and then switches to the goal
orientation heuristic to align the end-effector to the goal, while not requiring any
explicit encoding of the switching behavior.



102 Chapter 8. Improved Multi-Heuristic A*

8.3.2 Theoretical Analysis

We present the main theoretical properties of MHA* here, with proof sketches. Com-
plete proofs are available in (Aine et al., 2016).
Theorem 6. At line 25, for any state s with KEY(s, 0) ≤ KEY(u, 0) ∀u ∈ OPEN0, it holds
that g(s) ≤ w1 · g∗(s), and consequently OPEN0.MINKEY() ≤ w1 ∗ g∗(sgoal).

Proof. (Sketch) At an intuitive level, we can observe that the anchor search, OPEN0 in
MHA* is a superset of the OPEN list that would result from running WA* without
re-expansions. This is due to the fact that whenever a state s is expanded in any of the
searches of MHA*, its children are put into OPEN0, and it thus includes states from
different searches. On the other hand, although s is deleted from OPEN0 at this point
(line 4), it can be re-inserted later if a better path to it is discovered (lowered g value),
as long as it is not expanded in the anchor search. The statement of the theorem then
results from the fact that the minimum of any set is always less than or equal to the
minimum of a subset.

Theorem 7. When MHA* terminates, g(sgoal) ≤ w1 ·w2 · g∗(sgoal), i.e., the solution cost is
bounded by a w1 · w2 suboptimality factor.

Proof. MHA* can terminate successfully in lines 37 (anchor search) or 29 (inadmissible
search), or it can terminate without a solution in line 24.

If the anchor search terminates at line 37, i.e., KEY(sgoal, 0) ≤ KEY(u, 0), ∀u ∈ OPEN0,
from Theorem 6 we have,

g(sgoal) ≤ w1 · g∗(sgoal)
≤ w1 · w2 · g∗(sgoal)
(since w2 ≥ 1.0 by assumption)

(8.1)

If an inadmissible search (say ith search) terminates in line 29, then from lines 26 and
29, we have,

gi(sgoal) ≤ w2 ·OPEN0.MINKEY()

≤ w2 · w1 · g∗(sgoal) (From Theorem 6)
(8.2)

Therefore, in both the above mentioned cases, i.e., if either the anchor terminates or an
inadmissible search terminates, we have the solution cost to be within w1 ·w2 factor of
the optimal solution cost.

On the other hand, if the search terminates unsuccessfully at line 24 (while condition
is not satisfied), from Theorem 6 we know OPEN0.MINKEY() ≤ w1 ∗ g∗(sgoal). Now,
OPEN0.MINKEY() ≥ ∞ =⇒ g∗(sgoal) ≥ ∞, i.e., there is no finite cost solution.



8.3. Multi-Heuristic A* 103

Theorem 8. During the execution of MHA*, a) no state is expanded more than twice, b) a state
expanded in the anchor search is never re-expanded, and c) a state expanded in an inadmissible
search can only be re-expanded in the anchor search if its g-value is lowered.

Proof. In MHA*, a state s can only be expanded when it is selected as the top state of
OPENi in either line 31 or 39.

If s is selected for expansion in line 31, the very next call is to the function ExpandState
(line 32), which removes this selected state from OPENi,∀i = 0..n (line 4). Also, after
the ExpandState call, s is inserted in CLOSEDinad (line 33). Now, a state (other than
sstart) can only be inserted in OPENi (i 6= 0) in line 15. If a state s has already been
expanded in any of the inadmissible searches (i.e., s ∈ CLOSEDinad), the check at
line 12 will ensure that s is not inserted again in OPENi (i 6= 0).Therefore, a state can
only be expanded once in the inadmissible searches.

Now, when a state s is expanded in the anchor search, similar to the earlier case, here
also, s is removed from all OPENi (line 4) and inserted to CLOSEDanchor. Thus, s can
only be expanded again either in inadmissible searches or in anchor search, if it is re-
inserted in any of the OPENi, which can only be done in lines 11 or 15. However, as
s ∈ CLOSEDanchor, the check at line 10 will never be true, meaning control will never
reach lines 11 or 15, i.e., s will never be re-expanded. Therefore, statement b) is true.
Since s can be expanded at most once in the anchor search and at most once in the
inadmissible searches, i.e., s cannot be expanded more than twice, statement a) is true.

Finally, a state s that has been expanded in an inadmissible search, can only be ex-
panded in the anchor search later if it is re-inserted in OPEN0. A state can only be
inserted in OPEN0 (any OPENi, for that matter) if the check at line 8 is true, i.e., if its
g-value is less than its earlier g-value. Thus, a state s whose g has not been lowered
after its expansion in any inadmissible search will never satisfy the condition in line 8,
and will not be re-inserted in OPEN0—implying that it can never be expanded in the
anchor search. Therefore, statement c) is true.

8.3.3 Evaluation

We evaluated the performance of MHA* for the following domains: 12 DoF mobile
manipulation planning for the PR2 robot, 3 DoF (x, y, orientation) navigation for sin-
gle and multiple goal domains, and sliding tile puzzles. Here, we present results only
for the 12 DoF mobile manipulation domain, and refer the reader to (Aine et al., 2016)
for the other domains.

Mobile Manipulation Planning

We evaluate MHA* on a mobile manipulation planning domain for the PR2 robot. The
PR2 mobile manipulation robot is a dual-arm robot (7 degrees of freedom each) with



104 Chapter 8. Improved Multi-Heuristic A*

an omni-directional base and a prismatic spine. In our experiments, we used a state
space representation similar to that used in (Cohen, Chitta, and Likhachev, 2010). We
represent robot state with 12 degrees of freedom: a 6 DoF object pose, 2 redundant
arm joints, 2D Cartesian coordinates for the base, an orientation of the base, and the
prismatic spine height. The planner was provided the initial configuration of the robot
as the start state. The goal state was specified as a 6 DoF position of the object, which
made it inherently under-specified—i.e, there are no constraints on the position of the
robot base or the redundant joint angles. The actions used to generate successors for
states were a set of motion primitives, which are small, kinematically feasible motion
sequences that move the object in 3D Cartesian space, rotate the redundant joint, or
move the base in a typical lattice-type manner (Likhachev and Ferguson, 2008). The
prismatic spine was also allowed to adjust its height in small increments.

Heuristics. We compute the admissible heuristic for the anchor search by taking the
maximum value of the end-effector heuristic and the base heuristic, defined next. The
end-effector heuristic is obtained by a 3D Dijkstra search initialized with the (x,y,z)
coordinates of the goal and with all workspace obstacles inflated by their inner radius,
while the base heuristic is obtained using a 2D Dijkstra search for the robot base where
the goal region is defined by a circular region centered around the (x,y) location of the
6 DOF goal. The purpose of this circular region is to maintain an admissible heuristic
despite having an incomplete search goal. As the set of possible goal states must have
the robot base within arm’s reach of the goal, we ensure that the heuristic always
underestimates the actual cost to goal by setting the radius of the circular region to be
slightly larger1 distance than the maximum reach of the robot arm.

We generate our inadmissible heuristics as follows: First, we randomly select 2 points
from the base circle around the goal with valid inverse kinematic (IK) solutions for the
arm to reach the goal (end-effector location) and run 2D Dijkstra backward searches (to
the start state) starting from these 2 points. This gives us two different base distances.
Next, we compute an orientation distance heuristic as the angular difference between
the current base orientation (at a given state) and the desired orientation, where the
robot faces the end-effector goal. These distances (base and orientation) were then
added to the end-effector heuristic to compute the final heuristic values. Note that this
informative heuristic is clearly inadmissible, as the desired orientation and locations
for the base might not be the optimal ones.

Finally, we augment this set of heuristics with the base (2D Dijkstra + orientation) and
the end-effector heuristics (3D Dijkstra) as two additional ones. Since MHA* can share
paths found by different heuristics, we might potentially benefit from not combin-
ing two heuristics into a single one, and hence the augmentation with the individual
heuristics.

1We use a slightly larger distance to be conservative and thereby avoid any discretization errors which
may make the heuristic inadmissible. However, if perfect measurements are available, the exact value of the
maximum reach of the robot arm can be used as the radius.



8.3. Multi-Heuristic A* 105

WA* MH-GBFS MPWA* EES MHA*
SR 31% 76% 36% 27% 81%
SE 1.08 0.78 3.84 1.54 1.0
RT 0.99 0.91 2.82 1.54 1.0
SC 0.95 1.57 0.97 0.93 1.0

TABLE 8.1: Comparison between WA*, MH-GBFS, MPWA*, EES and MHA* for
PR2 manipulation planning in kitchen environments. The first row (SR) shows
the percentage of total problem instances solved by each planner. The other rows
include the results as a ratio between the algorithm marked in the column heading
and the corresponding MHA* numbers, when both of them solved an instance.
Legend: SR - success rate, SE - state expansion ratio, RT - runtime ratio, SC -
solution cost ratio.

For each trial of the experiment, we randomly generated a full robot configuration
anywhere in the kitchen for the start state, while generating a valid goal state that
lies above the tabletops containing clutter. We generated 15 such environments by
randomly changing the object positions and for each such environment we used 10

different start and goal configurations. All the experiments were performed on an
Intel i7− 3770 (3.40GHz) PC with 16GB RAM.

Comparison with Graph-Search Methods. We primarily benchmarked MHA* against
WA* without re-expansions (as in ARA* (Likhachev, Gordon, and Thrun, 2004)/RWA*
(Richter, Thayer, and Ruml, 2010)), multiple heuristic greedy best first search (MH-
GBFS) (Röger and Helmert, 2010), multiple parameter WA* (MPWA*) (Valenzano et
al., 2010) and Explicit Estimation Search (EES) (Thayer and Ruml, 2011) when applica-
ble.

Since MHA* uses two suboptimality bounds (w1 and w2) in comparison to one w used
by WA*/MPWA*/EES, we set w2 = min(2.0,

√
w) and w1 = w/w2, for all our ex-

periments (and the examples), so that the solutions are guaranteed to be within the
w-suboptimality bound.

For MH-GBFS, we used the same heuristics as used for MHA*. For MPWA*, we used
the admissible heuristic with 5 different weights (0.2 × w to 1.0 × w, with 0.2 gap;
where w ≥ 10.0). For EES, we used an inadmissible distance measure, one inadmissi-
ble heuristic function (from the set used for MHA*) and the admissible heuristic. We
ran WA*, MPWA* and MH-GBFS without state re-expansions as re-expansions can sig-
nificantly increase planning time. Both WA* and MPWA* can provide solution quality
bounds without re-expansions, while MH-GBFS does not guarantee any such bounds.

In Table 8.1, we include the results comparing WA*, EES, MPWA*, MH-GBFS with the
MHA*. We used w = 50 for all the algorithms. Each planner was given a maximum
of 60 seconds to compute a plan. The results clearly show that MHA* and MH-GBFS
perform much better than WA*/MPWA*/EES, highlighting the efficacy of using mul-
tiple heuristics over a single heuristic function, which often suffers from local minima
due to the robot’s orientation, presence of obstacles, etc.



106 Chapter 8. Improved Multi-Heuristic A*

PRM RRT-Connect RRT*(First) RRT*(Final) MHA*
SR 74% 98% 100% 100% 81%
RT 2.07 0.18 5.39 8.48 1.00
BD 1.93 1.88 1.36 1.34 1.00
ED 1.87 1.68 1.27 1.24 1.00

TABLE 8.2: Comparison between MHA* and sampling-based planners for PR2
manipulation in kitchen environments. All the results are presented as a ratio
between the algorithm marked in the column heading and the corresponding
MHA* numbers. For sampling-based planners, the distances are obtained after
post-processing. Since RRT* is an anytime algorithm, we include the results for
the first solution reported (RRT*-First) and the solution obtained at the end of 60
secs (RRT*-Final). Legend: SR - success rate, RT - runtime ratio, BD - base distance
ratio, ED - end-effector distance ratio.

MPWA* performs slightly better than WA* indicating that the size of a local minimum
can depend on the weights used. However, it still gets stuck in most of the cases,
since it uses the same heuristic (albeit with different weights) for each search. EES
performs poorly when the inadmissible distance function has a large depression. Also,
the inadmissible and admissible searches in EES do not use weighted heuristics and
thus, often get trapped in some cost plateau.

MHA* (and MH-GBFS) is less prone to suffer from heuristic depression regions as they
can converge in time if any of the heuristics can lead the search to the goal. MH-GBFS
performs comparably to MHA* in terms of number of instances solved and slightly
better in terms of convergence time. However, the solution costs obtained for MH-
GBFS are significantly worse than MHA*, as noted in Solution Cost ratio in Table 8.1.
This highlights the utility of the anchor search, which ensures better quality solution
by intelligently controlling the inadmissible expansions.

Comparison with Sampling-based Planners. In Table 8.2, we include the results com-
paring MHA* with 3 sampling-based motion planning algorithms: PRM (Kavraki
et al., 1996), RRT-Connect (Jr. and LaValle, 2000), and RRT* (Karaman and Frazzoli,
2010)). The first constructs a roadmap by randomly sampling the configuration space
and then searches it for a solution, while the other two build a tree from start to goal
through random sampling and extension. RRT* is also an anytime algorithm, and
converges asymptotically to the optimal solution.

For the sampling-based algorithms we used the standard OMPL (Şucan, Moll, and
Kavraki, 2012) implementation. Since the sampling-based planners do not directly
report solution costs, in this table we include the results in terms of base and end-
effector distances covered by the robots (after post-processing). All the results are
presented as a ratio over the corresponding MHA* numbers for episodes where that
planner and MHA* were both successful in finding a solution within 60 seconds).

The results show that MHA* performs comparably to sampling-based planners. Its
runtime is better than both PRM (5x) and RRT* (8x) but worse than RRT-Connect (5x).



8.4. Improved Multi-Heuristic A* 107

In terms of solution quality, MHA* results are noticeably better than all the sampling-
based planners. However, both RRT-Connect and RRT* can solve more instances,
mainly due to the facts that a) they are not bound by discretization choices and b) they
do not use any heuristic function that may lead to local minima. Overall, the results
show that MHA* is a reasonable alternative for planning in such high-dimensional
state spaces, especially when we are looking for predictable and bounded suboptimal
(with respect to the discretization choice) planning solutions.

8.4 Improved Multi-Heuristic A*

While MHA* can handle multiple inadmissible heuristics, it suffers from a calibration
problem when the heuristics are completely unrelated to cost-to-go estimates. Since
MHA* computes priorities for states in queue i as g(s) +w · hi(s), we could be mixing
two fundamentally different quantities—g, which is an estimate of the cost-to-come
and hi, the heuristic which might have nothing to do with the cost-to-go. We term
this the calibration problem since g and h could be operating on different units or
scales. The following example better illustrates the calibration problem. Consider
a robotics motion planning problem where a dual-arm personal robot needs to move
from one room to another, and we want to minimize the distance traveled by the robot.
Each state in the graph represents the configuration of the robot: its position in the
world and the configuration of its arms. Suppose that the robot starts out with its arm
spread out and that the search uses an admissible heuristic computed as the Euclidean
distance from the current (x, y) location to the goal (x, y) location of the robot base.
While the search could start out well by expanding states towards the goal it might
get stuck at a doorway because its arms are spread out, thereby unable to generate
successor states that pass through the doorway. A typical heuristic one might try to
get around this problem is to say, for states near the door, prefer expanding those
states where the arms are closer to being ‘tucked-in’ as they are more likely to get
the robot through the doorway. Such a heuristic has no connection to the actual cost
being minimized (the distance traveled) and therefore it means very little to compute
quantities such as g(s) + h(s).

The above example calls for a method to handle uncalibrated heuristics in a non-additive
fashion and yet provide good quality solutions. To this end, we present a second algo-
rithm, Improved MHA*, that is philosophically similar to MHA*, but algorithmically
different. It solves the calibration problem posed by inadmissible heuristics while pro-
viding theoretical guarantees on completeness, solution quality and bounds on num-
ber of expansions.



108 Chapter 8. Improved Multi-Heuristic A*

Algorithm 8 Improved MHA*: Requires instantiations of
TERM-CRITERION(s), PRIORITY(s), P-CRITERION(s)

Inputs:
The start state sstart and the goal state sgoal
Suboptimality bound factor w (≥ 1)
One consistent heuristic h and n arbitrary (possibly inadmissible, uncalibrated)
heuristics h1, h2, . . . , hn.

Output:
A path from sstart to sgoal whose cost is within w · g∗(sgoal).

1: procedure EXPANDSTATE(s)
2: Remove s from OPEN
3: for all s′ ∈ SUCC(s) do
4: if s′ was not seen before then
5: g(s′)←∞
6: if g(s′) > g(s) + c(s, s′) then
7: g(s′)← g(s) + c(s, s′)
8: if s /∈ CLOSEDa then
9: Insert/Update s′ in OPEN with PRIORITY(s′)

10: procedure MAIN()
11: OPEN← ∅
12: CLOSEDa ← ∅, CLOSEDu ← ∅
13: g(sstart)← 0, g(sgoal)←∞
14: Insert sstart in OPEN with PRIORITY(sstart)
15: while not TERM-CRITERION(sgoal) do
16: if OPEN.EMPTY() then return null

17: P-SET← {s : s ∈ OPEN
∧ s /∈ CLOSEDu

∧ P-CRITERION(s)}
18: for i = 1, . . . , n do
19: si ← argmins∈P-SET RANK(s, i)
20: EXPANDSTATE(si)
21: CLOSEDu ← CLOSEDu ∪ {si}
22: sa ← OPEN.TOP()
23: EXPANDSTATE(sa)
24: CLOSEDa ← CLOSEDa ∪ {sa}
25: return solution path

8.4.1 Algorithm

Like MHA*, Improved MHA*, has access to one consistent (and hence admissible)
heuristic, and several inadmissible heuristics. However, instead of using separate
queues for each inadmissible heuristic, Improved MHA* uses just a single queue, and
interleaves admissible and inadmissible expansions. Further, it uses the uncalibrated
inadmissible heuristics in a greedy fashion, never additively combining them with the
cost-to-come as in the original MHA*. To ensure that the greedy selection does not
violate bounds on solution quality, Improved MHA* restricts the inadmissible heuris-
tics to select only from “promising” states in OPEN, and permits every state to be



8.4. Improved Multi-Heuristic A* 109

expanded a second time by the admissible search to maintain completeness.

We first define an “uncalibrated heuristic” before delving into the operation of the
algorithm.
Definition 2 (Uncalibrated Heuristic). An uncalibrated heuristic hu : S → R is a heuristic
that induces a ranking for a set of states, i.e, state si is ranked higher than state sj by the
uncalibrated heuristic hu if hu(si) > hu(sj). Note that the uncalibrated heuristic has no
relation to the cost-to-go for a state and does not have non-negativity constraints.2

For most parts of the algorithm (Alg. 8), Improved MHA* resembles Weighted A* (Pohl,
1970) without re-expansions (Likhachev, Gordon, and Thrun, 2004). In fact, if we re-
move lines 18-21 in Alg. 8, then the algorithm is identical to weighted A* (WA*). The
difference arises in the fact that we interleave WA* expansions with ‘inadmissible’ ex-
pansions by each of the n inadmissible heuristics. As in WA*, we maintain an OPEN
list sorted by some priority (such as f(s) = g(s) +w ·h(s)). Then the algorithm repeat-
edly performs the following until a termination condition is satisfied: a subset of the
OPEN list called the potential set (abbreviated as P-SET) is constructed (line 17). As
explained earlier, states in the P-SET are likely to lead towards a bounded suboptimal
solution. Then, each available heuristic hi selects a state for expansion from the P-SET
according to a ranking function RANK(s, i) (line 19). For an uncalibrated heuristic, this
is simply hi(s), whereas for a calibrated heuristic, the ranking function is g(s)+w·hi(s).
These states are expanded and marked as expanded ‘inadmissibly’ (line 21). Finally,
the state at the top of OPEN (sa) is expanded ‘admissibly’ and marked as closed for the
anchor search (lines 22-24), following the same terminology as in (Aine et al., 2016). The
rationale behind making an admissible expansion during every execution of the while
loop (line 15) is that we might obtain a tighter (larger) lower bound on the w-optimal
solution cost, which in turn provides more freedom for the inadmissible heuristics to
‘explore’ the state space.

As noted in the algorithm pseudocode, we need to provide instantiations for the OPEN
list priority, the termination criterion, and the criterion for membership in the P-SET.
We present three variants of Improved MHA* based on different instantiations of the
said methods.

MHA*++

MHA*++ uses the following instantiations:

PRIORITY(s) : g(s) + w · h(s)

TERM-CRITERION(s) : g(s) ≤ max
s∈CLOSEDa

PRIORITY(s)

P-CRITERION(s) : g(s) + h(s) ≤ max
s∈CLOSEDa

PRIORITY(s)

2More generally, the uncalibrated heuristic could be a mapping from X ∈ 2S , the power set of states, to
some s ∈ X .



110 Chapter 8. Improved Multi-Heuristic A*

s3

FIGURE 8.3: Illustration showing the operation of Focal-MHA*. Each row depicts
the OPEN list and the states selected for expansion during an iteration over the
available heuristics.

MHA*++ uses a weighted A* search as its anchor and evaluates P-SET membership by
comparing the unweighted priority (g(s)+h(s)) of a state with the maximum weighted
priority (g(s)+w ·h(s)) of any state expanded admissibly. Although typically one uses
the minimum priority from OPEN to obtain bounds, we use the maximum priority
from CLOSED since the anchor is a WA* search and the priorities (f -values) need
not be monotonically non-decreasing as in regular A*. This way, we can maintain a
monotonically non-decreasing lower bound on the w-optimal solution cost and pro-
vide maximum latitude for inadmissible expansions.

Focal-MHA*

Focal-MHA* uses the following instantiations:

PRIORITY(s) : g(s) + h(s)

TERM-CRITERION(s) : g(s) ≤ w · min
s∈OPEN

PRIORITY(s)

P-CRITERION(s) : g(s) + h(s) ≤ w · min
s∈OPEN

PRIORITY(s)

Focal-MHA* is so named because of its direct connection with the A∗ε family of algo-
rithms and their use of the FOCAL list (Pearl and Kim, 1982). Here, the anchor search
is an optimal A* search and the P-SET is simply the FOCAL list, i.e, it is a prefix of
the OPEN list and contains states whose f -values are within w of the best f -value
in OPEN. Figure 8.3 shows the operation of Focal-MHA*. During every execution of
the while loop (line 15 in Alg. 8), every heuristic selects and expands a state from the
FOCAL list according to the RANK function, and finally the anchor state (sa) itself is
expanded.



8.4. Improved Multi-Heuristic A* 111

Unconstrained-MHA*

As suggested by the name, Unconstrained-MHA* imposes no restrictions for member-
ship in the P-SET:

PRIORITY(s) : g(s) + w · h(s)

TERM-CRITERION(s) : g(s) ≤ max
s∈CLOSEDa

PRIORITY(s)

P-CRITERION(s) : true

This algorithm is similar to the multi-heuristic greedy best-first search proposed in (Röger
and Helmert, 2010) in that it uses each inadmissible heuristic to run an unconstrained
greedy search. However, the use of the anchor search in our case enables us to guar-
antee bounds on solution quality.

8.4.2 Theoretical Analysis

All variants of Improved MHA* have guarantees similar to MHA*: the suboptimality
of the solution found is bounded by w times the cost of the optimal solution, and
no state is expanded more than twice (at most once by the anchor search and at most
once across all inadmissible searches). In addition, MHA*++ and Focal-MHA* provide
the guarantee that if the search currently does not have a w-optimal solution through a
particular state s in OPEN (i.e., the state is not ‘promising’), then swill not be expanded
inadmissibly. This property is novel to Improved MHA* and distinguishes it from
MHA*. These properties are formalized below:
Theorem 9. At any point during the execution of Improved MHA* (for all its variants),
PRIORITY(sa) ≤ w · g∗(sgoal), where sa = argmins∈OPEN PRIORITY(s).

Proof. (Sketch) For MHA*++ and Unconstrained-MHA*, the proof for this theorem
follows in a manner similar to the proof for WA* without re-expansions (Likhachev,
Gordon, and Thrun, 2004). What makes it different from WA* without re-expansions
is that states can be expanded ‘out-of-order’ by the inadmissible heuristics, possibly
violating the invariants maintained by WA*. However, by allowing any state to be
re-expanded a second time by the anchor search, we can show that the anchor search
can rectify the g-value of any state s if g(s) > w · g∗(s). This essentially proves that the
invariant maintained by WA* without re-expansions still holds for Improved IMHA*,
i.e, the priority of state sa at the top of OPEN is a lower bound on w · g∗(sa) and w ·
g∗(sgoal). A rigorous proof for this theorem would be identical to the proofs provided
for Shared MHA* (Aine et al., 2016).

For Focal-MHA*, the proof is identical to the above except that we have a stronger
bound: PRIORITY(sa) ≤ g∗(sgoal). This follows from the fact that the anchor search
is an optimal A* search. However, because w ≥ 1, the theorem is trivially true for
Focal-MHA* too.



112 Chapter 8. Improved Multi-Heuristic A*

Corollary 2. At any point during the execution of Improved MHA* (for all its variants),
PRIORITY(sa) ≤ w · g∗(sgoal), where sa = argmaxs∈CLOSEDa PRIORITY(s).

Proof. CLOSEDa contains states that have been expanded by the anchor search, i.e,
those states that were at the top of OPEN at some point during the search. From
Theorem 9, we know that every state in CLOSEDa has a priority that lower bounds
the w-optimal solution cost. Specifically, the maximum priority of any of those states
maxs∈CLOSEDa PRIORITY(S) is also a lower bound on w · g∗(sgoal).

Theorem 10 (Bounded re-expansions). No state is expanded (opened) more than twice by
any variant of Improved MHA*, i.e, a state can be re-expanded (re-opened) only once.

Proof. For any state s to be expanded from OPEN, it must first be inserted into OPEN
and this happens only when either s /∈ CLOSEDu or s /∈ CLOSEDa (lines 8 and 17).
Further, every expanded state s is added to either CLOSEDu or CLOSEDa (lines 21 and
24). Thus, it immediately follows that a state can be expanded at most twice before it
is added to both CLOSEDu and CLOSEDa. In fact, if a state is added first to CLOSEDa

before it is added to CLOSEDu, it will not be expanded a second time at all (line 8).

Theorem 11 (Bounded suboptimality). All variants of Improved MHA* terminate and
when they do, the solution returned (if one exists) has a cost which is at most w times the
cost of the optimal solution. In other words, when Improved MHA* terminates, g(sgoal) ≤
w · g∗(sgoal).

Proof. The search terminates either on line 16 or line 25. Termination on line 25 occurs
only when TERM-CRITERION is satisfied. Using Theorem 9 and Corollary 2 with the
termination criterion for each variant, we see that the search terminates only when
g(sgoal) ≤ w · g∗(sgoal), thus proving the theorem.

For the case when no solution exists, OPEN will be empty (line 16) once every state in
the graph has been expanded at most twice (Theorem 10) and the search terminates.

Theorem 12 (Efficiency). For MHA*++ and Focal-MHA*, any state s with g(s) + h(s) >

w · g∗(sgoal) will not be expanded inadmissibly.

Proof. For MHA*++, the membership criterion for a state s in the P-SET requires g(s)+

h(s) ≤ maxs∈CLOSEDa PRIORITY(s). From Corollary 2, we see that states in the P-SET
satisfy g(s) + h(s) ≤ w · g∗(sgoal). For Focal-MHA*, the anchor search is an optimal A*
search which satisfies the invariant mins∈OPEN PRIORITY(s) ≤ g∗(sgoal). Using this in
the P-SET membership criterion, we see that all states in the P-SET satisfy g(s)+h(s) ≤
w · g∗(sgoal). Thus, in MHA*++ as well as Focal-MHA*, a state with g(s) + h(s) >

w ·g∗(sgoal) cannot belong to the P-SET, and can thus never be expanded inadmissibly.



8.4. Improved Multi-Heuristic A* 113

FIGURE 8.4: The kitchen domain for our experiments. Note the randomly placed
tables on the right with randomized clutter on top. In the middle is a narrow door
that separates the two rooms. The different colored robots show node expansions
from each of the 20 different heuristics we used.

8.4.3 Evaluation

Mobile Manipulation Planning

We first evaluate the performance of the Improved MHA* on the mobile manipula-
tion planning domain discussed earlier. We use a kitchen environment similar to that
used in MHA*, with an additional room and a doorway that the robot needs to pass
through. Figure 8.4 shows the environment we ran our experiments in. The domain is
challenging due to the high dimensionality of the problem, cluttered tables, and nar-
row passages which must be crossed (the robot’s base barely fits through the doorway
and only if the arm is tucked in). Determining a single heuristic which can guide the
base and arm toward the goal and around obstacles is challenging. It becomes es-
pecially hard when there are conflicting ideas, like wanting to extend the arm when
reaching for the goal, but wanting to tuck it when going through a door. A multi-
heuristic search is perfect for dealing with these heuristics with multiple (and at times
conflicting) components.

Heuristics. We designed 20 heuristics (19+1 anchor) to help guide the search. 16 of
these guide the base’s (x, y) position while requiring different fixed base headings and
a tucked arm. These heuristics help navigation in tight spaces, but can’t reach for the
goal. There are then 3 other heuristics which guide the arm to the goal with or without
guiding the base to a specific pose within arm’s reach of the goal. One guides the base
to a pose “behind” the goal (so that the gripper faces forward when the robot gets
there), the second focuses on gripper orientation, while the third only tries to pull the
gripper to the proper position and orientation without influencing the base position.
Note that almost all of these heuristics are inadmissible and uncalibrated. They serve
as ranking functions rather than estimates of cost-to-go—e.g., the tuck-arm heuristic



114 Chapter 8. Improved Multi-Heuristic A*

T
A

B
L

E
8.3:

C
om

parison
of

different
Im

proved
M

H
A

*
variants

w
ith

the
originalM

H
A

*
algorithm

,M
H

-G
BFS

and
R

R
T-C

onnect
for

full-body
m

otion
planning.

w
=

1
0
0

w
=

1
0

w
=

5

++
Focal

U
ncons

O
rig.

++
Focal

U
ncons

O
rig.

++
Focal

U
ncons

O
rig.

M
H

-G
BFS

R
R

T-C

Success
(%

)
84

75
84

61
83

74
83

0
66

74
60

0
85

45
States

Expanded
2415

3058
2415

5179
3293

3086
3227

-
2378

3086
2472

-
2752

n/a
Plan

Tim
e

(s)
36.89

47.44
36.98

75.63
47.60

47.88
46.96

-
37.92

48.08
38.31

-
41.98

21.95
Base

C
ost(m

)
5.33

5.47
5.33

5.47
5.32

5.52
5.33

-
4.77

5.52
4.49

-
5.45

5.22
A

rm
C

ost(rad)
6.32

6.45
6.32

6.02
6.17

6.49
6.17

-
5.70

6.49
5.41

-
6.60

8.26



8.4. Improved Multi-Heuristic A* 115

merely prefers to expand states where the robot’s arm is tucked in as opposed to other
states.

Comparison with Baselines. We generated 100 random trials. The two tables in the
kitchen are randomly positioned differently every 10 trials as is the clutter on top of
them. Each of the 100 trials is created by choosing a random pose on one of the two
tables for the gripper to reach and the starting configuration for the robot is randomly
generated as well. A trial is deemed successful if the planner can find a w-optimal
solution within a time limit of 5 minutes, and unsuccessful otherwise.

Table 8.3 compares the three variants, MHA*++, Focal-MHA* and Unconstrained-
MHA* with the original MHA* algorithm for different suboptimality bounds w, as
well as the multi-heuristic greedy best-first search (MH-GBFS) (Röger and Helmert,
2010) and RRT-Connect (Jr. and LaValle, 2000). To uniformly compare across all meth-
ods, the solution quality of the generated paths is measured by the distance traveled
by the robot base and the arm (joint angles). The reported statistics for a method are
average values across its successful trials.

Unlike the Improved MHA* variants, the original MHA* algorithm requires two sub-
optimality factors w1 and w2, for the inflation and anchor respectively. As recom-
mended in (Aine et al., 2016), we set w2 = min(2.0,

√
w) and w1 = w/w2 for all

our comparisons to get the same desired suboptimality bounds for each case. The
Improved MHA* methods significantly outperform the original MHA* algorithm for
lower suboptimality bounds; in fact the original MHA* algorithm fails to succeed on
any trial at all. This is expected, since MHA* essentially reduces to weighted A* with
a single heuristic when the inadmissible heuristics are out-of-scale (several orders of
magnitude greater) with the consistent heuristic, or equivalently when the anchor sub-
optimality factor (w2) is too small. For a large suboptimality bound (w = 100) however,
MHA* provides a reasonable success rate as was shown in (Aine et al., 2016).

MH-GBFS performs comparably to Unconstrained-MHA* for larger values of the sub-
optimality bound as expected, since they both run unconstrained greedy searches. The
high success rate of these approaches can be attributed to the fact that the inadmissi-
ble heuristics designed for this problem are all useful at some point or another, thereby
not really requiring the ‘control’ provided by MHA*++ and Focal-MHA* when oper-
ating at higher suboptimality bounds. However, when we desire lower suboptimality
bounds, it becomes essential to control the inadmissible searches, as can be seen from
Table 8.3 for w = 5. Characteristic of greedy search, MH-GBFS has higher solution
costs especially when compared to MHA*++ and Unconstrained-MHA*.

RRT-Connect (Jr. and LaValle, 2000) is a popular sampling-based motion planning al-
gorithm in robotics. While it is known to quickly generate plans for high dimensional
problems, it suffers from a ‘narrow passage’ problem. In our experiments, the door-
way in the kitchen creates a narrow passage in the 11-DoF configuration space, thereby
affecting RRT-Connect’s success rate. Moreover, RRT-Connect does not explicitly min-
imize a cost and therefore the paths generated typically have high cost (Table 8.3).



116 Chapter 8. Improved Multi-Heuristic A*

Sliding Tile Puzzles

To demonstrate the generality of Improved MHA*, we evaluate the different variants
on a sliding tile puzzle domain—a traditional test domain for heuristic search algo-
rithms. Here, we present the experimental results for large sliding tile puzzles (8 × 8,
9× 9 and 10× 10). For each size, we create 100 random (solvable) puzzle instances to
build our test suite. We evaluate the performance of the Improved MHA* variants and
MH-GBFS over the entire test suite. In each case, we run the planner for a time limit
of 5 minutes.

Heuristics. For this domain, we used a set of 9 heuristics (8 inadmissible + 1 an-
chor). We used the Manhattan distance plus linear conflicts as the consistent heuristic
(anchor). The inadmissible heuristics were computed in the following manner: for a
given puzzle size, we generate a database of 1000 different solved configurations by
performing a random walk of k steps from the goal state, where k is a random number
between 2 and 10 times the puzzle size. For each configuration, we store the path to
goal and store k as the cost to goal.

We cluster this database in 8 parts using the heuristic difference between two configu-
rations as the distance metric. For a given instance to solve (say with configuration sc),
we pick one target configuration (tci) from each cluster, such that the heuristic distance
between sc and tci is minimum. Once a target configuration tci is chosen, inadmissi-
ble heuristic hi for any state s was computed by hi(s) = w · h0(s, tci) + cost(tci) (note
that this heuristic includes inflation), where w is the desired suboptimality bound.
For the original MHA* algorithm we set w2 = min(2.0,

√
w) and w1 = w/w2 (we use

hi(s) = w1 · h0(s, tci) + cost(tci)). It may be noted that unlike the full-body planning
domain, the inadmissible heuristics for this domain are not really uncalibrated as these
are computed using the same function as the consistent heuristic (albeit with different
target configurations). Therefore in this case, we use g + h ranking (we do not in-
flate the heuristics here, as they are already inflated) for the Improved MHA* variants
(line 19 in Alg. 8), as it takes into account the impact of g values.

Comparison with Baselines. We include the results for this domain in Table 8.4. The
first thing to note is that original MHA* does not perform as poorly as in the full-
body planning domain. This is expected, as the heuristics used in this domain are
not really out-of-scale. However, even in this case, MHA*++ consistently performs
better/equivalent to the original on most trials, and the improvement gets more pro-
nounced with larger puzzle size and lower desired suboptimality bounds. As exam-
ples, for the 9 × 9 puzzle with w = 5, original MHA* solves 61 instances whereas
MHA*++ solves 87, and for 10 × 10 with w = 5, original MHA* solves 21 instances
whereas MHA*++ solves 42. This highlights the fact that even if we have heuristics
that are not out-of-scale, MHA*++ can dominate original MHA* due to its improved
control, ranking, and expansion policies. Considering the other variants, we observe
that MHA*++ and original MHA* tend to do better than others in most cases indicat-
ing that when the heuristic is not out-of-scale, weighted best-first ranking is probably



8.4. Improved Multi-Heuristic A* 117

TA
B

L
E

8.
4:

C
om

pa
ri

so
n

of
di

ff
er

en
tI

m
pr

ov
ed

M
H

A
*v

ar
ia

nt
s

w
it

h
th

e
or

ig
in

al
M

H
A

*a
lg

or
it

hm
an

d
M

H
-G

BF
S

fo
rs

lid
in

g
ti

le
pu

zz
le

pr
ob

le
m

s.

Si
ze

w
=

50
w

=
1
0

w
=

5

++
Fo

ca
l

U
nc

on
s

O
ri

g.
++

Fo
ca

l
U

nc
on

s
O

ri
g.

++
Fo

ca
l

U
nc

on
s

O
ri

g.
M

H
-G

BF
S

8×8

Su
cc

es
s

(%
)

95
91

91
97

10
0

92
96

10
0

10
0

66
61

83
94

Pl
an

Ti
m

e
(s

)
18

.1
6

38
.5

6
27

.7
4

20
.7

0
18

.2
3

28
.0

3
22

.6
5

18
.1

4
19

.5
6

39
.4

3
42

.9
5

26
.3

1
28

.4
5

So
l.

C
os

t
16

17
.4

18
83

.6
17

04
.0

15
73

.1
15

52
.5

18
48

.9
16

56
.4

14
38

.4
14

15
.6

16
42

.5
13

45
.2

13
02

.7
18

89
.8

9×9

Su
cc

es
s

(%
)

94
69

85
93

97
61

86
77

87
46

28
61

71
Pl

an
Ti

m
e

(s
)

44
.2

5
53

.5
2

60
.4

9
43

.1
5

46
.9

9
60

.3
1

53
.1

6
62

.1
6

58
.7

8
49

.1
8

66
.2

6
89

.3
3

55
.5

9
So

l.
C

os
t

21
27

.6
23

74
.8

23
50

.6
20

30
.8

19
88

.6
24

28
.2

21
96

.8
19

14
.0

17
50

.2
20

84
.6

15
60

.2
16

30
.7

24
47

.0

10×10

Su
cc

es
s

(%
)

41
24

35
44

51
27

34
36

42
19

10
21

24
Pl

an
Ti

m
e

(s
)

89
.8

4
81

.6
2

88
.5

0
88

.3
3

93
.6

2
90

.0
0

92
.7

8
98

.4
2

10
0.

12
88

.2
8

91
.0

0
11

4.
40

99
.2

2
So

l.
C

os
t

25
23

.1
29

51
.8

28
00

.3
24

11
.4

24
49

.9
28

59
.7

25
71

.5
22

61
.0

22
51

.9
25

33
.3

20
75

.4
19

94
.2

26
63

.4



118 Chapter 8. Improved Multi-Heuristic A*

0

25

50

75

100

X1 X5 X10 X100

Heuristic Scaling Factor
In

st
a
n
ce

s
S
o
lv

ed

MHA*++Original MHA*

FIGURE 8.5: Comparison between the original MHA* and MHA*++ for 9 × 9
puzzles (w = 10) for different scalings of the heuristic. The x-axis shows the
factors with which the inadmissible heuristics are multiplied (e.g., ×5 denotes
multiplication by 5) and the y-axis shows the number of instances solved (out of
100), within a time limit of 5 minutes.

a better choice than greedy ranking. However, there are cases where the opposite is
true (as seen for 9× 9 with w = 10).

To understand the impact of out-of-scale heuristics in the puzzle domain, we con-
ducted the following experiment: we multiplied the inadmissible heuristics by a cho-
sen factor (5, 10 and 100) and ran original MHA* and MHA*++ for the 9 × 9 puzzle
with w = 10. The results (Fig. 8.5) clearly depict the impact of out-of-scale heuristics
on original MHA*; its performance degrades considerably as we make the heuristics
more out-of-scale, and after a point (10 and above) it reduces to weighted A* (with
additional overhead of multiple queue updates). In contrast, MHA*++ remains robust
to heuristic scaling and outperforms MHA* by a significant margin.

In summary, we presented a framework for searching with multiple inadmissible heuris-
tics, Multi-Heuristic A*, and an improvement to it which can handle uncalibrated
heuristics. On the theoretical front, these algorithms provide guarantees on complete-
ness, bounded suboptimality and bounded number of expansions, while on the exper-
imental side, they achieve state-of-the-art performance on an inherently continuous
domain—robot motion planning, and an inherently discrete one—sliding tile puzzles.

Next, we will return back to the domain of multi-object instance localization, and ob-
serve how MHA* can help in searching the Monotone Scene Generation Tree.



119

Chapter 9

Conclusions

9.1 Summary of Contributions

This thesis introduced the notion of Deliberative Perception, wherein multi-object recog-
nition and pose estimation is formulated as a search for the best explanation of the
scene. The presented algorithms combine classical AI techniques with modern learn-
ing approaches to inherit benefits of both camps: robustness and solution quality guar-
antees of the former, and speed and data-driven discriminative power of the latter.
To recap, Perception via Search (PERCH) introduced an efficient tree search formu-
lation for optimizing the scene explanation objective and Clutter-PERCH (C-PERCH)
extended the formulation to be applicable even when 3D models for extraneous ob-
jects in the scene are not available. Then, D2P and RANSAC-Trees demonstrated how
discriminative learners, specifically deep learning methods, could be used to improve
global search efficiency by either employing them as heuristics, or directly baking them
into the construction of the search tree. Finally, we presented two general-purpose
graph search algorithms: AEE* introduced the idea of an optimal anytime algorithm
in the context of time-consuming edge evaluations, and Improved Multi-Heuristic A*
provided a framework for using arbitrary, inadmissible heuristics that are unrelated to
the edge costs for guiding search.

9.2 Directions for Future Work

We strongly believe that this thesis is only the start of what could be a long and fruitful
exploration of the joint Classical AI and Robot Perception frontier. As regards to future
directions for Deliberative Perception, there are both well-defined avenues, and open-
ended questions. Some of these are discussed next.

9.2.1 Exploiting Object Independences

While combinatorial search is a powerful tool for dealing with arbitrary cost functions
defined over a discrete set of object instances, a naive implementation does not scale



120 Chapter 9. Conclusions

FIGURE 9.1: An example scene from the LOV dataset with 5 objects. Notice that
the scene can be easily segmented, say by connected component analysis, into 3
clusters that are independent of each other, i.e, we can guarantee that an object
in one does not not occlude an object in another. Such independences can be
exploited to develop an algorithm that decomposes joint object pose estimation
for all 5 objects into multiple subproblems. Note that the composition of each
cluster still remains unknown.

well with the number of objects. A recurring theme in the combinatorial search lit-
erature, as well as domains such as multi-robot motion planning, is the emphasis on
discovering and using independences to decouple as many state variables as possible to
reduce the joint search space. In the context of PERCH, there is a similar interpretation:
if we can partition the input scene into independent groups or clusters, such that an
object in one cluster does not occlude an object in another, one could run solve multi-
ple PERCH problems of smaller sizes. That said, there is often no straightforward way
to know which objects belong in which cluster. Consequently, we are faced with an al-
gorithm design problem for factoring the knowledge of multiple clusters into account
without sacrificing the properties of the vanilla PERCH solution. An added feature of
this problem is the scope for parallelization: since the smaller PERCH problems deal
with independent clusters, they could be solved in parallel.

9.2.2 Physically-based Reasoning

The use of physics-based constraints and reasoning is an under-explored direction in
this thesis. Reasoning about the stability of object poses, i.e., whether a given con-
figuration of object poses is under static equilibrium, and detailed checking of non-
penetration constraints would be useful extensions of the current framework. Al-
though this adds complexity to edge evaluations (i.e, running a physics simulator),
there are potential benefits in pruning large chunks of the search space. For example,
the number of 6 DoF configurations for an object where it can be in stable equilibrium
would typically be much smaller than the full 6 DoF configuration space. The research
questions that need to be addressed are: a) how do we incorporate physically-based
simulation to produce “feasible” configurations of objects in an efficient manner? (i.e,
without using rejection sampling), and b) can we ensure provably high-quality solu-
tions despite the use of possibly imprecise simulators? We hypothesize that the answer



9.2. Directions for Future Work 121

FIGURE 9.2: Examples from the dataset in (Doumanoglou et al., 2016) where con-
sideration of physics constraints is required to reliably estimate 6 DoF poses of all
objects in the scene.

to the first question lies in obtaining a realistic approximation of the “feasible”-space
manifold. For example, if we assume all objects rest exclusively on a support surface,
we could obtain an approximation of the contact-manifold (Koval, Pollard, and Srini-
vasa, 2015) which we can then use in the search procedure.

A second approach might be to use a suite of simulators with different fidelities (and
consequently different computation times) to perform coarse-to-fine scene validity
checking. This approach could be incorporated into the algorithm described in Sec. 7
for taking advantage of coarse edge validity priors to minimize expensive high-fidelity
checking. A similar coarse-to-fine method might start off by using low-resolution 3D
models for the object to reduce rendering time, and consequently use high-resolution
models in a lazy fashion. Finally, physics-based reasoning can also be employed to
learn better discriminative learners by generating realistic and plausible synthetic train-
ing data (Mitash, Bekris, and Boularias, 2017).

9.2.3 Color and Lighting

Color imagery is a rich source of information, and modern computer vision methods
make use of copious amounts of such data to obtain impressive results. However,
much of the work in this thesis, barring Ch. 6, has exclusively used depth data. While
one part of the reason is the computational complexity of rendering photorealistic col-
ored scenes, a second part is that the source and type of lighting is also unknown. To
truly fold in color into the deliberative reasoning framework, one needs to augment the
state-space with lighting parameters (position and type of lighting) and define a cost
function that captures both color and depth. A naive joint search over lighting and ob-
ject poses is likely to be extremely inefficient. Our conjecture is that the state-space can
be compressed by carefully studying the physics of light and color interaction, with
the favorable result that most states end up being “dominated” by canonical ones. To
achieve truly robust perception, seeing through transparent objects, dealing with spec-
ularity etc., the ability to jointly reason about color, lighting, object pose, and material
properties would be necessary—an ambitious target indeed.



122 Chapter 9. Conclusions

9.2.4 Deformable and Intertwined Objects

Deliberative Perception is based on the premise that we can “generate” or render
scenes corresponding to hypothesized configurations of objects. However, deformable
objects with their infinitely many degrees of freedom present a hindrance. While one
can still render scenes containing deformable objects by modeling those as textured
spring-mass systems (Schulman et al., 2013), the number of configurations that need
to be considered is intractable. While this is a completely open-ended problem, our
first thoughts on a solution involves two components: a) learning a series of increas-
ingly low-dimensional representations for deformable objects (for e.g., modeling an
object with fewer and fewer control points), and b) using an adaptive-dimensional
search (Gochev et al., 2011) that uses low-dimensional representations as often as it
can, and moving to the full dimensional space only when necessary to satisfy solution
quality bounds.

Another problem that we have sidestepped in this thesis is that of objects being con-
tained in another, and scenes where the reverse painter’s algorithm assumption fails
to hold, i.e, a cycle of occlusions is present: A occludes B, B occludes C, and C occludes
A. While this problem does not seem to appear as much in practice, a potential solu-
tion exists: we can dynamically detect occlusion cycles during the search and compute
the edge cost as a sum of the usual positive cost, and a negative cost for occluding an
existing object. Then, we could compute a conservative estimate of the largest possible
negative cost (for e.g., by reasoning about the object sizes in relation to the camera) that
could be encountered. Finally, we modify the termination criterion for A* or FOCAL-
MHA* such that the incumbent goal’s g-value needs to be lesser than the minimum
f -value of OPEN by the conservative margin. Note that if the solution quality bounds
are not important, the last two steps can be dropped.

9.2.5 Active Deliberation

While the focus of this thesis was on multi-object instance recognition for static scenes,
the presented methods allow for a natural extension to the dynamic case, either when
objects are moving, or when the camera is allowed to move as in the case of a mobile
robot. The latter opens up possibilities for deliberative active perception, where the se-
quence and cost of robot motions can be integrated into the optimization formulation.
Subsequently, questions of finding the best explanation of the scene, the associated
uncertainty, cost and time-constraints on robot motion can be jointly explored. Yet an-
other possible extension is with regard to localizing articulated objects such as doors
or drawers. In this case, the state-space for the objects can be augmented to include
the articulation parameters, such as translation along a prismatic axis or rotation angle
about an axis.



9.3. Parting Notes 123

9.3 Parting Notes

We conclude the thesis with a discussion of frequently asked questions and lessons
learned.

Why is multi-object pose estimation essential?

Often times robots manipulate only a single object at a time or look for a particular
target item as opposed to a collection of objects. However, multi-object pose estima-
tion still remains important for two reasons: a) knowledge of another object’s pose can
improve recognition of the target object (a simple example is the process of recognition
by elimination), and b) having a complete understanding of the scene enables sophis-
ticated planning and decision-making: robots can determine what is the optimal order
in which to move objects to access a target one, as opposed to using simple greedy
heuristics. The latter is especially true in a number of real-world situations, includ-
ing what we have observed from our participation in the Amazon Robotics Challenge
(ARC). In the process of extracting a target item from a cluttered tote containing 20
objects (which was exactly the task in ARC 2017), knowledge of other objects in the
tote and their spatial relation to the target is paramount for minimizing execution time
of the robot, and consequently improving warehouse automation efficiency.

Under what circumstances should the different methods presented in the thesis be
used?

The tools provided in this thesis span the entire deliberation-discrimination spectrum.
In situations where discriminative methods are not easily available, say there is not
enough labeled training data, or sufficient time for training, PERCH would be an ideal
candidate as it can operate with no training at all (assuming that 3D models for ob-
jects are already available). On the other hand, PERCH has the lowest test time ef-
ficiency as it searches through a naively discretized state space with no informative
guidance. When test time efficiency is critical and there is time available for learning a
discriminative model, D2P and RANSAC-Tree are well-suited. Notice that RANSAC-
Tree reduces to a purely discriminative method when the batch count and number of
episodes are set to 1.

What scenes are the most difficult for PERCH?

The use of weighted heuristic search is a double-edged sword: while on one hand
it allows for faster termination of the search, on the other hand it can inadvertently
introduce deep local minima for the search. Scenes where this effect is pronounced
are those that contain several objects, such as in Fig. 3.7, and in which small objects
tend to be in the background and occluded by larger objects in the front. The search
proceeds by placing the smaller objects first, since they tend to incur lesser cost, and
then the larger objects. The use of a depth-first heuristic in combination with a large
inflation factor for weighted A* reduces the chance of early back-tracking (the larger
objects need to be placed first as per the monotone ordering), thereby causing the
search to expand many states before discovering the correct ordering. While the use



124 Chapter 9. Conclusions

of normalized edge costs mitigates this problem to some extent, more sophisticated
heuristics for exploring correlated orderings of objects could be beneficial.

The optimization objective: careful what you wish for.

Throughout this thesis work, the lesson that was evident time and again is the care-
ful selection of the optimization objective, especially when using optimal or close-to-
optimal algorithms. Unlike other domains such as robot motion planning where the
cost being optimized is truly representative of the robot’s performance, the cost func-
tion in our work is only a proxy for object pose accuracy. Consequently, an optimal
solution returned by the algorithm could be far from what we had expected to see.
In the context of depth images, this work and a few others such as DART (Schmidt,
Newcombe, and Fox, 2014) have independently arrived at similar ideas for the cost
function. Practice has shown that both parts—the rendered explanation cost (a.k.a.
model cost or positive information), and the observed explanation cost (a.k.a. negative
information) are necessary for obtaining “good” solutions. Further, when combining
cost functions for multiple objects, care must be taken to normalize for object size to
prevent artifacts. For e.g., the algorithm could optimize the pose of a large object at
the expense of poorly localizing a smaller one. Apart from the said artifact, having low
variance in edge costs of the tree often results in better branch-and-bound behavior.

While “soft” costs seem attractive, attempts to incorporate more sophisticated objec-
tives other than the simple binary explanation cost have always resulted in reverting
back to the original one. My intuition is that the binary cost is intrinsically robust and
insensitive to outliers, and is therefore a natural fit for noisy depth data. The use of
this highly discontinuous objective is possible because of combinatorial search, which
assumes very little about the cost, i.e., no differentiability or Lipschitz-continuity re-
quirements that gradient-based methods typically require.



125

Bibliography

Abadi, Martín, Agarwal, Ashish, Barham, Paul, Brevdo, Eugene, Chen, Zhifeng, Citro,
Craig, Corrado, Greg S, Davis, Andy, Dean, Jeffrey, Devin, Matthieu, et al. (2016).
“Tensorflow: Large-scale machine learning on heterogeneous distributed systems”.
In: arXiv preprint arXiv:1603.04467.

Aine, Sandip, Chakrabarti, P. P., and Kumar, Rajeev (2007). “AWA* - A Window Con-
strained Anytime Heuristic Search Algorithm”. In: IJCAI, pp. 2250–2255.

Aine, Sandip, Swaminathan, Siddharth, Narayanan, Venkatraman, Hwang, Victor, and
Likhachev, Maxim (2016). “Multi-Heuristic A*”. In: IJRR 35.1-3, pp. 224–243.

Aldoma, Aitor, Vincze, Markus, Blodow, Nico, Gossow, David, Gedikli, Suat, Rusu,
Radu Bogdan, and Bradski, Gary (2011). “CAD-model Recognition and 6DOF Pose
Estimation using 3D Cues”. In: ICCV Workshops. IEEE.

Aldoma, Aitor, Marton, Zoltan-Csaba, Tombari, Federico, Wohlkinger, Walter, Pot-
thast, Christian, Zeisl, Bernhard, Rusu, Radu Bogdan, Gedikli, Suat, and Vincze,
Markus (2012a). “Point Cloud Library”. In: IEEE Robotics & Automation Magazine
1070.9932/12.

Aldoma, Aitor, Tombari, Federico, Rusu, Radu Bogdan, and Vincze, Markus (2012b).
“OUR-CVFH–Oriented, Unique and Repeatable Clustered Viewpoint Feature His-
togram for Object Recognition and 6DOF Pose Estimation”. In: DAGM.

Aldoma, Aitor, Tombari, Federico, Di Stefano, Luigi, and Vincze, Markus (2012c). “A
Global Hypotheses Verification Method for 3D Object Recognition”. In: ECCV, pp. 511–
524.

Aldoma, Aitor, Tombari, Federico, Prankl, Johann, Richtsfeld, Andreas, Di Stefano,
Luigi, and Vincze, Markus (2013). “Multimodal Cue Integration through Hypothe-
ses Verification for RGB-D Object Recognition and 6DOF Pose Estimation”. In: ICRA.
IEEE, pp. 2104–2111.

Bohlin, Robert and Kavraki, Lydia E (2000). “Path planning using lazy PRM”. In:
Robotics and Automation, 2000. Proceedings. ICRA’00. IEEE International Conference on.
Vol. 1. IEEE, pp. 521–528.

Butzke, Jonathan, Gochev, Kalin, Holden, Benjamin, Jung, Eui-Jung, and Likhachev,
Maxim (2016). “Planning for a ground-air robotic system with collaborative local-
ization”. In: 2016 IEEE International Conference on Robotics and Automation (ICRA).
IEEE, pp. 284–291.

http://www.cs.cmu.edu/~maxim/files/mha_ijrr15.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6130296
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6130296
http://robotics.usc.edu/~potthast/06299166.pdf
http://vision.deis.unibo.it/fede/papers/dagm12.pdf
http://vision.deis.unibo.it/fede/papers/dagm12.pdf
http://vision.deis.unibo.it/fede/papers/eccv12.pdf
http://vision.deis.unibo.it/fede/papers/eccv12.pdf


126 BIBLIOGRAPHY

Calli, Berk, Walsman, Aaron, Singh, Arjun, Srinivasa, Siddhartha, Abbeel, Pieter, and
Dollar, Aaron M (2015). “Benchmarking in manipulation research: Using the Yale-
CMU-Berkeley object and model set”. In: IEEE Robotics & Automation Magazine 22.3,
pp. 36–52.

Chakrabarti, P. P., Ghose, Sujoy, and Sarkar, S. C. De (1992). “Generalized best first
search using single and multiple heuristics”. In: Inf. Sci. 60.1-2, pp. 145–175.

Chakrabarti, P. P., Ghose, Sujoy, Pandey, A., and Sarkar, S. C. De (1989). “Increasing
Search Efficiency Using Multiple Heuristics”. In: Inf. Process. Lett. 30.1, pp. 33–36.

Chen, Yung and Medioni, Gérard (1991). “Object Modeling by Registration of Multiple
Range Images”. In: ICRA.

Choudhury, Shushman, Dellin, Christopher M, and Srinivasa, Siddhartha S (2016).
“Pareto-Optimal Search over Configuration Space Beliefs for Anytime Motion Plan-
ning”. In: IROS.

Cohen, Benjamin, Phillips, Mike, and Likhachev, Maxim (2014). “Planning Single-arm
Manipulations with N-Arm Robots”. In: Robotics: Science and Systems.

Cohen, Benjamin J, Chitta, Sachin, and Likhachev, Maxim (2010). “Search-based plan-
ning for manipulation with motion primitives”. In: Robotics and Automation (ICRA),
2010 IEEE International Conference on. IEEE, pp. 2902–2908.

Collet, Alvaro, Martinez, Manuel, and Srinivasa, Siddhartha S (2011). “The MOPED
framework: Object recognition and pose estimation for manipulation”. In: The Inter-
national Journal of Robotics Research, p. 0278364911401765.

Correll, Nikolaus, Bekris, Kostas E., Berenson, Dmitry, Brock, Oliver, Causo, Albert,
Hauser, Kris, Okada, Kei, Rodriguez, Alberto, Romano, Joseph M., and Wurman,
Peter R. (2016). “Lessons from the Amazon Picking Challenge”. In: arXiv preprint
arXiv:1601.05484.

Dellin, Christopher M and Srinivasa, Siddhartha S (2016). “A Unifying Formalism for
Shortest Path Problems with Expensive Edge Evaluations via Lazy Best-First Search
over Paths with Edge Selectors”. In: ICAPS.

Doumanoglou, Andreas, Kouskouridas, Rigas, Malassiotis, Sotiris, and Kim, Tae-Kyun
(2016). “Recovering 6D Object Pose and Predicting Next-Best-View in the Crowd”.
In: CVPR.

Drost, Bertram, Ulrich, Markus, Navab, Nassir, and Ilic, Slobodan (2010). “Model Glob-
ally, Match Locally: Efficient and Robust 3D Object Recognition”. In: CVPR. IEEE,
pp. 998–1005.

Eitel, Andreas, Springenberg, Jost Tobias, Spinello, Luciano, Riedmiller, Martin, and
Burgard, Wolfram (2015). “Multimodal Deep Learning for Robust RGB-D Object
Recognition”. In: IROS.

Eyerich, Patrick, Keller, Thomas, and Helmert, Malte (2010). “High-quality Policies
for the Canadian Traveler’s Problem”. In: Third Annual Symposium on Combinatorial
Search (SoCS).

Fan, Gaojian, Müller, Martin, and Holte, Robert (2017). “The two-edged nature of di-
verse action costs”. In: Proceedings of the 27th International Conference on Automated
Planning and Scheduling.

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=132043
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=132043
http://www.roboticsproceedings.org/rss10/p33.pdf
http://www.roboticsproceedings.org/rss10/p33.pdf
http://arxiv.org/pdf/1601.05484v2.pdf
http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Doumanoglou_Recovering_6D_Object_CVPR_2016_paper.pdf
http://ais.informatik.uni-freiburg.de/publications/papers/eitel15iros.pdf
http://ais.informatik.uni-freiburg.de/publications/papers/eitel15iros.pdf


BIBLIOGRAPHY 127

Felner, A., Korf, R. E., and Hanan, S. (2004). “Additive Pattern Database Heuristics”.
In: J. Artif. Intell. Res. (JAIR) 22, pp. 279–318.

Felner, Ariel, Goldenberg, Meir, Sharon, Guni, Stern, Roni, Beja, Tal, Sturtevant, Nathan
R, Schaeffer, Jonathan, and Holte, Robert (2012). “Partial-Expansion A* with Selec-
tive Node Generation.” In: AAAI.

Figueiredo, Rui Pimentel de, Moreno, Pablo, Bernardino, Alexandre, and Santos-Victor,
José (2013). “Multi-Object Detection and Pose Estimation in 3D Point Clouds: A Fast
Grid-based Bayesian Filter”. In: ICRA. IEEE, pp. 4250–4255.

Fischler, Martin A and Bolles, Robert C (1981). “Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated cartography”.
In: Communications of the ACM 24.6, pp. 381–395.

Fouhey, David F, Collet, Alvaro, Hebert, Martial, and Srinivasa, Siddhartha (2012).
“Object recognition robust to imperfect depth data”. In: European Conference on Com-
puter Vision. Springer, pp. 83–92.

Glover, Jack and Popovic, Sanja (2013). “Bingham Procrustean Alignment for Object
Detection in Clutter”. In: IROS. IEEE, pp. 2158–2165.

Goad, Chris (1987). “Special Purpose Automatic Programming for 3D Model-based
Vision”. In: Readings in Computer Vision, pp. 371–381.

Gochev, Kalin, Cohen, Benjamin, Butzke, Jonathan, Safonova, Alla, and Likhachev,
Maxim (2011). “Path planning with adaptive dimensionality”. In: Fourth annual sym-
posium on combinatorial search.

Grimson, W Eric L and Lozano-Perez, Tomas (1987). “Localizing Overlapping Parts by
Searching the Interpretation Tree”. In: PAMI 4, pp. 469–482.

Hager, Gregory D and Wegbreit, Ben (2011). “Scene parsing using a prior world model”.
In: The International Journal of Robotics Research 30.12, pp. 1477–1507.

Hansen, Eric A and Zhou, Rong (2007). “Anytime heuristic search”. In: Journal of Arti-
ficial Intelligence Research 28, pp. 267–297.

Hansen, Eric A and Zilberstein, Shlomo (2001). “LAO*: A heuristic search algorithm
that finds solutions with loops”. In: vol. 129. 1. Elsevier, pp. 35–62.

Hart, P. E., Nilsson, N. J., and Raphael, B. (1968). “A Formal Basis for the Heuristic
Determination of Minimum Cost Paths”. In: IEEE Transactions on Systems Science and
Cybernetics 4.2, pp. 100–107.

Hatem, Matthew and Ruml, Wheeler (2014). “Simpler bounded suboptimal search”.
In: Proceedings of Twenty-Eighth AAAI Conference on Artificial Intelligence. AAAI Press.

Helmert, Malte, Röger, Gabriele, and Karpas, Erez (2011). “Fast Downward Stone Soup:
A Baseline for Building Planner Portfolios”. In: ICAPS 2011 Workshop on Planning and
Learning, pp. 28–35.

Herbst, Evan, Henry, Peter, Ren, Xiaofeng, and Fox, Dieter (2011). “Toward object dis-
covery and modeling via 3-d scene comparison”. In: Robotics and Automation (ICRA),
2011 IEEE International Conference on. IEEE, pp. 2623–2629.

Hernández, Carlos and Baier, Jorge A (2012). “Avoiding and escaping depressions in
real-time heuristic search”. In: Journal of Artificial Intelligence Research 43, pp. 523–570.

http://lis.csail.mit.edu/pubs/glover-iros13.pdf
http://lis.csail.mit.edu/pubs/glover-iros13.pdf


128 BIBLIOGRAPHY

Hinterstoisser, Stefan, Lepetit, Vincent, Ilic, Slobodan, Holzer, Stefan, Bradski, Gary,
Konolige, Kurt, and Navab, Nassir (2013). “Model Based Training, Detection and
Pose Estimation of Texture-less 3D Objects in Heavily Cluttered Scenes”. In: ACCV,
pp. 548–562.

Hodaň, Tomáš, Matas, Jiří, and Obdržálek, Štěpán (2016). “On evaluation of 6D object
pose estimation”. In: Computer Vision–ECCV 2016 Workshops. Springer, pp. 606–619.

Hodan, Tomáš, Haluza, Pavel, Obdržálek, Štepán, Matas, Jiri, Lourakis, Manolis, and
Zabulis, Xenophon (2017). “T-LESS: An RGB-D Dataset for 6D Pose Estimation of
Texture-less Objects”. In: Applications of Computer Vision (WACV), 2017 IEEE Winter
Conference on. IEEE, pp. 880–888.

Hsiao, Edward and Hebert, Martial (2014). “Occlusion reasoning for object detectio-
nunder arbitrary viewpoint”. In: IEEE transactions on pattern analysis and machine in-
telligence 36.9, pp. 1803–1815.

Huh, Jinwook and Lee, Daniel D (2016). “Learning high-dimensional Mixture Mod-
els for fast collision detection in Rapidly-Exploring Random Trees”. In: 2016 IEEE
International Conference on Robotics and Automation (ICRA). IEEE, pp. 63–69.

Isto, Pekka (1996). “Path Planning By Multiheuristic Search Via Subgoals”. In: Proceed-
ings of the 27th International Symposium on Industrial Robots, CEU, pp. 71272–6.

Johnson, Andrew E and Hebert, Martial (1999). “Using Spin Images for Efficient Object
Recognition in Cluttered 3D Scenes”. In: PAMI 21.5, pp. 433–449.

Jr., James J. Kuffner and LaValle, Steven M. (2000). “RRT-Connect: An Efficient Ap-
proach to Single-Query Path Planning”. In: ICRA. IEEE, pp. 995–1001. ISBN: 0-7803-
5889-9.

Karaman, S. and Frazzoli, E. (2010). “Incremental Sampling-based Algorithms for Op-
timal Motion Planning”. In: Robotics: Science and Systems. Zaragoza, Spain: The MIT
Press.

Kavraki, Lydia E., Svestka, Petr, Latombe, Jean-Claude, and Overmars, Mark H. (1996).
“Probabilistic Roadmaps for Path Planning in High-dimensional Configuration Spaces”.
In: IEEE T. Robotics and Automation 12.4, pp. 566–580.

Kiesel, Scott and Ruml, Wheeler (2016). “A Bayesian Effort Bias for Sampling-based
Motion Planning”. In: Planning and Robotics Workshop (ICAPS-PlanRob16).

Kocsis, Levente and Szepesvári, Csaba (2006). “Bandit based monte-carlo planning”.
In: ECML. Vol. 6. Springer, pp. 282–293.

Koenig, Sven, Likhachev, Maxim, and Furcy, David (2004). “Lifelong planning A*”. In:
Artificial Intelligence 155.1-2, pp. 93–146.

Korf, R. E. and Felner, A. (2002). “Disjoint pattern database heuristics”. In: Artif. Intell.
134.1-2, pp. 9–22.

Koval, Michael C, Pollard, Nancy S, and Srinivasa, Siddhartha S (2015). “Pose estima-
tion for planar contact manipulation with manifold particle filters”. In: The Interna-
tional Journal of Robotics Research 34.7, pp. 922–945.

Krizhevsky, Alex, Sutskever, Ilya, and Hinton, Geoffrey E (2012). “Imagenet Classifi-
cation with Deep Convolutional Neural Networks”. In: NIPS, pp. 1097–1105.

http://cvlabwww.epfl.ch/~lepetit/papers/hinterstoisser_accv12.pdf
http://cvlabwww.epfl.ch/~lepetit/papers/hinterstoisser_accv12.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=765655
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=765655
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf


BIBLIOGRAPHY 129

Krull, Alexander, Brachmann, Eric, Michel, Frank, Ying Yang, Michael, Gumhold, Ste-
fan, and Rother, Carsten (2015). “Learning Analysis-by-Synthesis for 6D Pose Esti-
mation in RGB-D Images”. In: ICCV.

Lai, Kevin Kar Wai (2014). “Object Recognition and Semantic Scene Labeling for RGB-
D Data”. PhD thesis.

LaValle, Steven M (2006). Planning algorithms. Cambridge university press.
Lavalle, Steven M., Kuffner, James J., and Jr. (2000). “Rapidly-Exploring Random Trees:

Progress and Prospects”. In: Algorithmic and Computational Robotics: New Directions,
pp. 293–308.

Likhachev, M. and Ferguson, D. (2008). “Planning Long Dynamically-Feasible Maneu-
vers For Autonomous Vehicles”. In: Proceedings of Robotics: Science and Systems (RSS).
Cambridge, USA.

Likhachev, M., Gordon, G. J., and Thrun, S. (2004). “ARA*: Anytime A* with Provable
Bounds on Sub-Optimality”. In: Advances in Neural Information Processing Systems 16.
Cambridge, MA: MIT Press.

Lowe, David G (1987). “The Viewpoint Consistency Constraint”. In: IJCV 1.1, pp. 57–
72.

MacAllister, Brian, Butzke, Jonathan, Kushleyev, Alex, Pandey, Harsh, and Likhachev,
Maxim (2013). “Path planning for non-circular micro aerial vehicles in constrained
environments”. In: Robotics and Automation (ICRA), 2013 IEEE International Conference
on. IEEE, pp. 3933–3940.

Marton, Zoltan-Csaba, Pangercic, Dejan, Blodow, Nico, and Beetz, Michael (2011). “Com-
bined 2D–3D Categorization and Classification for Multimodal Perception Systems”.
In: IJRR.

Meger, David, Wojek, Christian, Little, James J, and Schiele, Bernt (2011). “Explicit Oc-
clusion Reasoning for 3D Object Detection.” In: BMVC, pp. 1–11.

Mitash, Chaitanya, Bekris, Kostas E, and Boularias, Abdeslam (2017). “A Self-supervised
Learning System for Object Detection using Physics Simulation and Multi-view Pose
Estimation”. In: IROS.

Narayanan, Venkatraman, Aine, Sandip, and Likhachev, Maxim (2015). “Improved
Multi-Heuristic A* for Searching with Uncalibrated Heuristics”. In: Eighth Annual
Symposium on Combinatorial Search (SoCS).

Narayanan, Venkatraman and Likhachev, Maxim (2016a). “PERCH: Perception via
Search for Multi-Object Recognition and Localization”. In: ICRA. IEEE.

Narayanan, Venkatraman and Likhachev, Maxim (2016b). “Discriminatively-guided
Deliberative Perception for Pose Estimation of Multiple 3D Object Instances”. In:
Robotics: Science and Systems.

Narayanan, Venkatraman and Likhachev, Maxim (2017a). “Deliberative Object Pose
Estimation in Clutter”. In: ICRA.

Narayanan, Venkatraman and Likhachev, Maxim (2017b). “Heuristic Search on Graphs
with Existence Priors for Expensive-to-Evaluate Edges”. In: International Conference
on Automated Planning and Scheduling (ICAPS).

http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Krull_Learning_Analysis-by-Synthesis_for_ICCV_2015_paper.pdf
http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Krull_Learning_Analysis-by-Synthesis_for_ICCV_2015_paper.pdf
http://ijr.sagepub.com/content/early/2011/07/23/0278364911415897.full.pdf
http://ijr.sagepub.com/content/early/2011/07/23/0278364911415897.full.pdf
http://www.aaai.org/ocs/index.php/SOCS/SOCS15/paper/viewFile/10820/10638
http://www.aaai.org/ocs/index.php/SOCS/SOCS15/paper/viewFile/10820/10638
https://www.ri.cmu.edu/pub_files/2016/5/perch_icra16.pdf
https://www.ri.cmu.edu/pub_files/2016/5/perch_icra16.pdf
http://www.roboticsproceedings.org/rss12/p23.pdf
http://www.roboticsproceedings.org/rss12/p23.pdf


130 BIBLIOGRAPHY

Narayanan, Venkatraman, Phillips, Mike, and Likhachev, Maxim (2012). “Anytime
safe interval path planning for dynamic environments”. In: 2012 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems. IEEE, pp. 4708–4715.

Narayanan, Venkatraman, Vernaza, Paul, Likhachev, Maxim, and LaValle, Steven M
(2013). “Planning under topological constraints using beam-graphs”. In: Robotics and
Automation (ICRA), 2013 IEEE International Conference on. IEEE, pp. 431–437.

Papadimitriou, Christos H and Yannakakis, Mihalis (1991). “Shortest Paths without a
Map”. In: Theoretical Computer Science 84.1, pp. 127–150.

Papazov, Chavdar and Burschka, Darius (2010). “An efficient ransac for 3d object recog-
nition in noisy and occluded scenes”. In: Asian Conference on Computer Vision. Springer,
pp. 135–148.

Pearl, Judea and Kim, Jin H (1982). “Studies in semi-admissible heuristics”. In: Pattern
Analysis and Machine Intelligence, IEEE Transactions on 4, pp. 392–399.

Phillips, Mike and Likhachev, Maxim (2011). “Sipp: Safe interval path planning for
dynamic environments”. In: Robotics and Automation (ICRA), 2011 IEEE International
Conference on. IEEE, pp. 5628–5635.

Phillips, Mike, Narayanan, Venkatraman, Aine, Sandip, and Likhachev, Maxim (2015).
“Efficient Search with an Ensemble of Heuristics”. In: IJCAI, pp. 784–791.

Pohl, I. (1970). “First Results on the Effect of Error in Heuristic Search”. In: Machine
Intelligence 5. Ed. by B. Meltzer and D. Michie, pp. 219–236.

Ren, Shaoqing, He, Kaiming, Girshick, Ross, and Sun, Jian (2015). “Faster R-CNN:
Towards Real-time Object Detection with Region Proposal Networks”. In: NIPS,
pp. 91–99.

Rennie, Colin, Shome, Rahul, Bekris, Kostas E, and De Souza, Alberto F (2016). “A
dataset for improved rgbd-based object detection and pose estimation for ware-
house pick-and-place”. In: IEEE Robotics and Automation Letters 1.2, pp. 1179–1185.

Richter, Silvia, Thayer, Jordan Tyler, and Ruml, Wheeler (2010). “The Joy of Forgetting:
Faster Anytime Search via Restarting”. In: ICAPS, pp. 137–144.

Röger, Gabriele and Helmert, Malte (2010). “The More, the Merrier: Combining Heuris-
tic Estimators for Satisficing Planning”. In: ICAPS’10, pp. 246–249.

Russakovsky, Olga, Deng, Jia, Su, Hao, Krause, Jonathan, Satheesh, Sanjeev, Ma, Sean,
Huang, Zhiheng, Karpathy, Andrej, Khosla, Aditya, Bernstein, Michael, Berg, Alexan-
der C., and Fei-Fei, Li (2015). “” In: IJCV 115.3, pp. 211–252.

Rusu, Radu Bogdan, Blodow, Nico, and Beetz, Michael (2009). “Fast Point Feature His-
tograms (FPFH) for 3D Registration”. In: ICRA. IEEE.

Rusu, Radu Bogdan, Bradski, Gary, Thibaux, Romain, and Hsu, John (2010). “Fast 3D
Recognition and Pose Using the Viewpoint Feature Histogram”. In: IROS. IEEE.

Schmidt, Tanner, Newcombe, Richard A, and Fox, Dieter (2014). “DART: Dense Artic-
ulated Real-Time Tracking.” In: Robotics: Science and Systems.

Schulman, John, Lee, Alex, Ho, Jonathan, and Abbeel, Pieter (2013). “Tracking de-
formable objects with point clouds”. In: Robotics and Automation (ICRA), 2013 IEEE
International Conference on. IEEE, pp. 1130–1137.

https://www.ri.cmu.edu/pub_files/2015/7/ijcai15.pdf
https://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf
https://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf
http://link.springer.com/content/pdf/10.1007Large Scale Visual Recognition Challenge
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5152473
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5152473
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5651280
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5651280


BIBLIOGRAPHY 131

Schwarz, Max, Schulz, Hannes, and Behnke, Sven (2015). “RGB-D Object Recogni-
tion and Pose Estimation Based on Pre-trained Convolutional Neural Network Fea-
tures”. In: ICRA. IEEE.

Silver, David, Huang, Aja, Maddison, Chris J, Guez, Arthur, Sifre, Laurent, Van Den
Driessche, George, Schrittwieser, Julian, Antonoglou, Ioannis, Panneershelvam, Veda,
Lanctot, Marc, et al. (2016). “Mastering the game of Go with deep neural networks
and tree search”. In: Nature 529.7587, pp. 484–489.

Stevens, Mark R and Beveridge, J Ross (2000a). “Localized Scene Interpretation from
3D Models, Range, and Optical Data”. In: Computer Vision and Image Understanding.

Stevens, Mark R and Beveridge, J Ross (2000b). “Integrating Graphics and Vision for
Object Recognition”. In: vol. 589. Springer Science & Business Media.

Şucan, Ioan A., Moll, Mark, and Kavraki, Lydia E. (2012). “The Open Motion Planning
Library”. In: IEEE Robotics & Automation Magazine 19.4, pp. 72–82.

Tejani, Alykhan, Tang, Danhang, Kouskouridas, Rigas, and Kim, Tae-Kyun (2014).
“Latent-class Hough Forests for 3D Object Detection and Pose Estimation”. In: ECCV,
pp. 462–477.

Thayer, Jordan Tyler, Benton, J, and Helmert, Malte (2012). “Better Parameter-Free
Anytime Search by Minimizing Time Between Solutions”. In: Fifth Annual Sympo-
sium on Combinatorial Search (SoCS), pp. 120–128.

Thayer, Jordan Tyler and Ruml, Wheeler (2011). “Bounded Suboptimal Search: A Di-
rect Approach Using Inadmissible Estimates”. In: IJCAI 2011, Proceedings of the 22nd
International Joint Conference on Artificial Intelligence, pp. 674–679.

Thayer, Jordan Tyler, Stern, Roni, Felner, Ariel, and Ruml, Wheeler (2012). “Faster
Bounded-Cost Search Using Inadmissible Estimates”. In: ICAPS.

Valenzano, Richard Anthony, Sturtevant, Nathan R., Schaeffer, Jonathan, Buro, Karen,
and Kishimoto, Akihiro (2010). “Simultaneously Searching with Multiple Settings:
An Alternative to Parameter Tuning for Suboptimal Single-Agent Search Algorithms”.
In: ICAPS, pp. 177–184.

Valiant, Leslie G (1984). “A theory of the learnable”. In: Communications of the ACM
27.11, pp. 1134–1142.

Vernaza, Paul, Narayanan, Venkatraman, and Likhachev, Maxim (2012). “Efficiently
finding optimal winding-constrained loops in the plane”. In: Robotics: Science and
Systems.

Wilt, Christopher Makoto and Ruml, Wheeler (2011). “Cost-based heuristic search is
sensitive to the ratio of operator costs”. In: Fourth Annual Symposium on Combinatorial
Search.

Wohlkinger, Walter and Vincze, Markus (2011). “Ensemble of Shape Functions for 3D
Object Classification”. In: ROBIO. IEEE, pp. 2987–2992.

Wu, Zhirong, Song, Shuran, Khosla, Aditya, Yu, Fisher, Zhang, Linguang, Tang, Xi-
aoou, and Xiao, Jianxiong (2015). “3D ShapeNets: A Deep Representation for Volu-
metric Shapes”. In: CVPR, pp. 1912–1920.

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7139363
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7139363
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7139363
http://www.sciencedirect.com/science/article/pii/S107731420090821X/pdf?md5=d27227659a05df0413ca28997b072b45&pid=1-s2.0-S107731420090821X-main.pdf
http://www.sciencedirect.com/science/article/pii/S107731420090821X/pdf?md5=d27227659a05df0413ca28997b072b45&pid=1-s2.0-S107731420090821X-main.pdf
http://www.iis.ee.ic.ac.uk/icvl/doc/ECCV2014_aly.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6181760
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6181760


132 BIBLIOGRAPHY

Xiang, Yu and Fox, Dieter (2017). “DA-RNN: Semantic Mapping with Data Associated
Recurrent Neural Networks”. In: Proceedings of Robotics: Science and Systems. Cam-
bridge, Massachusetts. DOI: 10.15607/RSS.2017.XIII.013.

Xiang, Yu and Savarese, Silvio (2013). “Object detection by 3D aspectlets and occlu-
sion reasoning”. In: Proceedings of the IEEE International Conference on Computer Vision
Workshops, pp. 530–537.

Yoshizumi, Takayuki, Miura, Teruhisa, and Ishida, Toru (2000). “A* with Partial Ex-
pansion for Large Branching Factor Problems.” In: AAAI/IAAI, pp. 923–929.

Zeng, Andy, Yu, Kuan-Ting, Song, Shuran, Suo, Daniel, Walker Jr, Ed, Rodriguez, Al-
berto, and Xiao, Jianxiong (2017). “Multi-view Self-supervised Deep Learning for 6D
Pose Estimation in the Amazon Picking Challenge”. In: ICRA.

http://dx.doi.org/10.15607/RSS.2017.XIII.013

	List of Figures
	List of Tables
	Introduction
	Motivation
	Conventional Approaches
	Case in Point: The Amazon Picking Challenge

	Proposed Approach
	Thesis Overview

	Background
	Object Instance Detection
	Local and Global 3D Feature Descriptors
	Generative Approaches
	Learning-based Approaches

	Heuristic Search
	A* Search
	Variants of A*


	I Foundations
	PERCH: Perception via Search for Multi-Object Instance Recognition
	Setup
	Notation
	Optimization Formulation
	Monotone Scene Generation Tree
	Construction
	Search

	Completeness
	Evaluation
	Dataset
	Implementation Details
	Baselines
	Results


	Extension to Unmodeled Clutter and Optimizations
	C-PERCH
	Notation
	Augmented Objective
	Tractability

	Pose Uncertainty Estimates
	Experiments
	Discussion
	Search Optimizations
	Depth Image Memoization
	Lazy Search
	Edge Cost Normalization
	Precomputed Distance Fields



	II Discrimination and Deliberation
	Discriminatively-guided Deliberative Perception
	Discriminative Heuristic Generation
	D2P Implementation
	R-CNN Heuristics
	Baseline Implementations

	Results
	Comparison with Baselines
	Utility of Lazy Edge Evaluations
	Discretization vs. ICP Tradeoff
	Synthetic Example


	RANSAC-Trees for 6 DoF Pose
	Sampling-based Search and Sample Consensus
	Algorithm
	Theoretical Analysis
	Asymptotic Properties
	PAC-type Bounds

	The LOV Dataset
	Experiment Details
	Deep Learning for Dense Object Coordinate Regression
	RANSAC Details
	Evaluation
	Results

	Discussion


	III Bridging Heuristic Search and Learning
	Anytime Search on Graphs with Time-consuming Edge Evaluations
	Motivating Examples
	Background
	Overview
	Expected Shortest Paths* (ESP*)
	Problem Setup
	Algorithm
	Theoretical Analysis

	Optimal Policy for Edge Evaluation under Anytime Interruption
	Evaluation
	Mobile Manipulation Planning
	Synthetic Benchmarking

	Discussion

	Improved Multi-Heuristic A*
	Motivation
	Background
	Related Work
	Notation and Terminology

	Multi-Heuristic A*
	Algorithm
	Theoretical Analysis
	Evaluation

	Improved Multi-Heuristic A*
	Algorithm
	Theoretical Analysis
	Evaluation


	Conclusions
	Summary of Contributions
	Directions for Future Work
	Exploiting Object Independences
	Physically-based Reasoning
	Color and Lighting
	Deformable and Intertwined Objects
	Active Deliberation

	Parting Notes

	Bibliography


