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Abstract. Canopy performance, the balance of crop weight and canopy volume, is a key indicator of value in 
viticultural production. Timely and dense measurement offer the potential to inform management practices and 
deliver significant improvement in production efficiency.  Traditional measurement practices are labor intensive 
and provide sparse data that may not reflect vineyard variability. We propose and demonstrate a combination 
of visual and laser sensing mounted on vineyard machinery that provides dense maps of canopy performance 
indicators. Current industry practice for measuring grape crop weight involves manually counting clusters on a 
vine with destructive sampling to find the average weight of a single cluster. This paper presents an alternative 
utilizing vision and laser sensing. We demonstrate use of machine vision to automatically estimate the weight 
of the crop growing on a vine. Validation of the algorithm was performed by comparing weight estimates 
generated by the system to ground truth measurements collected by hand. Machine mounted laser scanners 
provide direct measurement of canopy shape and volume. Validation of the canopy volume measurement is 
provided by correlation with manually collected dormant vine pruning weight. Attaching these laser and camera 
sensors to vineyard machinery will allow crop weight and canopy volume measurements to be collected on a 
large scale quickly and economically. Experiments performed at vineyards growing Traminette and Riesling 
wine grapes and Concord juice grapes show that we were able to determine both crop weight and canopy 
volume to within 10% of their actual values. 
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Introduction 
If a vineyard manager effectively balances the size of crop and the size of the canopy, they can enhance 
the economic viability of a vineyard. To effectively manipulate the vine, the vineyard manager needs 
information about the current state of the vines with precision and accuracy. The current industry practice 
for estimating the crop and canopy size is labor intensive, expensive, inaccurate, spatially sparse, 
destructive and riddled with subjective inputs. Typically, the process for yield prediction is for workers to 
sample a certain percentage of the vineyard and extrapolate these measurements to the entire vineyard. 
The weight of the clusters is constantly increasing until harvest, so the vineyard manager must guess at 
what percentage of the final weight is the current measurement – a subjective input which leads to 
inaccurate predictions. The manual sampling practice scales poorly to large commercial vineyards and 
the industry is searching for an alternative. The process for estimating the size of the vine canopy from 
dormant pruning weight is equally labor intensive and inaccurate.   

  
Figure 1: Example camera image of Gerwurztraminer wine grapes captured at véraison. Automatically detecting the 
grape crop within imagery such as this is difficult because of issues caused by the lighting and shadows, and the lack 
of contrast to the leaf background. 

Here we report results of an approach to automatically detect and count grapes to forecast yield and also 
estimate the canopy size with precision and accuracy. Our approach extends the work presented in 
Nuske (2011). Conventional visible light cameras are driven through a vineyard to image the vines and 
detect the crop for yield prediction. Similarly, laser range scanners are used to measure the canopy size.  

There are a few different existing industry practices for estimating the canopy size ranges from 
approximate measures via the winter cane pruning weight or the shaded area on vineyard floor at noon, 
to the most precise measure that is extremely tedious and destructive, where all the leaves of a vines 
canopy are stripped and measured individually. We present an alternative measure, the canopy volume 
taken from a 3D scan generated by a laser range scanner mounted to a vehicle traversing the vineyard.  

The main challenge in generating a meaningful canopy volume measure is through dealing with the 
variability in the sampling density of the scanner. We show how to resolve this issue by using an 
appropriate representation for the 3D scans, a 3D occupancy grid, and present an algorithm that analyses 
the occupancy grid to generate a measure of canopy volume. We compare our automatic measure 
against the winter pruning weight for 1500 individual vines and find the measures with r-squared 
correlation of 0.65. 

Traditional manual crop estimates look to sample the average number of grape clusters per-vine, the 
average number of grape berries per-cluster and average berry weight. Our approach is to estimate the 
total number of berries, essentially combining clusters per-vine and berries per cluster in the one 
measurement. Clusters per vine and berries per cluster account for 60% and 30% of variation in yield per 
vine respectively, therefore 90% of the variation in yield is accounted with accurate berry counts. 
Furthermore, the number of berries per-vine is a good measure to obtain because it is fixed from fruit-set 
all the way until harvest, unlike cluster weight for which a multiplier must be guessed and applied. 
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The challenges in visually detecting grape berries is their varying appearance under different lighting, the 
lack of color contrast to the background, which is often similarly colored to the grapes, and also 
occlusions causing not all grapes to be visible. An example of the difficulties of visually detecting grape 
crop can be seen in Fig. 1. The few existing methods for detecting crop in vineyards have been restricted 
to the laboratory (Federici, et al. 2009) or have relied on color contrast  (Dunn and Martin 2004) and are 
therefore not applicable for detecting crop over a similarly colored background of leaves. Lack of color 
contrast is an important issue that occurs in the white-grape varieties and all the grape varieties prior to 
véraison (the onset of color development). We specifically address the issues of lighting and lack of color 
contrast, by using shape and texture cues for detection.  

The issue of occlusion means it is not possible detect and count all berries on a vine. However, our 
detection of grape berries is precise, ensuring that there are very few false positives. The result of precise 
detection is that our berry count is a reliable measurement of yield, despite the fact that our algorithm only 
counts a percentage of all the grape berries on a vine. We calibrate our berry count measurement to 
harvest yield from a set of vines, and apply this calibration to other vines not included in the calibration 
set, pointing to the fact that percentage of berries not detected is relatively constant from vine to vine. 

We deployed our method in a vineyard and conducted an experiment in which manual per-vine harvest 
weights were collected and used as ground truth to evaluate our automated yield measurements. The 
size of the experiment is significant, including roughly 450m of vines, including two different grape 
varieties, where the total harvest weight of the vines totaled over 2000kg. Our method calculates yield 
within 9.8% of ground truth. 

Related Work  
The quality of the vineyard harvest is known to be a function of crop load (canopy size to crop size ratio) 
and is optimized when vines are not heavily over or under cropped (Reynolds and Vanden Heuvel 2009). 
Crop load is a measure of vine balance often expressed as crop yield per dormant pruning weight unit or 
as leaf area per fruit weight units with optimum values between five and ten or 1.1 to 1.4 m2 per kg fruit, 
Naor et al. (2002), Kliewer and Dokoozlian (2005). Unfortunately, pruning weight ratios can only be 
measured once a year and leaf areas are time consuming and expensive to assess, especially if the 
exposed leaf area is to be discriminated from the total (Lakso 2009). No attempts have been made to 
characterize crop load in vineyards with ground-based or remote sensing methods. 

Related Canopy Size Measurement Work 
Methods to characterize grapevine canopies have been developed for individual vines and are not readily 
applicable to whole vineyards. A formula to calculate exposed leaf area based on average external 
geometric canopy shape was developed by Smart and Robinson (1991). The same authors also adapted 
Point Quadrat Analysis (PQA) for use in vineyards at mid-season to measure many canopy attributes. 
PQA has been used to characterize different trellis systems (Gladstone and Dokoozlian 2003) and has 
been enhanced with canopy light measurements (Meyers and Vanden Heuvel 2008), however both PQA 
methods are time consuming and the values would be difficult to be spatially mapped to align with 
vineyard variability for use in precision viticulture. 

New technologies are being developed to automate the collection of data that can be used for canopy 
assessment. Multiple researchers have deployed wireless sensor networks to collect meso-scale 
environmental data in vineyards (Beckwith et al. 2004, Burrell et al. 2004) and in more general 
horticultural settings (Benson et al. 2009, Lea-Cox et al. 2008, Panchard et al. 2008, Baggio 2005, 
Goense et al. 2005), however none of this work has sought to directly use the collected data to determine 
canopy performance. Laser range scanners (LiDAR) have been used to successfully estimate canopy 
shape and leaf area index in forestry (Van der Zande et al. 2009, Lefsky and McHale 2008) while 
combinations of lasers with ultrasonic sensing (Tumbo et al. 2002) and stereo cameras (Swanson et 
al. 2009) have been used to estimate canopy volume and automated crop management decision making 
in citrus (Campoy et al. 2010). 

Related Crop Size Measurement Work 
Current practices to forecast yield are inaccurate because of sampling approaches that tend to adjust 
towards historical yields and include subjective inputs (Clingeleffer et al. 2001). The calculation of final 
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cluster weight from weights at véraison use fixed multipliers from historic measurements (Wolpert and 
Vilas 1992). Unfortunately, multipliers are biased towards healthier vines thus discriminating against 
missing or weak vines and multipliers for cluster weights vary widely by vineyard, season and variety. 

Sensor-based yield estimation in vineyards has been attempted with trellis tension monitors, multispectral 
sensors, terahertz-wave imaging and visible-light image processing. A dynamic yield estimation system 
based on trellis tension monitors has been demonstrated (Blom and Tarara 2009) but it requires 
permanent infrastructure to be installed. Information obtained from multispectral images has been used to 
forecast yields with good results but is limited to vineyards with uniformity requirements (Martinez-
Casasnovas and Bordes 2005). A proof of concept study by Federici et al. (2009) has shown that 
terahertz imaging can detect the curved surfaces of grapes and also has the potential to detect these 
through occluding thin canopy. The challenge for this approach is to achieve fast scan rates to be able to 
deploy the scanner on a mobile platform. 

Dunn and Martin (2004) demonstrated small-scale yield estimation based on simple image color 
discrimination. This approach was attempted on Shiraz post-véraison (i.e. after color development, very 
close to harvest) in short row segments. The method would not be applicable for the majority of real world 
examples where the fruit appears over a background of similarly-colored leaves, as is the case in white 
grape varieties and in all varieties before véraison. More complex crop detection based on computer 
vision methods using color pixel classification or shape analysis has been attempted on various fruit types 
– Jimenez et al. (2000) provides a summary of fruit detection work, Singh et al. (2010) present a method 
for detecting and classifying fruit in apple orchards and Swanson et al. (2010) use the shading on the 
curved surfaces of oranges as a cue for detection. 

Canopy Size Measurement 
The interaction of location, cultural practices, vine spacing and training system determines canopy 
architecture and density and hence canopy microclimate and performance. This significantly impacts fruit 
maturation, composition and date of harvest (Dokoozlian and Kliewer 1995; Bergqvist et al. 2001; Spayd 
et al. 2002). Measuring the canopy size during the growing season can give the vineyard manager 
information they need to make necessary manipulations to their vines to optimize their crop. 

We use laser range scanners mounted to utility vehicles to scan the canopy of the vines, generate a 
registered 3D model, convert the model into an occupancy map representation and extract a measure of 
the canopy size. 

Sensing Hardware 

Our sensing approach is to use two SICK LMS laser range scanners, that each generate a 2D scan 
pattern at 0.5 degree increments over a 180 degree field of view. We mount both scanners sideways 
generating a vertical pattern; one low on the vehicle at a height of 0.5m and one mounted high at a height 
of 1.6m as shown in Fig. 2. The high and low mount points increase the visibility of the canopy that 
otherwise with one scanner might have been restricted by occlusions. Each laser scanner generates 75 
scans per second, which as we move through the vineyard we register into a 3D scan of the canopy. The 
registration is performed using a Trimble GPS/INS unit that gives the full 6 degree-of-freedom pose of the 
vehicle. Calibrating the relative position and orientation of the scanner with respect to the GPS/INS unit 
enables the laser range points to be projected into world coordinates. 

The projection of the scan points into the world frame generates a dense 3D point cloud of the canopy as 
shown in Fig. 3. The 3D point cloud as a representation, whilst being high resolution, has two separate 
problems. First, it is an incredibly fine-grained representation, which obviously is a benefit, but its sheer 
size is difficult to store and process computationally. Second is that the variability of the velocity of the 
vehicle driving up the rows and the distance of the vehicle from the canopy will cause unwanted variability 
in the density of the 3D points. If nothing is done to account for this variability, it will translate into 
disturbances in the extracted measurements 
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Figure 2: Image illustrating the vehicle and sensors used for canopy size measurements. of canopy size.  

  
Figure 3: Canopy scanning. Sideways mounted laser scanner generates a 2D line of range measurements (left). 
Integrating measurements over time as the vehicle moves gives a dense 3D scan of the vine canopy (right). 

3D Occupancy Grid 
To alleviate the density variability issues and to increase the compactness of the 3D representation we 
translate the 3D point cloud into a 3D occupancy grid. The grid is a discrete representation of the world in 
which each cell (voxel) represents a location in the world with a defined volume. Each grid cell is defined 
as either occupied or un-occupied, based upon whether one or more laser range measurements were 
recorded there. We use 50mm cubes as the size of each cell which gives a good balance providing 
enough fine detail to measure canopy size, whilst being much more efficient than a raw point cloud. The 
grid size is on the order of the combined errors due do laser resolution and global position registration. 

 
Figure 4: Example of occupancy grid for a 2 acre vine canopy block generated by laser scanners. Grid is colored 
according to height, ranging from blue at the vineyard floor to red at the highest point of the vines. 
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Registration to Individual Vines 
The next step to extracting canopy size measurements is to register the 3D representation to specific 
rows and specific vines in the vineyard. We do this by manually tagging a time when the vehicle just 
starts to enter a row to scan the vines, and also tag the time as it leaves the row. The time-stamps are 
synchronized against the GPS device that gives the start and end locations of each row that was 
scanned. The vines are equally spaced in most vineyards and therefore, by breaking up the 3D 
representation from the start to the end according the vine spacing we know which part of the 3D 
occupancy grid belongs to which vine.  

  
Figure 5: Using information extracted from the GPS enables registration of the 3D-occupancy grid to specific rows 
and vines in the vineyard. Vines are planted in straight rows at 6 feet spacings and registration can be performed 
automatically, once the start and end location of the vines are known. 

Canopy Size 
The final stage is to analyze the 3D occupancy grid for a given vine and generate a size measure. There 
are different options here for measurement of canopy size and ultimately a grower may want multiple 
different measures. There are three obvious measures of canopy size that are known to be useful in 
evaluating a vine’s performance. These include the exposed leaf area, the shaded leaf area and the 
combination of the two being the total leaf area. The exposed leaf area is a measure of the leaves, which 
positively contribute to the vines health, the shaded area being the measure of leaves that do not 
photosynthesize any light and essentially act as a sink, draining nutrients from the vine without positively 
contributing the vine. These two measures are the ultimate desire to have a lucid measure of canopy 
performance.  

In reality these two measures are difficult to obtain at any meaningful scale. The only true method that 
presently exists to obtain accurate measurements of both shaded and exposed leaf area is to mark the 
exposed leaves with spray paint, destructively remove all the leaves from the vine, sorting into exposed 
(those with paint) and shaded (those with no paint), and measure their area either manually by laying 
them out side by side or by using a machine which takes leaves as input on a conveyor belt and sums up 
their area.  

The existing measurements that we can use as a groundtruth on a suitable scale are approximations of 
total leaf area. Total leaf area is a common measure of the vine size and vigor. The traditional measure 
used for decades is the winter pruning weight and a more resent approach is the percent shaded area on 
vineyard floor at solar noon. 

Our approach to measuring the vine size is taking the volume of the occupied cells in the 3D occupancy 
grid for a given vine. We assert that this measure is a valid approximation of total leaf area as our 
scanners, mounted sideways on the vehicle will see both the exposed leaves and also many shaded 



 

7 

leaves as many scan points penetrate between the gaps of the exposed leaves. Our approximation of 
total leaf area – the volume of occupied cells in our 3D grid – we validate against the winter pruning 
weight that is an established approximation of the total leaf area. We present details on this validation 
later in the results section. 

Crop Size Measurement 
We deploy a sideways-facing camera and lighting on a small vineyard utility vehicle to detect the grape 
berries and predict the harvest yield – the crop size. For our experiments we use a Canon SX200IS, 
mounted facing sideways at the same height of the fruit zone, capturing images of the crop. The camera 
is set in continuous capture mode, recording images at 3264 x 2448 resolution, at approximately 0.8Hz. 
We mount halogen lamps facing sideways, illuminating the field of view of the camera to improve the 
lighting of the fruit-zone, which is often in the dark shadows of the canopy. The camera vehicle is driven 
along the rows in the vineyard capturing images at approximately 0.5m/s. The images capture the vines 
and are processed with our algorithm to detect and count the crop. In traditional vineyard yield estimation 
the crop components that are measured to derive a final estimate are:  

1. Number of clusters per vine (60% of the yield variation)  
2. Number of berries per cluster (30% of the yield variation)  
3. Berry size (10% of the yield variation)  

These three components combine to describe all the variation in harvest yield. Current practice is to take 
samples of each of these components to compute an average and compute the final yield. We take an 
approach to estimate the first two of these items together in one measurement – that of the number of 
berries per vine. The reason being that it is difficult, especially late in the season, to delineate the 
boundaries of clusters within images. However, it is possible to count the total number of berries seen, 
hence combining the two components – number of clusters per vine and berries per cluster – into one 
measurement: berries per vine. An interesting observation can be drawn that humans are better at 
counting clusters per vine and weighing individual clusters, whereas conversely it seems robotic sensing 
struggles to accurately count mature grape clusters. Instead it is easier to use robotic sensing to count 
the number of berries on vine, a measure that would not be possible for a human to directly produce. 

Our approach does not attempt to measure berry weight. However, we account for 90% of the harvest 
yield variation with berries per vine (Clingeleffer 2001). Furthermore, instead of taking a small sample and 
extrapolating, we aim to estimate non-destructively the specific yield at high resolution across the entire 
vineyard. Hence, we will not introduce sampling errors into the process. Our algorithm to detect the 
berries in imagery has three distinct stages:  

1. Detecting potential berry locations with a radial symmetry transform  
2. Identifying the potential locations that have similar appearance to grape berries  
3. Group neighboring berries into clusters  

Detecting Potential Berry Locations with a Radial Symmetry Transform 
The first step of our algorithm is to find points with a high level of radial symmetry as these points are 
potential centers for grape berries, see Fig. 6. To find these points, we use the radial symmetry transform 
(Loy and Zelinsky 2003). The algorithm is robust to the issues of lighting and low color contrast, which 
cause problems for the existing crop detection techniques that rely on simple color discrimination 
(Jimenez et al. 2000, Dunn and Martin 2004). The approach detects the centers of berries of all colors, 
even those that are similarly colored to the background leaves. 

The radial symmetry transform requires us to know the radii of the berries as seen in the image ahead of 
time. The berry radii (in pixels) are dependent on the focal length of the camera, actual berry size and the 
distance from the camera. The focal length is kept fixed in our tests and the vehicle maintains a relatively 
constant distance from the vines. There is still variation in the radius the berries appear in the image from 
differing berry sizes and also some variation in location within the vine. We account for this variation by 
searching for radially symmetric points over a range of possible radii, N. Individual radii are denoted as n. 
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The transform first computes the locally normalized gradient g with magnitude and orientation information 
at each image pixel. In a Hough Transform like setup, each edge pixel p, with a gradient value above a 
threshold T votes for possible points of radial symmetry ps(p) given by:  

         ps(p)=p±n 
g(p)

||g(p)||. (1) 

For each radius n, these votes from the edge pixels are counted in a vote image Fn, which is then 
smoothed out with An, a 2D Gaussian filter, to produce Sn, the radial filter response at radius n. These 
filter responses at different radii are then combined to form the overall radial filter response S which is 
given by.  

    Sn=Fn*An (2) 
S=maxn�NSn (3) 

We compute local maxima in the response image S with a non-maximal suppression, and threshold to 
find the potential centers. We choose the threshold to ensure as many berry centers are detected as 
possible at the expense of admitting many false positives. We use the following stages in the algorithm to 
filter out the false positives. 

Classifying Interest Points Appearing Similar to Berries 
The next stage in our algorithm is to classify the detected points that appear most like grapes, see 
Fig. 6(b). We first take a patch in the image around each detected center. The patch size has a radius 
defined by the previous radial symmetry detector step. We then compute features from that image patch. 
The features we use are a combination of color and texture filters, which combine to form a 34 
dimensional feature vector. We use the three RGB channels, the three L*a*b color channels and Gabor 
filters with 4 scales and 6 orientations. The features are not chosen specifically for the grape detection 
task – we use generic low-level image features. 

We take a small number of training samples from our datasets, by selecting a random subset of images 
and manually define in the images which regions have grape berries. We compute our features in these 
regions that correspond to the positive examples of the appearance of berries. For negative examples we 
compute features at radially symmetric interest points outside of our defined crop areas. 

Given an input image we take each radially symmetric interest point, compute the feature vector, and 
apply the k-Nearest Neighbors algorithm. The k-Nearest Neighbors algorithm computes the distance in 
feature space to every point in the training set and determines whether the nearest neighbors are positive 
berry examples or negative. If the k closest positive examples are closer than the k closest negative 
examples, that interest point is classified as a berry. We use a value of three for k, which empirically 
seems to function appropriately.  

Group Neighboring Berries into Clusters 
After classification of the interest points, a small number of false positives still remain. Most of the 
remaining false positive detections are isolated while grape berries naturally occur in clusters so we apply 
contextual constraints that dictate that there should be a minimum number of berries in a cluster. We 
cycle through each classified berry, computing the distance to every other berry, and remove berries that 
do not have at least 5 other berries within their immediate neighborhood, which we define as a radius of 
150 pixels. The process results in the clustered berries shown in Fig. 6(c).  
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(a) Detect Berry Locations with Radial Symmetry Transform 

 
(b) Identify Locations with Similar Appearance to Grape Berries 

 
(c) Group Neighborhoods of Berries into Clusters 

Figure 6: Example images showing the functioning of our visual berry detection algorithm on a Gerwurztraminer vine. 
Input image is seen in Fig 1. (a) potential berry locations in the image that have been detected as having radial 
symmetry. (b) points marked blue have been classified as having appearance similar to a berry. (c) berries that 
neighbor other classified berries are clustered together. 

Results  
Datasets 
The results generated in this paper are from three different grape varieties – Concord, Gewurztraminer, 
Traminette and Riesling. Canopy size experiments were only on Concord due to ground truth availability. 

For validation of our canopy size measurements, a two-acre, high-wire (6”) cordon trained Concord 
vineyard was used to represent a sprawling canopy system. During the winter of 2009/10, vines were 
manually pruned and dormant cane pruning weights collected on 1,250 vines. Between 50-70 days after 
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bloom (full canopy development), vehicle-mounted laser scanners were used to collect canopy data that 
were further processed and compared to vine size information.  

The Gerwurztraminer dataset was collected just before véraison, before color development, and the 
berries were green in color, see Fig. 1. The Gerwurztraminer dataset was collected from a commercial 
vineyard and therefore we did not have access to the harvest crop weights. Only 5 vines were included in 
the dataset and we used it purely for developing the berry detection algorithm. 

The Riesling and Traminette datasets were collected from an approximately one acre plot of these Vitis 
vinifera varieties. The Riesling cultivar is a ‘White Riesling’ Vitis vinifera and the Traminette is an 
intraspecific hybrid. We used four rows of Traminette vines and four rows of Riesling varieties, 224 vines 
in total. The Traminette were at 8ft spacing and Riesling were at 6ft spacing, which totaled 450m of vines.  

The vines in this acre plot were vertically shoot positioned and basal leaf removal was performed in the 
cluster zone, a practice performed by vineyard owners to expose the fruit to the sun to change the flavor 
characteristics of the grapes. The basal leaf removal also makes yield estimation feasible towards the 
end of the growing season because the occluding canopy is removed from the fruit-zone. On the 
Traminette vines the basal leaf removal was performed just on the East facing side of the row and on 
both sides of the Riesling vines. Our tests captured images from the East side of the rows. Despite not all 
of the crop being visible from the one side, we calibrate our measurements from a portion of the harvest 
data, which takes into account the percentage of the grapes that were not visible.  

The Traminette and Riesling vines vines are white grape varieties, the images of the crop were collected 
post-véraison, and even at this late stage the fruit still had similar coloring to the background of leaves. 
Similarly colored clusters and leaves are challenging and demonstrate the ability of our shape and texture 
approach to detect the crop amongst the canopy. 

Canopy Size 
Scanning laser data produced canopy volume information with a linear correlation of 0.65 with vine 
pruning weight. The laser and hand collected data and correlation is displayed in Figs. 7-9.  

  
Figure 7: The winter pruning weights of the individual vines can be compared to the canopy scanning measurements. 
This top-down illustration gives a visual comparison between the two types of measurement. Left: The canopy 
pruning weight is visualized from black to red, where black is near zero weight and red is a large weight (which is 
around 5 pounds). Right: The canopy scan is rendered over the top as shades of green, where bright green 
represents high scan density in that vertical column in the occupancy grid and dark green is low-density. Inset: Zoom 
view of the comparison between scan and pruning weight. The gap in the scan clearly correlates with a near zero 
pruning weight, this is most likely the location of a dead vine. 
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Figure 8: Correlation between vine canopy volume measered by the laser system and hand measured pruning 
weights. Data displays a strong relationship (r2=.65), hence the ability to use laser volume as a yield predictor.   

  
Figure 9: Example of of using laser canopy volume measurement to detect missing vines. 

Berry Detection Performance 
We first evaluate the performance of our berry detection algorithm, by selecting five images from each of 
the three different datasets; Gerwurztraminer, Traminette and Riesling. We processed the images with 
the berry detection algorithm and also manually counted detection statistics, presenting these results in 
Table 1. These show that our algorithm detects a minimal number of false berries. However, it is 
conservative, it does not detect a sizeable percentage of berries that are visible in the images and 
therefore has a high false negative count and therefore a moderate recall rate. 

To gain an understanding of what part of the algorithm are most responsible for the false negatives 
detections we break-down the false negatives into the three stages of the algorithm; False detections that 
are not detected by the radial-symmetry detector, those that are misclassified, and those that are not 
clustered to neighboring berries. Table 2 presents the false negative breakdown by algorithm stage. The 
table shows that around 60% of all missed detections are caused by the radial symmetry transform, 
around 30% are classified as non-berry and only 10% of the false negatives are to be blamed on the 
clustering. We show in the following section that, even with these false negatives, we can still acquire 
accurate yield prediction because of the high precision rate. However, to further improve performance we 
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could look at modifying the radial symmetry transform to improve the number of berries it can detect 
without drastically increasing the false detections.   
Table 1: Berry Detection Statistics. Berry count – The number of berries reported by the algorithm. True positives – 
The number of berries detected that were actual berries. False positives – The number of false berry detections. 
False positives – The number of berries visible in the image that were not detected. Recall – Percentage of visible 
berries detected. Precision – Percentage of detections that were berries. 

Variety Berry Count True Positives False Positives False Negatives Recall Precision 

Gerwurztraminer 1073 1055 18 354 74.9% 98.3% 

Traminette 1116 1096 20 658 62.8% 98.2% 

Riesling 784 762 22 657 53.7% 97.2% 

Overall 2973 2913 60 1659 63.7% 98.0% 

Table 2: Break-down of False Negatives 

Variety Not-detected Mis-classified Not-clustered 

Gerwurztraminer 51.7% 31.9% 16.4% 

Traminette 73.9% 16.0% 10.0% 

Riesling 53.9% 40.2% 5.9% 

Overall 61.1% 29.0% 9.7% 

Yield Estimation 
For the yield estimation results, we compare our berry counts against actual harvest weights collected 
from the Traminette and the Riesling datasets. First, we register images together, and assign registered 
images to specific vines by defining the boundaries of the vines within the images, cropping-out 
overlapping content to avoid double counting. We conduct this process manually, but this could be 
performed automatically if we had in place a localization system, such as GPS and odometry system, 
which would be able to register data based on the fixed spacing of the vines. See Fig. 11. for examples of 
our automated berry counts being compared to the harvest data, the row and vine number, the harvest 
crop weight, and the detected berry count are displayed over the images. Cluster counts are also 
displayed, however our automated cluster counts were inaccurate because of the difficulties determining 
separate clusters – late in the season clusters tend to grow over each other. We focus on the berry 
counts in this work because they produce more accurate yield estimates.  

Figure 11: Example showing berry detections for the Traminette (left) and Riesling (right) varieties used in the yield 
estimation experiment. Detected berries are highlighted by a red contour. The row and vine number, the harvest crop 
weight, the cluster counts and the berry count are displayed over the images. 

Once registered to specific vines, we compare our automated berry counts with the harvest crop weights. 
Our automatically generated berry counts produced a linear relationship with actual harvest crop weights 
with correlation score r2 = 0.74. Fig. 12 shows the data, correlation and the distribution of measurements.  

We saw in Table 1 that our recall rate is not high and we also know that occlusions will cause further 
berries to not be counted by our algorithm. Despite these issues we still get good correlation to the 
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harvest weights. Reasons that our measurements achieve good correlation are first through the high 
precision of our detection algorithm which rarely counts false positives and also because the occlusion 
level and the percentage of visible berries that are missed has reasonable constancy across the vineyard. 
Further improvements to the detection algorithm and incorporating an estimate of any variations there 
may be due to occlusion will only improve the correlation score. 

Finally, we evaluate the accuracy of our estimates in terms of predicting harvest weight. We fit a function 
to a part of our dataset that provides a mapping from berry count to harvest weight, and calibrates for the 
berries that are out of view and missed by the detection algorithm. We calibrate the function using two 
rows of data (either 48 vines for Traminette or 64 vines for Riesling), and apply the function to the other 
rows’ berry counts.  

  
Figure 12: Correlation between our detected berry count and harvest crop weights gives a correlation score of r2 = 
0.74. The box-plot marks show the distribution within the measurements, the green line represents a linear fit and 
each of the blue data points represents the measurement of a vine, for a total of 224 vines. By comparison, the 
typical yield prediction approach would take a measurement at a small fraction of the vines and extrapolate, whereas 
we can measure every vine. 

  
Figure 13: Graph showing our predictions of the harvest weight of rows in a vineyard. Rows 1 to 4 have 24 
Traminette vines each. Rows 5 to 8 have 32 Riesling vines each. Predictions are generated from the functions 
mapping berry count to crop weight that were calibrated on data from other rows. Our yield estimates have a mean 
error of 9.8% of the weight of the row. Producing yield predictions at this accuracy at the resolution of single row 
surpasses the coarse sampling approaches currently used in vineyards. 

Once we have functions calibrated from portions of our data we evaluate how accurate our berry counts 
are at predicting the total weight of other rows of vines for which we have not calibrated our 
measurements. Fig. 13 presents a graph of the predicted versus actual harvest weights for four rows of 
Traminette and four rows of Riesling vines. The average error of these results is at 9.8% of the eventual 
actual harvest weight. An estimate of harvest yield generated taken from measurements at every single 
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vine and achieving 9.8% accuracy for a row, already exceeds what is possible with current practices that 
are restricted to very coarse sampling across a vineyard. 

Conclusion and Future Work 
We have demonstrated that laser sensing and computer vision can provide high-resolution automated 
canopy volume and crop yield estimates for vineyard management. For canopy volume we demonstrated 
laser based volume measurement that showed strong correlation with dormant pruning weight, the 
traditionally used manual indicator. For crop yield we combined traditional measurements of clusters per 
vine and berries per cluster, with a single estimate of berries per vine. The number of berries on a vine is 
known to account for 90% of the variation in harvest yield. We developed an algorithm to detect individual 
berries in camera images and evaluate in actual vineyard conditions. Unlike other image detection 
approaches, our approach is not reliant of color contrast, and can detect berries of all colors, even those 
that are similarly colored to the background of leaves. 

We evaluated our approach on what we think is the largest automated crop imaging experiment 
demonstrated in a vineyard. On approximately 450m of vines we compute an automated estimate of the 
harvest yield using measurements taken from imagery and compare against the actual yield, meticulously 
measured by hand at harvest time. We compare our measurements to yield and show we can estimate 
the weight of a row of vines with 9.8% error.  

Our results have significance on the future of vineyard operations through our ability to make yield, 
volume and efficiency predictions with high fidelity opening up the possibility of vineyard owners making 
precise adjustments to their vines, where previously they have been restricted to using cumbersome and 
inaccurate measurements. 

There are a number of avenues of work to further improve our approach. For canopy volume a priority is 
reducing the use of high-end GPS/Inertial sensing. For yield, the first priority is to find ways to improve the 
recall rate of the current berry detection system. An extension would be to augment the berry counts with 
a method that measures berry size, which is known to account for the remaining 10% of the variation in 
final yield. In other ongoing work we hope to evaluate how much the function correlating visible berry 
counts to yield varies by variety, by trellis structure, by differing times of the growing season, and from 
year to year. We also will look to develop an approach to count grape clusters early in the season, even 
before berries have formed, to give vineyard managers information with maximum time before harvest to 
make the necessary adjustments to their vines. 
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