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Abstract. Tractors are the workhorses of the modern farm. By automating these machines, we can increase
the productivity, improve safety, and reduce costs for many agricultural operations. Many researchers have tested
computer-controlled machines for farming, but few have investigated the larger issues such as how humans can
supervise machines and work amongst them. In this paper, we present a system for tractor automation. A human
programs a task by driving the relevant routes. The task is divided into subtasks and assigned to a fleet of tractors
that drive portions of the routes. Each tractor uses on-board sensors to detect people, animals, and other vehicles in
the path of the machine, stopping for such obstacles until it receives advice from a supervisor over a wireless link.
A first version of the system was implemented on a single tractor. Several features of the system were validated,
including accurate path tracking, the detection of obstacles based on both geometric and non-geometric properties,
and self-monitoring to determine when human intervention is required. Additionally, the complete system was tested
in a Florida orange grove, where it autonomously drove seven kilometers.
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1. Introduction

Tractors are used for a variety of agricultural oper-
ations. When equipped with the proper implements,
these mobile machines can till, plant, weed, fertil-
ize, spray, haul, mow, and harvest. Such versatility
makes tractors prime targets for automation. Automa-
tion promises to improve productivity by enabling the
machines to drive at a higher average speed, improve
safety by separating the human from the machine and
minimizing the risk of accident, and reduce operational
costs by minimizing the labor and maintenance needed
for each machine.

Many researchers have investigated the automation
of mobile equipment in agriculture. There are two basic
approaches. In the first approach, the vehicle drives a
route based on an absolute reference frame. The route
is planned by calculating a geometric coverage pattern
over the field or by manually teaching the machine.
The route is driven by using absolute positioning sen-
sors, such as a global positioning system (GPS), mag-
netic compass, or visual markers. The planned route is
driven as programmed or taught, without modification.
This approach is technically simpler, but it suffers from

an inability to respond to unexpected changes in the
field.

Using this approach, O’Conner et al. (1996) demon-
strated an autonomous tractor using a carrier phase GPS
with four antennae to provide both position and heading
in the field. The system was capable of positional accu-
racy on the order of centimeters at straight-line speeds
over 3 km/hour. Noguchi and Terao (1997) used a pair
of static cameras in the field to track a visual marker
on a tractor and triangulate its position. Additionally,
the tractor was equipped with a geomagnetic direction
sensor. The system was able to measure the tractor’s
position to an average error of 40 cm for fields up to
100 meters long. Erbach et al. (1991) used a pair of
radio beacons to triangulate position in the field with
errors of approximately 50 cm.

In the second approach, the vehicle drives a route
based on a relative frame of reference. The route is
planned by calculating a coverage pattern triggered by
local reference cues, such as individual plants, a crop
line, or the end of a row. The route is driven by using
relative positioning sensors, such as a camera to detect
crop rows or dead-reckoning sensors like odometry,
accelerometers, and gyroscopes. The route is driven
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as topologically planned, with exact position deter-
mined by the relative cues. This approach enables a
machine to tailor its operation to individual plants as
they change over time (e.g., applying more pesticides
on larger trees), but it is technically more difficult.

Using this approach, Billingsley and Schoenfisch
(1995) demonstrated an autonomous tractor driving in
straight rows of cotton. The system used a camera with
software for detecting the crop rows. It was able to drive
on straight segments at 25 km/hour with a few centime-
ters of error. Gerrish et al. (1997) also used a camera
to guide a tractor along straight rows. They reported
results of 12 cm accuracy at speeds of 13 km/hour.
Southall et al. (1999) used a camera to detect individual
plants, exploiting the known planting geometry. These
measurements were combined with odometry and iner-
tial sensors. The system was used to guide an outdoor
mobile robot for a short distance at a speed of about
2 km/hour.

More recently, researchers have investigated com-
bining the two approaches. Ollis and Stentz (1996,
1997) and Pilarski et al. (1999) demonstrated an au-
tonomous windrowing machine. The system used two
modes of navigation: (1) a camera with crop line de-
tection software; (2) a differential GPS integrated with
odometry and a heading gyro. The windrower cut hun-
dreds of acres of alfalfa fully autonomously at aver-
age speeds of 7 km/hour. The machine was able to cut
swaths of crop and execute a spin turn at the end of the
row. The system was steered by only one navigation
mode at a time, with the other serving as a trigger or
consistency check. Zhang et al. (1999) also used abso-
lute and relative sensors, namely a camera, GPS, and
heading gyro, to guide an autonomous tractor. The sys-
tem used a rule-based method to process the sensor data
and steer the machine. The system was able to drive the
tractor at speeds of 13 km/hour with less than 15 cm of
error.

Although full autonomy is the ultimate goal for
robotics, it may be a long time coming. Fortunately,
partial autonomy can add value to the machine long
before full autonomy is achieved. For many tasks, the
proverbial 80/20 rule applies. According to this rule,
roughly 80% of a task is easy to perform and 20% is
difficult. For the 80% that is easy, it may be possible
for a computer to perform the task faster or more ac-
curately (on average) than a human, because humans
fatigue over the course of a work shift. The human can
remain on the machine to handle the 20% of the task
that is difficult. We call this type of semi-automation

an operator assist. If the cost of the semi-automation
is low enough and its performance high enough, it can
be cost effective.

If the percentage of required human intervention is
low enough, it may be possible for a single human to
supervise many machines. We call this type of semi-
automation force multiplication. Since the human can-
not be resident on all machines at once, he/she must
interact with the fleet over a wireless link.

The force multiplication scenario raises some chal-
lenging questions. How should operations be divided
between human and machine? What is the best way
for the human to interact with the machine? How can
the machine be made productive and reliable for the
tasks it is given? These are questions that address au-
tomation at a system level, that is, a system of people
and computer-controlled machines working together.
To date, the research literature has focussed primar-
ily on achieving full autonomy, steadily improving the
speed and reliability metrics, but without addressing
the larger, system-level questions.

This paper explores these questions in the context
of a semi-autonomous system for agricultural spray-
ing operations in groves, orchards, and row crops. This
application is well motivated, since spraying is per-
formed frequently and is hazardous to both the vehicle
operator and other workers in the field. We developed a
computer-controlled John Deere 6410 tractor equipped
with a GPS-based teach/playback system and camera-
based obstacle detection. In April, 2000, we transported
our tractor to an orange grove in Florida to collect data
and test the autonomous navigation system. For one of
the tests, the system was taught to drive a 7 kilometer
path through the grove. It was then put in autonomous
mode and drove the path at speeds ranging from 5 to
8 km/hour, spraying water enroute (see Fig. 1).

In this paper, we present an overview of the system
and approach, and then we detail the user interface, nav-
igation, and obstacle detection components. Finally, we
summarize results and draw conclusions.

2. System Overview

2.1. Problem Characteristics and Tenets

In order to field semi-autonomous tractors in a force
multiplication scenario, the machines must be produc-
tive, reliable, safe, and manageable by a human su-
pervisor. In general, this is a very difficult problem to
solve. Fortunately, for many tractor operations, we can
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Figure 1. Semi-autonomous tractor spraying a grove.

take advantage of problem characteristics that simplify
the task. From our analysis of the problem, we devel-
oped a system based on the following observations and
tenets:

• Take Advantage of Task Repetitiveness: tasks like
crop spraying, tillage, and planting entail driving up
and down the same rows for each application. Given
the repetition, the robotic tractors can be directly
“taught” how to perform the task by observing a hu-
man operator. Furthermore, the tractor can learn and
record the expected appearance of the terrain at each
point along the route to detect obstacles or unex-
pected circumstances.

• Err on the Side of False Positives: when tracking a
path or detecting obstacles, there are two types of
mistakes that can be made: false positives and false
negatives. For a false positive, the machine sees a

problem where there are none. For a false negative,
the machine fails to see a problem where there is
one. Engineering the system to avoid one type of
mistake increases the probability that the other type
will occur. The ramifications of false negatives are
more severe than false positives; therefore, we can
guard against them by admitting more false positives,
provided they are not so frequent that they severely
disrupt the machine’s operation.

• Employ Humans as Remote Troubleshooters: rather
than dividing the tractor’s tasks between human and
computer, the computer is in control for all tasks with
the human serving as a troubleshooter, namely clas-
sifying “positives” as true or false. Humans are quite
good at quickly analyzing a potential problem and
recommending a course of action. Short-term and in-
frequent human involvement is essential for imple-
menting a successful force multiplication scheme.

2.2. System Scenario

For crop spraying, tractors apply the chemicals via a
towed airblast or boom sprayer. The machines move
slowly (e.g., 2 to 8 km/hour) up and down rows for
each application. Periodically, the tractors drive to an
irrigation ditch or rendezvous with a nurse tank to refill
the chemical. The machines do not expect to encounter
obstacles, but people and animals can move into harm’s
way, other vehicles can be left parked in the field, and
gopher holes and other terrain hazards can suddenly
appear.

For our complete solution, we envision a single hu-
man operator supervising a fleet of four or more tractors
with sprayers. The tractors are equipped with position-
ing and obstacle avoidance sensors and communicate
with the supervisor over a wireless radio link. Once
per season (less often for tree applications), a human
operator teaches the tractors the layout of the field by
manually driving up and down the rows and along ac-
cess routes. The operator presses buttons on a console to
label route segments as “access route”, “area to spray”,
etc. The tractor records this information along with po-
sitioning/speed data and scene appearance/range data
for each route segment to build a complete “driving”
map for the farm.

During execution, the system divides the task into
portions for each tractor to execute. Each tractor drives
a route segment by tracking positions and speeds stored
in the map with its on-board positioning sensors. This
process is assisted by a secondary navigation system
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Figure 2. Human interface to fleet of tractors.

based on the tractor’s visual sensors. While driving,
each tractor sweeps the terrain in front with its sensors
to check for obstacles. This process is guided by the ap-
pearance/range data stored in the route segment. When
a tractor detects an obstacle in its path, it stops and
transmits an image of the scene to the human operator
(see Fig. 2). If the operator disagrees about the pres-
ence of an obstacle, or if the obstacle has moved out
of the way, the operator signals the tractor to resume;
otherwise, the operator travels to the stopped machine
to rectify the problem. Periodically, the tractors deplete
their chemical tanks and signal the operator. The oper-
ator meets the tractor at a rendezvous point, the tank is
re-filled, and semi-autonomous operation is resumed.

We expect that this system will increase the pro-
ductivity of each worker by at least a factor of four.
Additionally, the tractors will be able to sense the trees
and spray chemicals only where they are needed, thus
reducing operational costs and minimizing negative en-
vironmental impact.

2.3. Experimental Test Bed

We have implemented many components of the full sys-
tem described in the previous section. For our tests, we
are using a computer-controlled, 90-horsepower Deere
Model 6410 tractor (see Fig. 1). The tractor is equipped
with a pair of stereo cameras for range and appearance
data; a differential GPS unit, fiber optic heading gyro,
doppler radar unit, and four-wheel odometry for posi-
tioning data; a pair of 350-Mz Pentium III processors

running Linux for on-board processing, and a 1 Mbps
wireless ethernet link for communication with the hu-
man operator. These sensors are described in more de-
tail in the following sections.

Our approach is to develop the components neces-
sary for a single tractor first, then replicate and integrate
the components to produce a multi-vehicle system.
Section 3 describes the operator console for training
and supervising a semi-autonomous tractor. Section 4
describes the position-based navigation system for
driving route segments. Section 5 describes the on-
board obstacle detection and safeguarding. Section 6
describes conclusions.

3. Operator Console

In our scenario, the human operator interacts with the
system during both the training phase and the oper-
ational phase. During training, the operator drives to
a section of field and uses a teach interface to collect
datapoints while manually driving a desired path. The
interface shows the path as it is being recorded and dis-
plays the current status of the system. The system only
allows paths to be recorded when it has a good posi-
tion estimate. The operator also presses buttons during
the teaching phase to label various parts of the path as
“access route”, “area to spray”, etc. While teaching the
path, the operator can pause, resume, and change parts
of the path.

During full system operation, a single operator over-
sees a fleet of four tractors using a remote operator in-
terface. This interface includes status information and
live video from all four tractors, and it shows the trac-
tors traveling down their paths on a common map. If any
tractor has a problem, such as running out of chemical,
encountering an obstacle, or experiencing a hardware
failure, the interface displays a warning to the opera-
tor, shows pertinent information, and then he/she can
take appropriate action to solve the problem. In the
case of an obstacle, the system shows what part of the
image was classified as an obstacle, and the operator
decides whether it is safe for the tractor to proceed.
To help determine if the path is clear, the tractor has a
remotely-operated pan-tilt-zoom camera. If it is safe for
the tractor to continue, the operator can simply click on
a “resume” button and the tractor will continue its job.

We have implemented two interfaces that perform
many of the capabilities described above. Figure 3
shows a simple teach interface that can record a path
and display status information.
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Figure 3. Teach interface. Operator interface showing the path that
is being recorded and the status of the system while the system is
being taught a path.

Figure 4 shows the remote interface. The goal of this
interface is to allow both a simple global view of all
the tractors during normal operation as well as a fo-
cused view that clearly shows all relevant information
from a single tractor when there is a problem. Although
only one tractor is currently operational, the interface
is designed for four. In Fig. 4, the bottom left panel
shows live video coming from the tractor’s pan-tilt-
zoom camera. The space to the right is reserved for
video from the other tractors. This way, the operator
will be able to see at a glance what all of the vehicles
are doing. The upper half of the interface is switchable
between focused views of each tractor and an overall
map that shows all of the tractors together. Figure 4

Figure 4. Remote operator interface. Operator interface showing
focused view of a single tractor during playback, including video,
status, and location on the map. A global map view and focused
views for the other tractors are also available.

shows the focused view of the single operational trac-
tor. It contains a larger video image, a compass display
showing the vehicle heading, status information, and
controls for the pan-tilt-zoom camera. The map on the
right gives the location of the tractor, the previously
taught path, and the actual path the tractor has driven
autonomously so far. To give the operator context while
using the pan-tilt-zoom camera, the camera’s approx-
imate field of view is drawn on the map. Using our
wireless link, we also have the capability to remotely
start, stop, and resume after an obstacle is detected.

4. Position-Based Navigation

In our application, we are concerned with the absolute
repeatability of the tractor’s position as it drives over
a pre-taught path. Therefore, the path representation,
position estimation, and navigation are all performed
in a consistent world frame based on GPS. The control
point of our vehicle is located at the center of its rear
axle directly beneath the GPS antenna mounted on its
roof. This point is near the hitch of the tractor, so towed
implements follow a path similar to the results we show
for the tractor. We currently do not have the capability
to directly measure the position of a towed implement.

Position errors for a large vehicle such as a tractor
can potentially cause damage to the vehicle as well as
the surrounding environment. This dictates the use of a
highly reliable position estimation and control system
that is robust to sensor failures and can alert the opera-
tor if there is a problem that requires intervention. The
following sections describe how the position estima-
tion and path tracking algorithms used on our tractor
achieve this goal.

4.1. Position Estimation

As described in the introduction, other researchers
have automated agricultural vehicles. However, some
of these systems rely on a single sensor such as camera-
based visual tracking (Billingsley and Schoenfisch,
1999; Gerrish et al., 1997), or differential GPS (DGPS)
(O’Conner et al., 1996). With only a single sensor used
for localization, these systems must stop when a sensor
failure occurs, or else the vehicle could cause damage
because it does not know its correct position. Further-
more, without redundant sensors it becomes more diffi-
cult to detect when a sensor fails. Camera-based visual
tracking can fail because of many problems, includ-
ing changing lighting conditions, crop variation, and



92 Stentz et al.

adverse weather (Gerrish et al., 1997). DGPS also has
problems because it relies on radio signals that can lose
signal strength, become occluded, or suffer from mul-
tipath problems (Kerr, 1997; Neumann et al., 1996).
We have experienced these problems with DGPS, es-
pecially while testing in a Florida orange grove that had
trees taller than the antenna on our tractor.

To avoid the above problems, other researchers have
used combinations of complementary sensors, such as
DGPS, odometry, and visual tracking. These sensors
have been combined using a voting strategy (Pilarski
et al., 1999) or a rule based fusion module that looks
at information availability from the different sensors
(Zhang et al., 1999). While these methods can handle
a sensor failure for a short period of time, they do not
maintain a confidence estimate in their position esti-
mate, and therefore cannot make decisions about when
it is safe to continue. One solution to help ensure the ve-
hicle’s safety is to stop operation whenever it does not
have a good DGPS signal (Pilarski et al., 1999), but this
could result in extended downtime if the loss of DGPS
signal is due to the geometry of the environment.

Our tractor uses a redundant set of sensors that com-
plement each other. This redundancy allows the tractor
to detect sensor failures and combine multiple mea-
surements into a higher quality estimate. The primary
navigation sensor is a Novatel RT2 dual frequency real-
time kinematic carrier phase differential GPS receiver
capable of better than 2 cm standard deviation absolute
accuracy. This receiver uses an internal Kalman fil-
ter to output the uncertainty estimates on the measure-
ments (Neumann et al., 1996). The tractor also has a
KVH ECore 2000 fiber-optic gyroscope that precisely
measures the heading rate changes of the vehicle (stan-
dard deviation 0.0001 rad/sec), custom wheel encoders
that give a distance measurement that can be converted
into a forward velocity (standard deviation 0.47 m/sec)
and give a secondary measure of heading changes, and
a doppler radar unit that is commonly used on farm
equipment to measure forward speed (standard devia-
tion 0.13 m/sec) even with wheel slip. These sensors
are reliable and provide accurate differential informa-
tion but suffer from drift over time. By combining the
reliability of the encoders, gyro, and radar unit with the
absolute reference of the DGPS system, the tractor can
maintain an accurate position estimate that is robust to
periodic DGPS dropout.

We use an Extended Kalman Filter (EKF) to com-
bine the information from the different sensors de-
scribed above into a single position estimate while also

providing the uncertainty in that estimate. This uncer-
tainty is used to make decisions about whether the vehi-
cle can safely continue or if it needs assistance. Doing
this allows the tractor to continue operating during a
DGPS failure for as long as possible, given the position
accuracy requirements of the particular application.

Under the assumptions of white Gaussian noise cor-
rupted measurements and a linear system model, the
Kalman filter provides the optimal estimate (Maybeck,
1982). The EKF is an extension of the Kalman filter to
handle nonlinear system models by linearizing around
the current state estimate. The EKF utilizes a model of
the system to predict the next state of the vehicle. This
allows the filter to compare sensor measurements with
the expected state of the vehicle and reject sensor mea-
surements that are not consistent based on a likelihood
ratio test.

We chose to start with a simple 2D tractor model
and it has given us sufficient performance. The model
makes two important assumptions. It assumes that the
vehicle has the non-holonomic constraint that it can
only move forward, not sideways. It also makes a low-
dynamics assumption that the forward and angular ac-
celerations of the vehicle are essentially constant over
a single time step. Making these assumptions explicit
in the model allows the filter to reject measurements
that do not follow these assumptions.

The state vector in our model includes global po-
sition x , y, forward velocity v, global heading θ , and
heading rate θ̇ . The non-linear system model used in
the EKF that obeys the above constraints is given by
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wherev is a vector of white Gaussian noise representing
the uncertainty in the measurements. As mentioned ear-
lier, the DGPS receiver gives continuous estimates of
the uncertainty in its measurements, so these values are
used for the first two entries in v. The remaining entries
are constants found from static tests of the other sen-
sors. Equation (2) shows that the DGPS, radar, and gyro
give direct measurements of state variables. The rear
encoders on our vehicle measure wheel angular dis-
placements�αL and�αR but can be converted into for-
ward and angular yaw velocities using (Crowley, 1989)

vencoder = R(�αL + �αR)

2�T
(3)

θ̇encoder = R(�αL − �αR)

B�T
(4)

where R is the rear wheel radius, B is the track
(distance between the rear wheels), and �T is the time
interval. While these conversions can introduce noise
into the measurements, they allow easy integration
into the filter structure.

Using the noise estimates and models from Eqs. (1)
and (2), the EKF prediction and correction equations
(Maybeck, 1982) are run using whichever measure-
ments are available at a given time step. This is possi-
ble because the measurement errors in v are assumed
to be uncorrelated between sensors. At each time step,
the filter outputs an estimate of the state of the system
and its associated covariance.

Figures 5 and 6 show the behavior of our position
estimator for three different types of sensor problems:
outliers, dropout, and degradation. Figure 5 shows an
overhead view of a path driven by the tractor. Vari-
ous sensor problems were simulated during this run.
These problems are similar to actual problems we have
experienced with our DGPS unit, but simulating them
allows a comparison of the filter output to the actual po-
sition of the tractor as given by the DGPS. The dashed
line shows the DGPS baseline position measurement,
while the solid line gives the output of the filter. The
x’s are the DGPS measurements that were presented to
the filter. Every five meters along the path, an ellipse
representing the 1-sigma uncertainty in the position
measurement is plotted. Figure 6 shows the same in-
formation in a different format. The center line is the
difference between the position estimate and the DGPS
baseline as a function of distance along the path. The
upper and lower symmetric lines give the 1-sigma un-
certainty in the position estimate along the direction of
maximum uncertainty.

Figure 5. Position estimation. Overhead view of position estimate
during outliers, dropout, and sensor degradation. The dashed path is
the DGPS baseline, the x’s are the measurements presented to the
filter, the solid line is the filter output, and the ellipses give the 1-σ
uncertainty in the estimate.

Figure 6. Position estimation error. Center line is the difference
between the position estimate and the DGPS baseline. Surround-
ing lines give the 1-σ uncertainty in the position estimate along the
direction of maximum uncertainty.

Near the beginning of the run, two incorrect DGPS
measurements were given to the filter. However, since
the filter uses its internal uncertainty estimate to test the
probability of measurement validity, the filter was able
to reject these measurements as outliers. Measurements
are classified as outliers if they are beyond 3-sigma
from the current estimate. Figure 6 shows that neither
the estimate nor the uncertainty suffered from these
false measurements. Other false measurements such
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as excessive wheel spin causing misleading encoder
measurements are similarly filtered out. Prolonged out-
liers have the same effect as sensor dropout, which is
described next.

During the first turn, the filter stopped receiving
DGPS measurements. The estimate was then based
on dead-reckoning alone using the gyro, encoders, and
radar. The uncertainty ellipses in Fig. 5 and the uncer-
tainty lines in Fig. 6 show that the uncertainty of the
estimate integrates with distance (the uncertainty does
not grow linearly because of the curve in the path and
the nonlinear filter update). The uncertainty ellipses be-
come wider transverse to the path. This reflects the fact
that a small error in the heading becomes large after it
is integrated over a long distance. Using these uncer-
tainty estimates, the tractor can find the probability that
the vehicle has deviated beyond an application-specific
threshold, and stop the tractor if necessary. The remote
operator would be alerted to the problem and could
correct the situation. However, because DGPS dropout
is often caused by occlusion, the vehicle may be able
to reacquire DGPS if it can keep moving to a new lo-
cation. Figures 5 and 6 show this case. The tractor was
able to run on dead-reckoning long enough for DGPS
to return, at which point the estimate and uncertainty
collapsed to their previous levels before DGPS dropped
out.

After the second turn, the filter was given less pre-
cise DGPS measurements. Since our DGPS unit out-
puts estimates of the variance of its measurements,
the filter was able to incorporate the noisy measure-
ments correctly, and effectively low-pass filter them
when it combined the DGPS measurements with mea-
surements from the other sensors. Figure 5 shows that
the position estimate remained smooth and close to the
baseline despite the noisy measurements. As shown
in Fig. 6, the noisy DGPS measurements caused an
increase in the position uncertainty, but it remained
bounded because of the availability of absolute (noisy)
position measurements. Our DGPS receiver occasion-
ally gives measurements with increased noise such as
this when it has fewer satellites, it temporarily loses
differential correction signals, or during multipath sit-
uations. We have observed standard deviation estimates
up to 30 cm from the receiver, and our tests have shown
that the actual measurements normally have a some-
what smaller standard deviation than the receiver’s es-
timate of its uncertainty. The simulated measurements
shown in Figures 5 and 6 have a standard deviation of
30 cm.

Because the filter was designed to handle sensor
dropouts, our system degrades gracefully and will
continue to perform well using only DGPS measure-
ments to estimate the entire state vector. Without the
high bandwidth of the gyro, the heading estimate will
lag somewhat, but more importantly, a DGPS dropout
in this scenario would cause the tractor to stop immedi-
ately because there would be no other measurements to
provide backup information. If the dropout was caused
by the geometry of the environment, and the tractor
was forced to stop, there would be no chance of DGPS
recovery and human intervention would be required.

This section illustrates two important points. First,
using redundant sensors is advantageous because their
measurements can be combined to form a better posi-
tion estimate, and their measurements can be compared
to determine if a sensor is malfunctioning. Second, us-
ing a filter that determines the uncertainty in its estimate
allows the vehicle to continue driving autonomously
as long as it has determined it is safe to do so. As de-
scribed in Section 2.1, there is a trade-off between false
positives and false negatives. By setting the thresholds
conservatively, the filter is able to err on the side of
false positives, thereby gaining safety at the expense
of a few more interventions by the human operator to
check whether the tractor is off course or in a dangerous
situation.

Figures 5 and 6 show that despite the use of en-
coders, radar, and a gyro, the uncertainty in the posi-
tion estimate grows when DGPS measurements are not
available. This is because DGPS is the only absolute
measurement that does not suffer from drift. Also, the
majority of the uncertainty is due to errors in the ve-
hicle heading that are integrated over time. We plan
to improve this somewhat by incorporating data from
the other sensors on our vehicle: front-wheel encoders,
steering angle potentiometer, and a roll-pitch sensor
(this would eliminate many of the spikes in Fig. 6 that
were caused when the DGPS antenna on the roof of
the vehicle swung more than 10 cm to the side as the
vehicle rolled while driving through a rut) and experi-
menting with a more accurate vehicle model. However,
because none of these measurements are absolute, they
would still not bound the uncertainty to allow extended
runs without DGPS. To help solve this problem, we
plan to incorporate measurements of absolute head-
ing from camera images of the crop rows themselves.
These measurements will be incorporated into the filter
using outlier detection so that errors in the vision sys-
tem don’t corrupt the state estimate. We will also look
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into more advanced methods of fault detection and fault
handling.

4.2. Path Tracking

Given the nonlinear nature of an Ackerman steered ve-
hicle with an electrohydraulic steering system such as
a tractor, the control problem is not trivial. However,
simple controllers can give good results. One approach
is to use a proportional controller on a point ahead of
the vehicle (Billingsley and Schoenfisch, 1995; Gerrish
et al., 1997; Pilarski et al., 1999; Wallace et al., 1985).
Another approach is to linearize about the path, and
then use a PI controller (Noguchi and Terao, 1997),
a Linear Quadratic Regulator (O’Conner et al., 1996),
or a Feedforward PID controller (Zhang et al., 1999).
All of these approaches have given satisfactory per-
formance for the relatively low speeds that farm vehi-
cles normally travel. We have chosen to track a point
ahead on the path because it is simple to implement and
tune, and it has given good performance in a variety of
circumstances.

Because of the variety of maneuvers that a tractor
or other vehicle may need to execute, a general path
tracker was developed that can follow arbitrary paths
made up of points [x, y, θ ] assuming that the spacing
of the points is small relative to the length of the vehicle
and the curvature of the path is never greater than the
maximum curvature of the vehicle. The set of points
that make up the path are stored in a position based
hash table to allow fast retrieval of nearby points in
large paths. The vehicle can start anywhere on the path
as long as its position and orientation from the path are
within thresholds set for the application. The tracker
uses the position estimate from the Extended Kalman
Filter described in the previous section. For safety, the
tractor will not operate autonomously unless the posi-
tion estimate uncertainty is within thresholds.

The inputs to the vehicle are desired speed and cur-
vature, and our tractor has a low-level controller that
sets and maintains these two quantities. We placed the
origin of the tractor body frame at the center of the
rear axle, as shown in Fig. 7. This has the effect of de-
coupling the steering and propulsion because vehicle
curvature becomes determined by the steering angle
φ alone (Shin et al., 1991). The desired speed of the
vehicle can then be set by the application. The tracker
takes the desired path and the current state of the vehi-
cle and computes the curvature required to stay on the
path. A simple kinematic model that gives the change in

Figure 7. Pure pursuit. Diagram showing vehicle pursuing the goal
point on the path one lookahead distance away.

position [x, y, θ ] of the vehicle for a given velocity v

and curvature κ is

d

dt




x

y

θ


 =




v cos(θ )

v sin(θ )

vκ


 (5)

The tracker uses a modified form of the Pure Pursuit
algorithm (Amidi, 1990). The basic algorithm calcu-
lates a goal point on the path ahead of the vehicle, and
the tracker then pursues this point, much like a human
driver steers towards a point ahead on the road. This
goal point is located a distance one lookahead l away
from the vehicle. Figure 7 shows how the algorithm
works. The tracker finds the closest path point and then
walks up the path, interpolating to find the goal point
one lookahead distance away. The goal point is then
transformed into the vehicle’s coordinate frame to find
the y-offset d. It is shown (Amidi, 1990) that the cir-
cular arc that connects the vehicle to the goal point has
a curvature given by

κ = 2d

l2
(6)

Equation (6) shows that Pure Pursuit is simply pro-
portional control with the error signal computed one
lookahead in front of the vehicle. The recorded path
has heading information as well as position informa-
tion. We have found empirically that for the type of
paths that we are tracking, adding an error term between
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the current vehicle heading θ and the recorded heading
on the path θpath both increases controller stability dur-
ing path acquisition and reduces the error during path
tracking. This change is given in the following equation
for the curvature

κ = 2d + K (θpath − θ )

l2
(7)

where K is a tunable constant.
The kinematic model Eq. (5) shows that the state

variables integrate with distance traveled. This means
that when the vehicle has a high forward velocity, a
small change in curvature will result in large changes
in [x, y, θ ]. The curvature Eqs. (6) and (7) show that
increasing the lookahead distance l reduces the gain of
the tracker. These observations suggest that when the
vehicle has a higher forward velocity, a larger looka-
head distance should be used. Making the lookahead a
function of velocity provides a single path tracker that
works for the entire range of operational speeds.

Despite the simplicity of the tractor model and the
Pure Pursuit algorithm, the tracker has performed well
over a variety of speeds and through rough terrain.
Figure 8 shows a taught path recorded using the Teach
interface. Overlaid on the desired path is the actual path
that the tractor drove under control of the path tracker
at a speed of 5 km/hour. The error profile for this run
in Fig. 9 shows that the tracking error is the same for
straight segments and curved segments. The results for
an 8 km/hour run are similar but have errors of larger
magnitude. The Pure Pursuit algorithm does not take

Figure 8. Path tracking. Overhead view showing a taught path and
the autonomously driven path on top (the paths are only centimeters
apart, so they appear indistinguishable).

Figure 9. Path tracking error. Error between vehicle’s position es-
timate and recorded path using DGPS baseline. The lines represent
1-σ bounds for the error.

vehicle dynamics into account, and assumes that steer-
ing changes on the vehicle occur instantaneously. As
the speed of the vehicle increases, the vehicle dynamics
play a greater role, and the error of this algorithm in-
creases. However, for the operating speed ranges that
we are interested in, the errors have all been within
acceptable tolerances.

Table 1 gives a comparison of the errors at differ-
ent speeds. The errors were calculated by comparing
the vehicle’s perceived position to the recorded path
positions. Therefore, these numbers more accurately
reflect the error of the tracking algorithm than the true
error of the system. Since the overall repeatability of
the entire system is really what matters, we performed
a test to judge absolute repeatability. While teaching
the path in Fig. 8, we used a spray paint can mounted
on the bottom of the center rear axle of the tractor to
mark a line on the ground. Then, while the tractor au-
tonomously drove the path, a small camera mounted
next to the spray can recorded video of the line as the
tractor passed over it. From this video, we took 200 ran-
dom samples for each speed and computed the actual
error between the original path and the autonomously
driven path. This gives an indication of the total error
in the system because it includes errors in the position
estimate as well as errors in the path tracker. This test
was performed on a relatively flat grassy surface that
contained bumps and tire ruts from repeated driving of
the tractor.

The results of this analysis are shown in Table 2.
The similarity between the results in Tables 1 and 2
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Table 1. Path tracking error using DGPS baseline.

Speed Bias (cm) 1-σ (cm) Max (cm)

5 km/hr 0.67 3.50 11.58

8 km/hr 1.20 8.78 28.35

Table 2. Path tracking error using ground truth camera.

Speed Bias (cm) 1-σ (cm) Max (cm)

5 km/hr 1.47 3.18 7.62

8 km/hr 0.93 6.70 13.34

verify the repeatability of the position estimation sys-
tem as well as the path tracking algorithm. The ground
truth results actually have lower variance and maxi-
mum deviation values than the DGPS baseline results.
This is because the path tracking algorithm acts to fil-
ter out erroneous DGPS readings caused by the antenna
swinging to the side as the vehicle drives through ruts.
These faulty readings degrade the recorded error us-
ing the DGPS baseline, but do not substantially affect
the ground truth measurement because the camera and
spray paint can were mounted near to the ground. In-
corporation of a tilt sensor to correct for this would
make the results more comparable.

While in a Florida orange grove, we tested the path
tracker while pulling a 500 gallon air-blast sprayer. The
grove was generally flat and grassy, but every other
row between the trees of the grove was approximately
50 cm lower since these rows were used for irrigation.
Since they were lower, these rows were also sometimes
muddy. Tracking performance did not seem to change
much despite the changing load as the water in the
tank was sprayed out. We plan to test our system with
other implements and in more challenging terrain in
the future.

More advanced controllers that incorporate vehicle
dynamics will also be investigated to allow the tractor
to safely drive at higher speeds.

5. Obstacle Detection and Safeguarding

An automated tractor that operates on a farm needs
to detect obstacles in order to: (1) provide safety for
humans that get too close to the vehicle; (2) avoid
causing damage to the environment (by collisions with

trees, tools or other equipment located on the vehicle’s
path); and (3) avoid damaging or incapacitating itself
due to ditches, irrigation canals, rocks, gopher holes,
etc. These three factors make false negatives expen-
sive; as a result, having a reliable and robust obstacle
detection system is a hard prerequisite for any kind of
automation in a real world setting.

Unfortunately, the fact that the natural environment
contains very little structure and presents a large num-
ber of uncontrollable factors makes outdoor obstacle
detection very difficult. The difficulty is proportional to
the generality required from the system. While finding
obstacles on very flat terrain is easily solved, creating
a general system that will work in row crops, orange
groves and other agricultural settings at any time of
the day and in any weather can prove to be extremely
complex.

Part of the problem is due to the fact that no sensor
exists that can guarantee detection in the general case.
Each sensor has failure modes that can make the au-
tomated vehicle unsafe unless there are other sensors
that can cover these failure modes. For camera-based
sensing, the changes in natural light that occur during
the day, the limited dynamic range of the cameras and
the various algorithmic limitations (like the lack of tex-
ture for stereo vision) significantly diminish obstacle
detection capabilities. Another sensor commonly used
for obstacle detection is a laser range finder, with either
one- or two-axis scanning motion. But two-axis lasers
can be very expensive and slow, if we take into consid-
eration the requirements imposed by vehicle motion;
one-axis lasers are cheaper and faster, but this advan-
tage comes at the expense of significantly less data than
provided by a two-axis laser.

Most work in agricultural automation has focused
on the control aspects of automation and has ig-
nored the obstacle detection problem (Billingsley and
Schoenfisch, 1995; Gerrish et al., 1997; Noguchi and
Terao, 1997; Zhang et al., 1999). The DEMETER sys-
tem (Ollis and Stentz, 1996, 1997; Pilarski et al., 1999)
detected obstacles by identifying objects that differ
from a model of the cut and uncut crop. However, the
performance of the obstacle detection system was not
presented in detail, and the algorithms employed were
relatively simple.

Obstacle detection systems have been developed for
cross country navigation. The most common technique
employed uses neural networks for terrain classifica-
tion, operating on raw RGB data (Davis, 1995) or on
features, such as intensity variance, directional texture,
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height in the image, and statistics about each color band
(Marra et al., 1988). The MAMMOTH system (Davis,
1995, 1996) drove an off-road vehicle. MAMMOTH
used two neural networks (with one hidden layer each)
to analyze separately visual and laser rangefinder data.
Each neural network output a steering command. A
“task neural network” took as inputs the outputs of the
hidden layers in the two networks and fused the in-
formation into a steering command. The JPL system
(Belluta et al., 2000) detected obstacles in an off-road
environment by combining geometric information ob-
tained by stereo triangulation with terrain classification
based on color. The terrain classification was performed
using a Bayes classifier that used mixtures of Gaussians
to model class likelihoods. The parameters of the mix-
ture model were estimated from training data through
the EM algorithm. All of these systems have met with
some success in addressing a very difficult problem.
The main difference between our work and the prior
work is that the agricultural application domain allows
us to impose simplifying constraints on the problem to
our advantage.

5.1. Technical Approach

At the high level, we have identified three ways to re-
duce the difficult problem of general obstacle detection
to a more solvable one:

• Extract as many cues as possible from multi-modal
obstacle detection sensors and use sensor fusion
techniques to produce the most reliable result.

• Take advantage of the repeatability of the task by
learning what to expect at a given location on the
terrain.

• Since the system can call for human intervention,
take a conservative approach to obstacle detection
and allow a few false positive detections in order
to drastically reduce the likelihood of false negative
detections.

Our current sensor suite is shown in Fig. 10. It con-
sists of two color CCD cameras used for obstacle de-
tection and a Sony D30 pan-tilt color camera used for
remote monitoring. The two Sony EVI-370DG cam-
eras have a maximum resolution of 640 × 480 and
a field of view that can vary from 48.8 to 4.3 de-
grees horizontally and 37 to 3 degrees vertically. We
used a zoom setting that corresponds to approximately
30 degrees horizontally. The two color CCD cameras

Figure 10. The sensor rack mounted inside the tractor cab. The
two cameras used for stereo can slide sideways to vary the baseline.
The pitch angle can be adjusted in order to change the look-ahead
distance in front of the tractor. The pan-tilt color camera is used for
the remote operator interface.

Figure 11. ODS architecture. Solid boxes correspond to modules
for which we present results. Dotted ones represent modules that
constitute future work.

provide color and geometric cues about the scene. In
the future we will also use them to extract texture cues.

The current architecture of the obstacle detection
system (ODS) is shown in Fig. 11. The ODS currently
uses just the stereo range data and color data from the
CCD cameras. The appearance and range data are sep-
arately classified and the results are integrated in the
fusion module, which sends obstacle detection confi-
dences to the vehicle controller (central module). The
central module stops the tractor when the confidence
exceeds a preset threshold.

The color module uses a three-layer artificial neu-
ral network trained with back propagation to segment



System for Semi-Autonomous Tractor Operations 99

incoming images into classes defined by the operator
during the training process. In the orange grove sce-
nario, such classes are “grass”, “tree”, “sky”, “obsta-
cle”, etc. The “obstacle” class corresponds to colors
that are not characteristic of any other class. A human
operator provides the training data by manually clas-
sifying portions of recorded images. This training can
be accomplished in minutes due to a graphical user in-
terface that simplifies the process. In the future we are
planning to use unsupervised clustering techniques that
will expedite the training process even more.

At run time, the 320 × 240 pixel images are split into
patches of 4 × 4 pixels, and each pixel is represented
in the HSI color space. The intensity component is dis-
carded for less sensitivity to brightness, and the hue
is expressed by two numbers (sin(H) and cos(H)) to
eliminate discontinuities. Thus, the input layer of the
neural network has 4 × 4 × 3 inputs. We selected an
input patch of 4 × 4 pixels because it is good compro-
mise between a small patch, which is sensitive to noise,
and a large one, which permits only a coarse-scale
classification.

The output layer contains as many output units as
classes used in the training data. In order to label an
input patch as belonging to class C, the output unit
corresponding to class C should have a value close to
“ON” and the other units should have values close to
“OFF”. If a patch does not fit well into any other class,
it is labeled as an obstacle patch. Thus, even though
an obstacle class is defined for training purposes, the
system can still correctly classify obstacles that were
not represented in the training set.

In our test scenario we only used the color seg-
mentation for obstacle detection, so we defined two
classes (obstacle/non-obstacle) in order to avoid un-
necessary complexity in the neural network’s decision
surface.

To determine the optimal number of units in the hid-
den layer, we started with a large number (allowing
the network to overfit the data) and gradually reduced
them until the total classification error on a standard
test began to rise. We arrived at three hidden units,
which was the smallest number that did not degrade
the performance of the network on the test set.

The stereo module is currently based on a 3-D “safety
box” representing a navigation zone in front of the trac-
tor. The module creates a disparity map and signals the
presence and the location of any objects within this box.
While this is certainly a minimalistic approach to ob-
stacle detection with stereo vision, the module provides

very fast and reliable results for obstacles that protrude
significantly upward from the terrain.

For the fusion module, we have the choice of
performing sensor-level or central-level fusion. The
sensor-level fusion consists of computing a measure
of confidence at each separate sensor, and then sum-
ming over all the individual sensors to obtain the global
confidence. In central-level fusion, the sensor data is
minimally processed before combination and the com-
puted confidence is a more complex function of the
multi-modal data.

In general, data can be used more efficiently through
central-level fusion than through the sensor-level
paradigm (Klein, 1993). However, this approach has
several disadvantages: (1) it does not distribute the
computational load, (2) it requires precise calibration
of the sensors and registration of the data; and (3) it is
difficult to incrementally add new sensors. In our ap-
proach, we opted to investigate sensor modalities one
at a time, understand their individual contributions, and
fuse their data at the sensor level using simple strate-
gies. Once we have identified the best sensors and data
modalities, we will explore more sophisticated fusion
strategies at the central level to improve the perfor-
mance of the system.

5.2. Experimental Results

We performed two kinds of experiments, meant to
test two of our claims: (1) that redundancy in sensors
and the use of multi-modal data reduce overall fail-
ure modes; and (2) that increasing the locality of the
training data improves the overall performance.

5.2.1. Multi-Modal Data. To test the effectiveness
of using multi-modal data, we measured system per-
formance on data that represented failure modes for
the individual modality types: appearance (color) and
range (stereo).

For the first test, we used the scene depicted in
Fig. 12, which shows a human in a green suit against
a green background. Since the neural network was
trained to consider the green grass a non-obstacle, the
response of the color module to the human obstacle
was not very strong, as shown in Fig. 13. However,
since the stereo module uses only geometric informa-
tion, it is unaffected by the similarity in color between
the obstacle and the background, and it gives a strong
response indicating the presence of an obstacle. As a
result, even a simple fusion strategy consisting of the
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Figure 12. Failure mode for color-based ODS: A human with a
green suit against green background.

Figure 13. ODS responses for the obstacle in Fig. 12, as the trac-
tor approaches the obstacle. The small peak produced by the color
module arises from the skin color; when the human is very close, the
area in the image occupied by skin becomes large enough to exceed
the obstacle threshold.

sum of the responses of the two modules (color and
stereo) results in reliable detection.

The symmetric case is depicted in Fig. 14: a tarp
placed in the path of the tractor is invisible to the stereo
module. However, as shown in Fig. 15, the color mod-
ule is able to detect it, and the ODS reports an obstacle
with high confidence.

We have presented the extreme cases here, but the
benefit of multiple sensors and data modalities becomes
even more significant when class differences are sub-
tle. When the individual response from each sensor is
not much higher than the noise level, the correlation

Figure 14. Failure mode for stereo-based ODS: A tarp on the
ground.

Figure 15. ODS responses for the obstacle in Fig. 14, as the tractor
approaches the obstacle.

between these responses can still produce a cumulative
effect that trips the threshold and stops the vehicle.

More recent experiments in natural scenes (see
Fig. 16) confirm the fact that combining different cues
for obstacle detection results in more reliable obstacle
detection.

5.2.2. Data Locality. Agricultural operations are very
repetitive. In general, a vehicle drives a given route
many times; therefore, it is possible to learn the appear-
ance of terrain at a given location (and time) and use this
information for obstacle detection purposes when driv-
ing autonomously. This amounts to obtaining training
information from all the parts of the route that have dif-
ferent appearances. In our case, for the stereo module,
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Figure 16. Results of a more recent version of our ODS system on
a natural scene. Top: the raw image presenting rocks in front of the
vehicle. Bottom: the same image, segmented using color and texture
features. The light-gray area represents the obstacle-free region, the
dark gray represents obstacles.

this could consist of storing the average height of the
grass for each row in the orange grove, with the result
that the “safety box” defined by the module is adjusted
automatically depending on the location. For the color
module, information about the current time of the day
could be used in order to perform more effective color
constancy or to use different versions of the neural net-
work trained with labeled data collected at similar times
of the day.

However, two factors affect the appearance of the ter-
rain at a given location and time of day. First, ambient
light and weather conditions vary in both predictable
and unpredictable ways. To some extent, this effect
can be cancelled using color constancy techniques. We
used a gray calibration target mounted on the tractor
in a place visible to the cameras. As the tractor drove,
we repeatedly measured the color shift due to ambi-
ent light and corrected the input images accordingly.
This approach did not solve the problem completely
but greatly improved the color segmentation.

Second, the terrain at each location changes slowly
over the course of a season. The crop, grass, and
weeds grow. The plants change in appearance as well.
These effects preclude a purely rote learning strat-
egy (based on location and time of day) and require

some generalization. We envision an obstacle detection
system which learns not only how to classify terrain
but how to predict changes over time. For example, the
growing rate of the grass and the appearance changes
of the vegetation could be learned and predicted.

We tested the value of data locality using data
recorded in Florida. We performed the following exper-
iment: we created two training sets containing images
collected around two locations, A and B. We trained
two versions of the color module’s neural network, one
on the data collected at location A, and one on the joint
training set, containing the images from both locations.
A typical image with an obstacle is presented in Fig. 17.

We then tested the two neural networks on a video
sequence of the tractor approaching an obstacle. The
sequence was recorded around location A. The respon-
ses of the two neural networks as the tractor approached
the obstacle are presented in Fig. 18. As we expected,

Figure 17. Image from Florida containing an obstacle on the path
of the tractor.

Figure 18. Confidence levels for the color-based ODS at location
A. The solid line corresponds to the NN trained locally, and the dotted
one to the NN trained on the joint set.
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the neural network that was trained locally performed
better. In the case presented, the network trained on
the joint set generated a false obstacle peak due to
some bushes that were correctly classified as vegeta-
tion by the locally trained network. Other experiments
in Florida and Pittsburgh confirmed the intuition that
the quality of the color segmentation is related to the
locality of the training data.

The importance of local training data means that in
the future we should focus on methods that are ap-
propriate for recording the location and time of the
day. Neural networks might not be the best learning
algorithm for this, since the amount of training data
required would be extremely large. We believe that
memory-based learning together with automatic clus-
tering techniques could be a better approach for our
problem. In the memory-based paradigm, the system
would periodically record data and perform automated
clustering of the color data obtained from each image
(or from images within some neighborhood). We would
then model the data distribution at each location with
a Gaussian mixture model. At runtime, we would use
any classification algorithm to perform image segmen-
tation, based on the distance from the clusters described
by the Gaussian mixture model.

Other areas of future work include: (1) using infor-
mation coming from a laser range finder as an addi-
tional cue; and (2) switching from the current sensor-
level fusion paradigm to central-level fusion.

6. Conclusions

In addition to the component results for position esti-
mation, path tracking, obstacle detection, and human
intervention, the tractor was tested as a system in an or-
ange grove in Florida. Figure 19 shows a plan view of
the total path taken during autonomous runs in Florida.
Overall, the system performed quite well, navigating
accurately up and down the rows, even in the presence
of hazards such as irrigation ditches. With commercial
GPS units steadily improving in accuracy and drop-
ping in cost, position-based navigation will become
the method of choice for agricultural operations. The
remaining problems include navigating in difficult ter-
rain, such as on slopes, over bumps, and in mud; and
navigating during dropout, including in areas with GPS
occlusion.

But the real challenge for agricultural operations is
safeguarding the people, the environment, and the ma-
chines. Until this problem is solved, we cannot field

Figure 19. Overhead view of paths used during autonomous testing
in a Florida orange grove. The turning radius of the tractor-sprayer
combination requires the machine to travel down every other row.

unmanned vehicles. The outlook is promising, how-
ever. By developing cautious systems, involving hu-
mans remotely, and capitalizing on the repetitive nature
of the task, we can make substantial headway in solving
a problem that is, in the general case, very difficult.
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