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ABSTRACT
The authors developed an extensible system for video exploitation 

that puts the user in control to better accommodate novel 

situations and source material. Visually dense displays of 

thumbnail imagery in storyboard views are used for shot-based 

video exploration and retrieval.  The user can identify a need for a 

class of audiovisual detection, adeptly and fluently supply 

training material for that class, and iteratively evaluate and 

improve the resulting automatic classification produced via 

multiple modality active learning and SVM.  By iteratively 

reviewing the output of the classifier and updating the positive 

and negative training samples with less effort than typical for 

relevance feedback systems, the user can play an active role in 

directing the classification process while still needing to truth 

only a very small percentage of the multimedia data set.  

Examples are given illustrating the iterative creation of a classifier 

for a concept of interest to be included in subsequent 

investigations, and for a concept typically deemed irrelevant to be 

weeded out in follow-up queries.  Filtering and browsing tools 

making use of existing and iteratively added concepts put the user 

further in control of the multimedia browsing and retrieval 

process.

Categories and Subject Descriptors
H.5.1 [Information Interfaces and Presentation]: Multimedia 

Information Systems – video.

General Terms
Experimentation, Algorithms, Human Factors. 

Keywords
Video retrieval, extensible concept classification, active learning. 

1. INTRODUCTION
A 2004 report to the Council on Library and Information 

Resources opens as follows [19]: 

The rapid increase in the quantity of visual materials in 

digital libraries—supported by significant advances in 

digital imaging technologies—has not been supported by 

a corresponding advance in image retrieval technologies 

and techniques. Digital librarians sense that much could 

be done to improve access to visual collections and hope, 

perhaps vainly, that users’ needs to identify relevant 

digital visual resources might be met more satisfactorily 

through search strategies based on visual characteristics 

rather than on textual metadata associated with the image, 

which are expensive to produce. 

Similarly, a recent ACM strategic retreat examining the future of 

multimedia research identified three grand challenges, one of 

which is to “make capturing, storing, finding, and using digital 

media an everyday occurrence in our computing environment” 

[16]. The retreat report notes that with the widespread adoption of 

digital cameras and emergence of cell phones with built-in video 

cameras, coupled with increases in storage capacity and 

reductions in cost, we can now store massive amounts of image 

and video data, with the challenge being to make that data useful. 

The ACM report noted that better context and content 

descriptions could be used more thoroughly in multimedia 

interfaces. 

The video analysis community has long struggled to bridge the 

gap from successful, low-level feature analysis (color histograms, 

texture, shape) to semantic content description of video. One 

plausible solution is to utilize a set of intermediate (textual) 

descriptors that can be reliably applied to visual scenes. Many 

researchers have been developing automatic concept classifiers 

like face, people, sky, grass, plane, outdoors, soccer goals, and 

buildings [14], showing that perhaps these classifiers will reach 

the level of maturity needed for their use as effective filters for 

video retrieval.  It is an ongoing research issue as to how to best 

represent the high level semantics of a video shot, given current 

techniques for automatic lower-level feature extraction [10, 14], 

but we believe that extensibility will play a leading role in video 

retrieval systems of the future.  It is too difficult to anticipate the 

set of concepts useful for a user addressing a particular need with 

a specific corpus.  Instead, the user should be able to create and 

refine the set of classified concepts interactively and without 

much effort so that necessary concepts are available as filtering 

and browsing tools. 

Shahraray notes that “well-designed human-machine interfaces 

that combine the intelligence of humans with the speed and power 

of computers will play a major role in creating a practical 

compromise between fully manual and completely automatic 
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multimedia information retrieval systems” [4].  We describe a 

system in which the user plays a driving role in the creation and 

refinement of models for visual concepts applicable to video 

information access, rather than serving as only a consumer of pre-

built automated concept classifiers.   

Users have long been offered a more active role in information 

retrieval through relevance feedback techniques, where by 

interactively marking the correct (and, sometimes, the incorrect) 

items returned by a query a follow-up query can be made more 

precise.  Limitations with relevance feedback techniques, 

however, include the user’s unwillingness to invest time to label 

data and concern for introducing extra cognitive load to the user’s 

primary tasks.  The extensible video retrieval system described 

here simplifies the labeling task by folding it into the storyboard 

browsing activity and by carefully monitoring user activity to 

derive additional labeled data based on what the user passed over. 

It greatly reduces the need for labeled data by taking advantage of 

active learning, presented in Section 2.  Section 3 presents the 

application focusing on its extensibility, with Sections 4 and 5 

discussing multimodal learning and evaluation. 

2. ACTIVE LEARNING 
As outlined in [3], relevance feedback can be used as a query 

refinement scheme to derive or learn a user’s query concept. To 

solicit feedback, the refinement scheme displays a few video shot 

instances and the user labels each shot as “relevant” or “not 

relevant.”  Based on the responses, another set of shots from the 

database is presented to the user for labeling.  After a few such 

querying rounds, the refinement scheme returns a number of 

instances from the database that seem to fit the needs of the user.  

The construction of such a query refinement scheme can be 

regarded as a machine learning task.  In particular, it can be seen 

as a case of pool-based active learning [12].  In pool-based active 

learning the query refinement scheme, i.e., the learner, has access 

to a pool of unlabeled data and can request the user’s label for a 

certain number of instances in the pool.  In the video retrieval 

domain with shots as the unit of information retrieval, the 

unlabeled pool would be the entire database of video.  An 

instance would be a video shot, and the two possible labelings for 

each shot would be “relevant” or “not relevant”.  The goal for the 

active learner system is to learn the user’s query concept.   

Continuing the summary of [3], the main issue with active 

learning is finding a method for choosing informative shots within 

the pool to ask the user to label.  The request for the labels of a set 

of shots can be termed a pool-query.  Most machine learning 

algorithms are passive in the sense that they are generally applied 

using a randomly selected training set.  The key idea with active 

learning is that it should choose its next pool-query based upon 

the past answers to previous pool-queries.  In general, and for the 

video retrieval task in particular, such a learner must meet two 

critical design goals.  First, the learner must learn target concepts 

accurately.  Second, the learner must grasp a concept quickly, 

with only a small number of labeled instances, since most users 

are too impatient or preoccupied with more critical tasks to 

provide a great deal of feedback. 

Active learning has demonstrated its effectiveness in reducing the 

cost of labeling data.  Given an unlabeled pool U, an active 

learner l has three components (f, q, x).  The first component is a 

classifier, f(x)  (-1,1), trained on the current labeled data x.  The 

second component q(x) is the querying function that, given a 

labeled set x, decides which instance in U to query next.  The 

active learner can return a classifier f after each iteration or after 

some fixed number iterations.  Figure 1 illustrates the framework 

of active learning. Given labeled data x (upper left pile), the 

classifier f trains a model based on x. The querying function q

selects the informative data from unlabeled pool (the rectangle). 

Users annotate the selected data and feed them into the labeled 

data set.

Figure 1.  Illustration of active learning. 

The main difference between an active learner and a regular 

passive learner is the querying component q. This brings us to the 

issue of how to choose the next unlabeled instance in the pool to 

query, and what is informative data. This issue also relates to 

which classifier you will use. In our framework, we employ 

Support Vector Machine (SVM) [2] as our classifier algorithm. 

2.1 Support Vector Machine (SVM) 
The basic idea of SVM is to separate samples with a hyperplane 

that has a maximal margin between two classes.  To formulate the 

problem of classifying synthesized feature vectors, the training 

data are represented as {xi, yi}, i = 1,2, … , n, yi is either -1 

(negative examples) or 1 (positive examples), n is the number of 

training samples. Suppose all training data satisfy the following 

constraints:

xi·w + b  +1  when yi = 1   (1) 

xi·w + b  -1  when yi = -1    

The distance between the hyperplane “xi·w + b  +1” and the 

hyperplane “xi·w + b  -1” is 2/||w||, where ||w|| is the Euclidean 

norm of w.  Therefore, by minimizing ||w||2 we get the two 

hyperplanes with maximal margins.  Quadratic programming 

provides well-studied optimizations to maximize the quadratic 

functions subject to the linear constraints in equation 1, which 

guarantees finding the global maximum.

More generally, SVM can project the original training data in 

space X to a higher dimensional feature space F via a Mercer 

kernel operator K.
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When K satisfies Mercer’s condition [2] we can write: K(u,v) = 

(u)· (u) where  : X F and “·” denotes an inner product. We 

can then rewrite f as: 

Labeled 
Training Data Unlabeled Pool

Selection  

Strategy

Informative 

Data
User Labeling



n

i

ii xwxwxf
1

 where,     (3) 

With the K function, we are implicitly projecting the training 

examples into a different feature space F and employ the same 

optimization problem as Equation (1) to maximize the margin of 

hyperplane in F.  By choosing different kernel functions we can 

project the training data to different spaces to make more complex 

decision boundaries than in the original space.  A commonly used 

kernel is the radial basis function (RBF) kernel K(u,v) = (e-r(u-

v)*(u-v)) which induces boundaries by placing weighted 

Gaussians [2].  Our base classifier algorithm is this RBF SVM.  

2.2 SVM Active Learning Algorithm 
In active learning, we want to choose the most informative data to 

annotate.  Following the procedure of [18], we learn a SVM on 

the existing labeled data and choose as the next examples those 

which come closest to the hyperplane in F.  This scheme for 

choosing new examples will reduce the corresponding version 

space of the SVM, i.e., the “most informative” data for the next 

round of annotation are those examples closest to the hyperplane 

in F.

We can also explain this scheme more explicitly.  We choose the 

examples between or close to hyperplanes which will change 

SVM hyperplanes, and are more complicated for the current 

model to explain.  Therefore, those examples will change the 

current existing hyperplanes and force the model to deal with 

those difficult examples. 

To summarize, the SVM active learning algorithm performs the 

following steps for each round of user-directed feedback: 

1. Randomly select examples from unlabeled pool to annotate 

as initial set, or let user decide on an initial set to label. 

2. Train a RBF SVM based on the labeled set. 

3a. Select the examples which are closest to the hyperplane to be 

annotated.  Based on [18], if the user’s goal will be to 

generate the most accurate model, these examples are the set 

to annotate next. 

3b. Alternatively, return the best-ranked data to the user, in cases 

when the user is motivated to achieve improved precision at 

the top N documents.  By annotating these assumed “best” 

items, the precision at N can be more quickly improved. 

4. Add annotated examples into labeled set. 

5. Repeat step 2 to step 4. 

3. ENVIE: EXTENSIBLE NEWS VIDEO 

INFORMATION EXTRACTION 
Regardless of which concept classifiers are provided as part of a 

baseline video retrieval system, the user is likely to have 

information requirements that are not addressed, a data set to 

which classifiers need to be tailored and trained for acceptable 

accuracy, and/or security concerns that prohibit the user from 

broadly communicating a given need.  We believe the best way 

for an application to support video exploration and retrieval is by 

making extensibility a priority, which led to the development of 

ENVIE targeting the broadcast news genre, where ENVIE is an 

acronym for Extensible News Video Information Extraction.  The 

user can extend ENVIE by updating existing classifiers through 

positive and negative examples, by developing new classifiers 

that take advantage of those concepts already classified within the 

system, and by creating summary and video skim templates 

appropriate to his or her needs.  Our focus here is on the dynamic 

definition and refinement of concept classifiers through active 

learning, with the architecture for this process shown in Figure 2. 

Figure 2.  ENVIE architecture: User iteratively builds and 

refines concept classifiers for filtering and browsing video. 

Since a user may frequently encounter new training examples to 

update or improve a particular concept classifier, an approach is 

needed that provides for quick incorporation of new data.  Some 

stochastic learning algorithms allow the classifier to focus on 

learning new examples, instead of building a complete 

classification model from scratch each time more examples are 

added in.  Most studies of stochastic learning algorithms have 

focused on “on-line learning” [7].  In each iteration, the algorithm 

is fed with one more training example and the model is updated 

accordingly.  However, the on-line learning algorithm cannot 

revisit previous training examples.  Compared to standard 

machine learning algorithms, on-line learning algorithms cannot 

take full advantage of all the existing data because training data 

cannot be revisited.  Standard machine learning algorithms 

likewise also fail to support dynamic extensibility, requiring too 

much training data or performing expensive re-evaluations of all 

the training data each time the training data is modified.  Active 

learning offers the advantages of achieving high accuracy while 

significantly reducing the need for labeled training instances [3, 8, 

13, 15, 18, 20].     

Utilizing support vector machines and active learning, users can 

develop and refine their own concept classifiers, based on model-

building details discussed in Section 4.  The users need not know 

anything of these details, instead reviewing results following the 

generation of a new model.  Based on the actions then taken by 

the user, the model itself can be tuned to better meet his or her 

information requirements.

Consider a user who needs high precision for a concept.  For 

example, the user may need to find examples of “aircraft” to serve 

as launching points for further inquiry without regard to whether 

all of the shots satisfying the “aircraft” concept are retrieved.  In 

this case, the user can provide feedback on the top-ranked shots in 

order to revise the classifier for the concept so that it delivers 

higher precision at the top-N ranked items.

Instead, the user may want a better model of the concept to apply 

in multiple settings, e.g., to filter out the unwanted shots having 



that concept following queries for varying topics, or to isolate 

shots with that concept in other query result sets.  In that case, the 

user can provide feedback on shots close to the SVM decision 

boundary, shown to be the most beneficial in iteratively 

improving the model through active learning [18]. 

3.1 ENVIE Concept Building Procedure 
Video is decomposed into shots with shots each represented by a 

keyframe image, as is typical in news video retrieval systems 

today.  The user can browse thumbnail representations of 

keyframes for shots in many different arrangements, including 

map and timeline layouts, named entity graphs, and storyboards, 

with “storyboards” the focus here as they provide an ordered set 

of shots to the user.  Storyboards are also a commonly 

encountered interface widget for video retrieval systems [11].  

Interactive search experiments conducted with this same ENVIE 

set of storyboards for TRECVID documentary and news retrieval 

confirm that both novices and experts can utilize the storyboards 

efficiently and effectively for video browsing and selection [5].   

A key idea of ENVIE is to reduce the amount of labeling 

necessary by the user in building a concept classifier, and so when 

the user marks shots in the storyboard for use as a positive sample 

set, the shots that they skipped over, up to the last shot 

considered, are automatically collected into an “implied” negative 

sample set.  Likewise, if the user marks shots in storyboards for 

use as a negative sample set, the skipped over shots are 

automatically collected into an “implied” positive sample set.  

The user can review and clean up either the positive or negative 

sample set if they so wish.  More typically, based on early trials, 

the user launches the concept classification process and evaluates 

a set returned by that process to iteratively improve the model’s 

overall accuracy or top-ranked precision. 

The user initializes a classifier by identifying shots that are 

positive and negative examples for a new concept to be tagged.  

While we anticipate employing different learning strategies to 

improve the classification, with the user positioned to evaluate 

outputs and determine which classifier, if any, should be 

preserved within ENVIE, for this paper we focus on the use of 

RBF SVM and active learning.  Concepts that are approved by the 

user for broader applicability and preservation in the corpus could 

be employed as input features for building follow-up concept 

classifiers.  The goal is that with an increasing number of 

concepts, higher order semantics can be derived with a confidence 

measure based on the confidence of the contributing classes.  For 

example, if ENVIE is already armed with detectors for people, 

people sitting, and indoors, then a “meeting” classifier might be 

developed where “meeting” might be inferred most strongly by 

more than 2 people sitting indoors.   

This work for now deals with global visual frame classification 

only, i.e.., identifying that a concept is represented somewhere in 

the keyframe characterizing a video shot, rather than identifying 

the precise time and region occupied by a concept in that shot.  

Several approaches have been proposed to detect specific objects; 

a broad review of this research is given in [6].  However, the 

number and type of objects that can be detected by template or 

model based methods is limited.  In order to work on a large set of 

classes, combinations of several approaches are needed.  Some 

scenes can be identified by using features extracted from the 

entire image (e.g., outdoor scenes have certain color and texture 

distributions, but no specific shapes or objects).  Some objects can 

be detected by region-based methods (e.g., an airplane can be 

defined as a gray region in the middle of a blue region that 

corresponds to sky), whereas faces can be classified with a model-

based approach based on specific feature points [17]. Temporal 

features such as camera and object motion direction and rate of 

motion can also be specified for inclusion into classifiers.  ENVIE 

supports a user-driven interactive process for classifier creation, 

allows the user more control over which features are utilized and 

their relative contributions by providing a fluid, effortless means 

for defining positive and negative example sets for active 

learning.  The two example cases presented in the next sections 

illustrate this process, working with a three month test corpus of 

American, Arabic, and Chinese news broadcasts. 

3.2 Defining a Vehicle Classifier, Revised for 

Browsing 
Consider a user interested in identifying shots with vehicles.  The 

user issues a text search “car truck automobile” that for the news 

test corpus returns 135 segments, with 270 shots at or near the 

aural mention of “car”, “truck”, “automobile”, or derivatives, or at 

or near the showing of such words in overlaid text on the 

broadcast.  A thumbnail-based view of the data termed a segment 

grid, presents the thumbnail for the highest rated shot by the text 

query service, one thumbnail per news story segment, as shown in 

part in Figure 3. 

Figure 3.  Segment grid with each news story segment 

represented by one thumbnail image, ordered by segment 

relevance to the query “car truck automobile.” 

Another traditional storyboard view shows one thumbnail image 

for each of the 270 match shots, as shown in part in the lower left 

of Figure 4.  The user, interested in building a vehicle detector, 

moves the mouse over the thumbnails in the storyboard and 

selects those that are positive examples of “vehicle” such as the 

white car images in the top 2 storyboard rows shown in Figure 4.  

Selection is accomplished via a keyboard shortcut while the 

mouse hovers over the thumbnail being judged (fastest operation), 

by right-clicking the mouse and selecting from a context-sensitive 

menu, or by dragging the thumbnail into the shot collector area.  

The user can also review the segment grid and mark items that are 

“vehicle” such as the middle image on the top row.  In this 

manner, the user can make use of multiple views (segment grid 

for query, storyboard for query, perhaps storyboard for a 

particular daily news broadcast, segment grids and storyboards for 

other queries, etc.), as source material for assembling a positive 

sample set for the concept “vehicle.” 

The shots that the user skips over, e.g., the first and second 

images in the segment grid, become the “implied” negative 

training set for the concept “vehicle.”  Considering the 25 



thumbnails shown in the storyboard view of Figure 4 (lower left) 

as shots 1, 2, …, 25, the user selects shots 1, 4, 7, 9, 10, 13, and 

25 as positive examples, which causes shots 2, 3, 5, 6, 8, 11, 12, 

and 14-24 to be labeled as implicit negative examples.  While it is 

true that the user might make mistakes and skip over something 

that actually is the concept, or that the skipped over shot should 

be considered more of a “can’t tell” ambiguous shot than a shot 

which is part of the negative training set, the advantages in speed 

for quickly defining positive and negative training sets without 

unduly burdening the user with detail have outweighed these 

disadvantages.  Furthermore, by employing active learning the 

user is encouraged to correct for any such error, not by revisiting 

and correcting the positive and negative sample sets from “round 

1” of the concept build, but by evaluating and responding to the 

round 1 concept classifier output in order to generate an improved 

round 2 (and follow-up) classifier. 

The user collects positive examples in this manner, where ENVIE 

informs the user in the status bar if a shot being judged as positive 

is already a member of the positive sample set.  Figure 5 shows a 

snapshot of the process when 29 examples were identified, shown 

in the shot collector area docked to the right of the application 

window, and also showing views of the segment grid (Figure 3) 

and storyboard.  When finished after a few minutes of reviewing 

thumbnails, the positive example set holds 42 shots, and the 

implied negative example set holds 228 shots, with some shots at 

the tail of the segment grid and storyboard not judged explicitly 

as relevant nor judged implicitly as irrelevant.    

Figure 4.  ENVIE screen shot during collection of shots defining "vehicle" (right pane). 



The user launches a dialog to build a new concept classification 

for a concept she names “vehicle.”  The vehicle classifier is built 

asynchronously, with the goal of quick performance supporting 

interactive review and iteration.  Within a minute the classifier 

returns the availability of the new concept for review, and the user 

thinks about how she wishes to employ this classifier.  She wants 

to make use of it to browse vehicle shots in the corpus at large, 

and to perhaps very restrictively filter down queries to a few shots 

with high likelihood of being vehicles.  The user is hence 

interested in high precision, and so reviews the top-ranked 200 

vehicle shots in a storyboard view, shown in Figure 5.  Of this set, 

47 are actually vehicle shots. 

Figure 5.  Best "vehicle" shots, version 1 of vehicle classifier. 

The user wants better precision, and after clearing out the shot 

collector with a simple “Clear…” menu operation, decides to start 

collecting negative examples by marking shots from the “best 

vehicles” storyboard of  Figure 5 that are in fact not vehicle shots.  

She stops after adding 100 shots to the explicit negative example 

set, with an implicit positive example set being generated based 

on what the user skipped over in this iteration.  Now when the 

user selects to rebuild the vehicle classifier, the previous positive 

and negative examples from prior rounds are combined with the 

new example sets from the latest round as follows: 

The newest round’s explicitly marked set is taken as 

highest confidence truth and overrides all prior choices. 

The newest round’s implicitly marked set adds to prior 

choices, but if any conflict arises, the prior judgment is 

kept, as the new round is only “implicit” and hence 

lacks the authority to challenge and change prior 

judgments.

So, for the case of the round 2 vehicle classification, the 100 

negative example shots are definitely part of the new negative 

example set for round 2.  The implicit positive example shots, if 

formerly judged as negative in the prior set of 228 negative shots, 

would be kept as negative; otherwise they are added to the 

positive example set.  The resulting positive example set for 

round 2 classification holds 89 shots, with the negative example 

set holding 328 shots.

When the round 2 classification is done in a minute or so, the user 

checks the “Best Vehicle Version 2” shot set and decides that 

performance is good enough for use elsewhere.  An inspection of 

the best 200 shots, partially shown in Figure 6, finds 116 of 200 

correct, nearly three times better than the initial version. 

Figure 6. Best "vehicle" shots, version 2 of vehicle classifier. 

The user in this session, or perhaps in a later session, decides to 

investigate “Baghdad Iraq” which returns over 500 shots.  

Wanting to zero down to just the vehicle shots in this set, the user 

opens up a filter tool that provides dynamic query-based sliders 

[1] for use in restricting the storyboard to only show shots 

meeting the given filter.  Version 2 of the vehicle detector is 

available for use, and by restricting the display to just the shots 

considered as vehicles the display of Figure 7 is produced, 

showing 17 shots filtered from the set of 524, of which 9 actually 

contain a vehicle.  The precision with the quickly built classifier 

is high enough to enable investigations to be launched with some 

target shots satisfying the need, i.e., vehicles from “Iraq” query, 

even if recall is not optimized because of the manner in which the 

concept model was built.  For the second example in the next 

section, recall is optimized by iterating on shots located near the 

decision boundary, rather than evaluating the top-ranked set. 

Figure 7.  Filtering capability using newly built classifier to 

limit 524 shots down to set of 17 with the vehicle concept. 



3.3 Defining a Taiwanese News Anchor 

Classifier, Revised for Filtering 
Consider a user working through a multilingual news corpus and 

discovering that the provided anchorperson detector is not 

classifying anchorperson shots for a particular Taiwanese 

broadcaster well.  That broadcaster makes use of numerous digital 

effects and keys in field footage as a backdrop for the anchor 

shots, rather than keeping the backdrop a consistent image as is 

typical for other broadcasters.  The user decides he wants to filter 

out as many Taiwanese anchor shots as possible from future 

queries, and so begins the process of defining a Taiwanese 

anchorperson detector (T-Anchor) for subsequent use. 

As with Section 3.2, the user starts by browsing a storyboard, in 

this case the storyboard for the full Taiwanese broadcast of 

January 7 as shown in part in Figure 8.  Counting these shots as 1, 

2, …, 30, the user marks shots 5-11 and 29-30 as T-Anchor shots, 

causing the remainder (1-4, 12-28) to be implicitly labeled as the 

negative example set.  The user quickly repeats the process for the 

first shots of a January 11 broadcast, producing a positive 

example set of 18 shots and implicit negative example set of 114 

shots.

Figure 8.  Taiwanese news broadcast storyboard. 

The user through a dialog box initiates the building of a model 

from the collected shots, naming it “T-Anchor.”  Based on 

experience with TRECVID concept classification, we note that 

some concepts apply exclusively or primarily to one broadcaster, 

and so we instrumented the ENVIE classifier building dialog to 

let the user limit the applicability of the classifier being generated.  

Such is the case here: the T-Anchor classifier should only 

consider the Taiwanese news broadcasts, not the CNN news 

broadcasts or other broadcasters in the test corpus.  The user 

indicates so, and the result is an asynchronously built model via a 

spawned process against the Taiwanese news.  The user is 

notified when the classification has completed a minute or so 

later.

The user inspects the results by opening up a Taiwan news 

broadcast from February 1 (different from the test set) and 

filtering the storyboard for that day’s half-hour show (393 shots) 

into just the T-Anchor shots.  He sees that the filter shows 26 

anchor shots in a set of 34, but notes that more should have been 

found. In actuality, there are 40 anchor shots in this set of 393, so 

the round 1 performance tested on this one broadcast is precision 

0.76, recall 0.65.  He issues a geographic query for the Hong 

Kong area, returning 288 matching shots from the multilingual 

corpus, and sees that filtering out T-Anchor shots drops out 17 

shots.  Again, he expected a bit better (in actuality, there are 33 T-

Anchor shots in this set of 288, so round 1 performance is 

precision 1, recall 0.52).

Wanting to build a better model for T-Anchor, the user takes 

ENVIE’s active learning suggestion and inspects a set of 500 

shots located close to the decision boundary, i.e., the set of shots 

corresponding to step (3a) from the algorithm in Section 2.2.  He 

browses the storyboard within a few minutes and marks 38 shots 

to be in the positive example set.  He initiates a dialog to create a 

version 2 of the T-Anchor model, which causes a merge of the 

prior positive and negative example sets with the latest ones as 

discusses in Section 3.2.  In this case, the new positive example 

set contains 56 shots (18 before plus 38 new ones now), and the 

new negative example set contains 570 shots (114 before, plus 

456 new ones now).  Note that the user did not mark 456 shots 

explicitly; instead, the system recognized that these shots were 

passed over in the storyboard when gathering the positive 

example set and so they were implicitly marked as negative 

training examples. 

The updated T-Anchor model earns the approval of the user.  

Inspecting the February 1 storyboard, he sees that the T-Anchor 

filter returns 39 of 54 at a relaxed setting (precision 0.72, recall 

0.98), 37 of 43 shots when restricting to higher confidence for T-

Anchor (precision 0.86, recall 0.93).  The model generated 

confidences for each shot in the range [0, 1], with 1 indicating 

complete confidence that a shot possesses a concept.  Similarly, 

for the Hong Kong set of 288 images, filtering to just T-Anchor 

shots produces the set of 32 shown in Figure 9 (precision 1, recall 

0.97).  The user intends to use the concept to filter out T-Anchor 

shots, e.g., direct inspection to the Hong Kong matching shots 

other than T-Anchor ones shown in Figure 9, which is trivial to 

accomplish by reversing the interactive filter. 

Figure 9.  Taiwanese anchorperson shots after one iteration of 

active learning, demonstrating significant performance boost. 



These examples of the T-Anchor and Vehicle concept classifiers 

serve to illustrate the interactive, extensible concept building 

environment available with ENVIE, and the use of concepts for 

browsing and filtering.  While anecdotal, the evidence is 

convincing that iterative shot labeling improves learner 

performance, in agreement with prior literature on the topic.  The 

benefits of ENVIE include streamlining the labeling process for 

positive and negative examples, quick model building and 

notification back to the user when the model is ready for use, and 

dynamic query sliders allowing fine user control over concepts for 

filtering and browsing.  The remaining sections of the paper 

discuss the underlying model building and evaluation more 

thoroughly. 

4. MULTIMODAL ACTIVE LEARNING 
For any multimedia source, there are many different variants of 

features (various texture computations, alternate color spaces, 

different audio feature types, etc.) to represent its content.  

Assume we have r different feature sets, our training data xi is 

composed of {xij}, j=1, 2, …, r.  Most of the time, the easiest way 

to deal with this kind of data, is to concatenate it as a larger 

feature vector xi and employ a machine learning algorithm, such 

as SVM.  This creates two main problems, first and foremost, the 

curse of dimensionality [9].  One ends up needing much more 

labeled data for the learning algorithm due to the increase in 

dimensionality of the feature vector.  Second, it becomes more 

difficult for a human to understand and analyze the relative 

importance and the performance corresponding to a particular 

feature set.  Furthermore, we effectively eliminate the variations 

of individual feature sets and only maintain one, undifferentiated 

global model to explain all the data.  From our TRECVID 

experiments, concatenating feature vectors always perform worse 

in evaluation than intelligently selected feature sets.  

Therefore, multi-modality fusion can lead us to a better approach 

than the concatenation method.  Assume we have r different 

feature sets; we can construct r individual sub-models for each 

feature set.  Each model represents its own information according 

to the feature space.  

We fuse the sub-models by linear combination via a held-out set 

to obtain a global model for the multimodality data. This 

approach is motivated by an attempt to keep the locality of 

different feature spaces but still have a global model to represent 

the classification concept.  The  in Equation (4) is the weight 

parameter for each sub-model. 

r

j jjj xgxf
1

   (4) 

The fusion approach requires a held-out set to learn the 

combinational parameter.  Usually, a split of training data is 

required and this reduces the number of examples we can use in 

training the classifier.  However, with the active learning 

algorithm, we will choose some informative data from the 

unlabeled data pool iteratively, and this data has not already been 

used in training process.  This provides us with the held-out set 

we need for multimodality fusion. 

Multimodality active learning works as follows: 

1. Randomly select examples from unlabeled data pool. This is 

the initial training set for active learning. 

2. Build r individual sub-models for the training set according 

to the different feature sets and apply their learned models to 

the unlabeled data.

3. For each sub-model, choose k examples which are closest to 

its hyperplane. In total, k*r unlabeled examples will be 

chosen for annotation in each iteration. 

4. Annotate these examples. The multi-modality fusion weights 

are then trained using these new annotated examples. A 

global model can then be constructed and evaluated.

5. Add the newly annotated examples into training set. 

6. Repeat step 2 to step 4. 

The multimodal active learning algorithm can be formulated as 

follows:

Unlabeled data D = {xi} i = 1, 2, …, n

D0 = {xi} which randomly chooses from D

D0m = D0

for j = 1 to t

{

for m = 1 to r 

{

gjm is the model constructed from Dj-1m

djm = {xjm} the set of examples closest to hyperplane of gjm

Djm = Dj-1m U djm

 } 

r

m jmmj gxF
1

combination parameters trained by djm

}

Some interesting issues are raised by this approach.  The main 

idea we want to achieve is to train and select each feature set 

individually.  Therefore, we split the training data for each feature 

set; let’s call it Djm, which is the training data of feature m in j

iteration.  After each iteration, we select new examples for each 

feature to annotate and obtain djm of them.  This means, that for m

different features, we select m sets of data according to each 

feature and build sub-models.  The reason we keep every feature 

set separately is to maintain the specificity of that feature.  We 

want to train locally for each feature set instead of a global model.  

Through experiments, we found the problem of active learning is 

that it makes a strong assumption about the correctness of the 

previous model and the selected data is to improve the boundary. 

However, this assumption leads the whole model to a more and 

more restricted area in the feature space with each iteration.  Our 

hope is that with separate sub-models for each feature set, we can 

expand the selected data from different feature spaces and avoid 

this problem. 

5. EXPERIMENTAL EVALUATION 
In this section, we describe experiments on semantic concept 

extraction using the development set of the TRECVID 2004 

feature extraction task to demonstrate the performance of our 

multi-modality active learning approach.  We selected 20 



concepts in TRECVID 2003 and 2004 semantic feature extraction 

tasks.  The development set is the collection of news video from 

ABC and CNN. It contains 52943 shots and is totally around 60 

hours.  The 20 concepts are as follows: 

• Outdoors    • News subject monologue 

• News subject face  • Non-studio setting 

• Building    • Sporting event • People 

• Road (2003)   • Weather news  • Aircraft 

• Road (2004)   • Boat/Ship   • Animal 

• Vegetation   • Bill Clinton  • Beach 

• Female speech  • Basket scored 

• Car/truck/bus   • People walking/running 

Low-level features including color, edge, texture, and face are 

generated to learn the semantic features.  After dividing an image 

into 5 by 5 grids, the color feature in each grid is computed as the 

mean and variance of color histogram from HSV color space.  A 

canny edge detector is applied to extract edges from the images. 

The edge histogram for 5 by 5 grids is quantized at 45 degree 

intervals.  Six oriented Gabor filters are applied to extract texture 

features. Schneiderman’s face detection algorithm [17] is used to 

extract frontal and profile faces.  The size and location of faces 

represent the face detection result.  

Figure 10 compares the performance between the multi-modality 

active learning approach and single-modality active learning.  We 

start the initial data with 1000 examples and during each iteration 

we choose 250 new examples from the 4 individual feature sets 

(for a total of 1000 new examples).  The curve labeled multi-

active depicts the results of the new approach and the curve 

labeled “single-active” is the approach which concatenates the 4 

feature sets into one larger feature vector.  The baseline uses the 

complete training data set without any active learning.  Our 

evaluation experiments are performed on the TRECVID 2003 and 

2004 ground truth provided by NIST in a separate test set.  Our 

measurement is the macro-average mean average precision 

(MAP) of those 20 topics.  From Figure 10, we note that active 

learning is very effective.  Even the single-modality active 

learning approach can reach the same performance as using the 

whole training data set with only 7% of the labeled data (4000 

over 52943). Furthermore, the new approach works much more 

effectively than the single-modality approach. Its performance 

was comparable to the baseline with only 3% of the training data.  
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Figure 10.  Classification performance for multimodality 

active learning and basic active learning. 

Figure 11 compares the performance between the multimodality 

active learning approach and optimal fusion approach. By optimal

fusion we mean that we did all possible combinations of different 

feature sets and choose the best performing combination as the 

result.  It means if we have r different feature sets, we need to run 

our classification processes up to 2r times.  We use best-active

when, for each active learning iteration, we only choose the best 

fusion result.  The best-baseline means we use the whole training 

set but fuse the multimodality by optimal fusion.  The result 

shows our multimodality approach can reach as good as optimal 

fusion although needing more iterations.  However, the optimal 

fusion is very computationally expensive.  In our experiments, we 

have 4 different feature sets, so that for optimal fusion we need to 

consider 24 = 16 different combinations. The computation is 16 

times as expensive. 
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Figure 11.  Classification performance for multi-modality 

active learning and optimal fusion approaches. 

6. CONCLUSIONS
Automated concept classification provides the user with tools to 

filter and browse large collections of video for shots of interest.  

We present ENVIE, an application allowing the user to 

dynamically define and revise additional concepts in a timely 

manner through a simple, well understood interface.  The 

concepts are built using multimodality active learning with RBF 

SVMs as the discriminative classifier, without these underlying 

details presenting additional cognitive load for the user or 

introducing new interface complexity.  Rather, through active 

learning the user can efficiently improve the accuracy of the 

classifier through reduced numbers of training examples 

compared to passive machine learning algorithms. 

Other researchers have contributed new work toward determining 

what imagery should next be labeled in the iterative step of active 

learning [3, 15] for better model performance.  These 

recommendations will be folded into ENVIE so that the user is 

asked to annotate even fewer shots, and more informative shots, 

between iterations.  One of ENVIE’s goals is to provide new 

visual search capability for broad multilingual news corpora, 

where text metadata is either missing or fails to bridge the 

different source languages, but where visual concepts like indoor, 

outdoor, face, vehicle, etc., can provide the search strategies 

based on visual characteristics alluded to by Trant regarding 

growing multimedia collections [19].  Through performance 

evaluations using open testing procedures, metrics, and data, we 



plan to assess the benefits of ENVIE and its active learning 

component for interactive video information retrieval, with 

ENVIE’s development driven by the goal of providing efficient, 

effective access to relevant shots from video collections.    
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