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Abstract—For many people, driving is a routine activity of arrival at the predicted destination and alert the driver
where people drive to the same destinations using the same jf she is going to be late (by accessing calendar information
routes on a regular basis. Many drivers, for example, will drive - g15r64 on the drivers PDA). Another application area is safety

to and from work along a small set of routes, at about the . N
same time every day of the working week. Similarly, although Warning, where knowledge of the driver’s intended short-

a person may shop on different days or at different times, they t€rm route can be used to reduce false alarm rates.

will often visit the same grocery store(s). In this paper, we In this paper, we present a Hidden Markov Model (HMM)
present a novel approach to predicting driver intent that ex-  pased approach to providing real-time predictions on driver
ploits the predictable nature of everyday driving. Our approach  yegtination and route. Our approach is based on building the
predicts a driver’s intended route and destination through the e - L .
use of a probabilistic model leamed from observation of their p.rObabIhStIC model through observation of the driver's habits
driving habits. We show that by using a low-cost GPS sensor Via a map database and a low-cost GPS sensor. Our results
and a map database, it is possible to build a Hidden Markov demonstrate that this approach can achieve significant levels
Model (HMM) of the routes and destinations used by the of accuracy on real, everyday driving data.

driver. Furthermore, we show that this model can be used  1hg paper s structured as follows. In the ensuing section
to make accurate predictions of the driver's destination and - . )

route through on-line observation of their GPS position during we descrl_be the b§S|s of ou_r approach and provide the
the trip. We present a thorough evaluation of our approach ~Mathematical machinery required to understand the HMM
using a corpus of almost a month of real, everyday driving. approach. We then describe how we build a HMM for
Our results demonstrate the effectiveness of the approach, |earning and predicting driver routes and destinations. Based
achieving approximately 98% accuracy in most cases. Such o his model, we present the experimental results using a

high performance suggests that the method can be harnessed for f | driving data. We th lude th
improved safety monitoring, route planning taking into account ~ COTPUS Of réal driving data. vve then conclude the paper.

traffic density, and better trip duration prediction. Il. THE APPROACH

I. INTRODUCTION The fundamental assumption in this project is that driving
Much of our driving is routine in that we tend to go to theis largely routine, and that past performance can be used
same destinations over and over, following the same routés predict what the driver will do in the future. We further
at the same time of day, or day of week. Even when betteissume that a route map is available as is a sensor, such as
routes exist, such as shorter, or faster routes given the curr@®S, that can tell us what segment of the map the vehicle is
traffic conditions, we tend to stick with routes that we haven, what speed the vehicle is traveling, and the time at which
used in the past. It is this observation that motivates the idedtse sensor reading is taken. Additional information (such as
presented in this paper. turn signal state, which lane the vehicle is in) may be useful,
The problem we focus on in this paper is to develop &ut has not been explored in this project, to date.
system that collects data on the habits of individual drivers While one would like to make perfect predictions, this is
by observing what destinations they drive to and what routest possible due to the nature of driving. Even if a driver has
they take to get there. Using that data, the system should bery set routines, it is still possible for the driver to deviate
able to predict the driver's intended route and destinatiofftom them once in a while. For instance, if a driver always
based on what has been observed of the driver's route takgmes to work at 9AM on weekdays, using the same route
so far. every time, once in a while she may go somewhere else at
There are several possible uses for such types of prérat time, such as a doctors appointment. Alternatively, a
dictions. In terms of navigation systems, the predictiondriver may have more than one route to a given destination,
could be used to provide better route guidance withouwtuch as work, and choose between them at random, in order
requiring input from the driver and instead relying on theo have some variety. In another variant, the drivers preferred
prediction to infer the driver's intent. Smarter route guidanceoute may be closed for construction, forcing him to take a
could be provided through the integration of real-time traffidifferent route.
estimates. Alternatively, the vehicle could estimate the time All of this points to the fact that the prediction of driver
This work was supported by General Motors intenF must be' .probabilistic.' One can predict intent with a
Reid Simmons and Brett Browning are with the Robotics Insti-CEMtain probability and confidence, but can never be 100%
tute, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PAsure of the prediction. For that reason, our approach is to use
éSesza‘Il(a{rreailges’?vriﬁ}ttt)he El}eg?r?csglcrgu-C?odnl:ro.leillﬁtezrr]Ztri]gnaﬂgbva(r;sehnir A statistical model for making the predictions and to leam
Motors R&D and Planning, 30500 Mound Road’g warren, M, 4809dN€ model from past driving experience. The basic idea is to
{yilu.zhang,varsha.k.sadekar t@gm.com collect data on every trip a driver takes and to incrementally



update the statistical model based on that experience. Thfter executing the actions. For a HMM, both transitions and

model is then used, on-line, to predict driver intent for thebservations are used to help infer the next state distribution.
next trip, after which that trip is used to, once again, updat€he same equation as given above for Markov models is used
the model. to predict the state distribution at tinte- 1 given the state

The statistical model used in this project is a Hiddemlistribution at timet and the actiora!™. In addition,o'*?,
Markov Model [1]. A Hidden Markov Model (HMM) is the observation at time+1 is used to further constrain the
a Markov chain that can be used to track processes witttate distribution:
hidden state. In this case, the process is the sequence of t+1 t+1 o ot+1

. . . . t+1 p (S)Z(O ,S,a )
driver actions used to follow a route, and the hidden state is p(s) (07+T)
the driver’s intended destination and route. P

While learning HMMs, in general, requires large amount¥Vhere p(0'*?) is a normalizing factor and is given by
of data, it is feasible in this case mainly because the structure
of the model is already known, it is the road-map of the area, p(o"") = zspwl(s)z(owl’s’awl) @
and there are only a small humber of transitions between S€
nodes in the model (i.e., a limited number of road segment$V. PREDICTING DRIVER INTENT WITH A HMM
intersect at any one point). In addition, although the number We now describe our approach to predicting driver intent
of road segments in a map database can be very largging a HMM, starting with the road graph representation
the statistical model will be relatively small because anyhat underlies the approach. We then describe our basic
single user tends to traverse only a very small percentaggodel containing route and destination information, and
of the roads in a region. Clearly this would not be trughe extended model that incorporates contextual information
for salespeople, delivery people, etc, but in those cases thgch as time of day, day of week, and vehicle speed.
basic assumption about most routes being routine is also
violated, making this approach less applicable for those typés The Road Graph
of drivers. The core of the representation used in our approach resides
in the use of the road graph provided by the mapping

Ill. HIDDEN MARKQV MODELS database. The mapping database enables us to abstract away

A Markov model is a graphical statistical model thatfrom pure GPS locations, towards a street-level graph rep-
captures a sequential model of behavior. It is a tugle resentation. Fig. 1 shows an example street map using a
S AT >, whereSis a (finite) set of stated) is a (finite) set GUI debugging tool. Concretely, the map is represented as
of actions, and is the transition functiolm : Sx AxS— [, an undirected graplG = (V,E) consisting of vertices/
where T(s,a,sj) = p(ssj,a), which is the probability of for each intersection, and edgEslinking each intersection
transitioning to states given that the system is in stag (i.e. e= (v1,V»)). Note that each edge in the map database
and actiona is executed. typically contains other information, however, we ignore this

Given a Markov model and an initial state distributionfor now. We will generally consider a directed version of this
m, one can predict the state distribution that results fromgraph where edges are ordered to reflect the traveling direc-
carrying out a sequence of actionsal,a?,...,a" >. If p'(s) tion between the intersections. The map database provide a
is the probability of being in state at timet (where unique one-to-one mapping from each edge to a unique label.
m(.) = p°(.) is the initial state distribution), thep*(s) = We will use the termink to indicate the unique labeling of
YsiesP'(s)T(s,a ™, s)). Note that while the exact state of a directed edge between two intersections.
the system is uncertain when doipgediction it is assumed )
that the state is known for certain after the actions arg: The Basic Model
actually executedn the world. The basic model represents state using paies< 1,9 >,

A Hidden Markov model (HMM) is a Markov model wherel is a link andg is a goal (destination). Actions
with hidden (unobservable) state [1]. An HMM is a five-are not represented explicitly, so the transition function
tuple < SA,O,T,Z, >, whereS A, andT are the same as T is a function from states to state$(s,s;) = p(s|sj).
with the Markov model and is the initial state distribution. Observations are the current link location (a segment in
In addition, O is a (finite) set of observations arflis the the map database), derived from the vehicles GPS position,
observation functiorZz : O x Sx A — O, whereZ(o,s,a) = speed, and heading. In this work, the observation function
p(ols,a), which is the probability of receiving observationis deterministic:Z(0;,s) = p(o| < 1,9 >) = 1, whereq, is
o given that the system ends up in stata@fter executing the observation of link. That is, our model assumes that
action a. For many problemsZ is the same for all values the mapping from GPS position to map link is perfect. In
of a, (i.e.,Z(0,5,a;) = Z(0,5,8)). In what follows, we will  practice, this is not completely true and some pre-filtering
useZ(o,s) as shorthand foZ(o,s,a), whenZ is the same is required to remove matching errors. However, it is a
for all values ofa. reasonable approximation and makes the model considerably

As in a Markov model, the exact state of the system imore compact, requires less data to obtain a reasonable
uncertain when predicting the effects of actions. Unlike anodel, and improves computational performance of predic-
Markov model, however, the state may remain uncertain eveion algorithms.

@)



p(l|s) and the goal distribution is updated usipgg|l). In
particular, we can comput@(l|s) = 5 p(l| < Ix,g >)p(Q)
from current linkly, for each known goal.

Given the ability to predict the next link, we can predict
a complete route in several ways. One, we can use the goal
probability distribution to predict each link in turn, until we
reach some goal. Second, we can use the goal probability
distribution to predict each link in turn, until we reach the
most probable goal. Note that since the prediction of links
is used to determine the goal probability distribution, this
actually amounts to finding the most likely route through the
map, irrespective of the goal. Another approach is to provide
the system with a goal, a priori (i.ep(g) = 1) and then use
that goal to bias the prediction of subsequent links (ending
the route generation when that goal has been reached). In
our implementation, each of these methods was available.

C. The Extended Model

Fig. 1. An example road graph showing the links describing the road P ; ; :

segments for a small portion of Detroit Fgr.pred|ct|0n mtendgq goal and route, the basu? modellls
proficient, however, additional accuracy can be achieved with
better context. Our extended model incorporates context by

To red the si £ th dels. the t i b b_:Eugmenting the state representation to with additional factors,
1o reduce the size ot the models, Ihe transition probablg, -, 45 time-of-day and day-of-week. State is represented as
ity function is split into two. Instead op(s|sj), we use

a tuple<|l,g, f1, fo,...fn >, wherel is a link, g is a goal, and
p(lils;) and p(g|l). .SO’ .p(< .6 > |s;) is determined as f isp0n<e 76?‘7 t;’e 2é\ddirt]i;nal factors. The tgr]ansiti%n function
p(gi|li)p(li|sj). That is, given the current state we first predic (s,si) and the observation functia®(o;,s) are defined as
the next link that the driver will go to, and then predict his ) ’

| destination. based on that link n the basic model.
goal destination, based on that fink. Many of the additional factors (such as time-of-day) are

A link | is just an alphanumeric string. In the mapcontinuous quantities. Since it is difficult to learn HMMs
database, links are bidirectional. However, the model needqsi continuous state parameters, we choose to discretize
to distinguish which direction the link is traversed. So, eacfhe factors into a finite number of bins. The idea is that
link name from the map data base is appended with an R @fe pins would have semantic meaning that would help to
L, indicating whether the link is traversed right-to-left or |eft'improve prediction accuracy. For instance, we might want
to-right. Goals are the same as links (i.e., the link on whick, pin time-of-day into pre-dawn (up until 8AM), morning
the trip ended). Botfp(g|l) and p(l[s) are implemented as ,sh-hour (8-10AM), late morning (10-noon), early afternoon
hash tables. Fop(g|l), the key to the hash table is the g@al (oon-4), evening rush-hour (4-7PM), and night time (after
followed by the linkl and the value of an entry is the numberzp\yy. Each factor can have its own binning defined, in terms
of times thatl has been traversed when the destination Qft number of bins and where the bin boundaries occur. Bins
the trip wasg. Another hash table, whose key is the goake numbered starting with zero, and they are closed on the
links, that stores the number of times that goal has been thg; gng open on the right for instance, the time-of-day bin
destination of a trip. 8-10AM is interpreted as all times greater-than-or-equal to

For p(li| <lj,gj >), the hash key is the preceding link 8AM and less-than 10AM. The set of bins is circular (this
lj and the entries of the hash table are vectors of the forfg important for time-of-day and day-of-week), so that any
< lj,gj,m>, indicating that the vehicle drove from link  value greater-than-or-equal to the last boundary is considered
to link li m times when the goal destination was. The  belonging to the first bin. Thus, in the example given above,
probability p(li| < 1j,g;j >) is calculated by dividingn by  the night time bin (after 7PM) would actually be the same
the sum of all vector entriesy, < Ix,gj,m; > (that is, all as the pre-dawn bin (before 8AM). If one does not want the
the transitions from< 1j,g;j >). In addition, with each hash pins to be circular, one can define a bin whose final value is
entry |j is stored the mean and variance of the time spegjreater than any legal value. For instance, in defining bins
on the link for all trips that traversed that link. Initially, we for the speed factor, one can choose the last bin value to be
were planning on using that information to reason about thED00 mph, thus ensuring that no roll-over will occur.
traversal times (e.g., to predict how long a trip would take, Note that, even for factors that are already discrete (such
or to predict when a trip was taking significantly longer thamas day-of-week), it may be desirable to define bins, since
average), but to date this data has not been utilized. this increases the ability to generalize from the data. For

The main use of the model is to predict the next linknstance, one might want to bin day-of-week into weekend
to which the driver will transition. Given a link and a and weekday, under the assumption that ones routine trips
distribution of possible goals, the next link is predicted usingluring the week may differ significantly from those during



the weekend, but that there is not much difference withir l;,g,1 >. For the extended model, the update is essentially
those two categories. The ability to add new factors anthe same, except one is looking for entol;,c,m>, where
define bins is very flexible, and allows for experimentation te is the condition of the last trip data point associated with
determine which set of bins maximizes prediction accuracy;, augmented with the goal ling. Similarly, the number of
Note, however, that the HMM model must be re-learnetimes the goayj was visited is incremented and, for the basic
when new factors (or new bins) are added. model, the number of times the pairlj,g > was seen is
Based on this, we define a conditianas a tuple< incremented. For the extended model, a transition is added
9,bs,,bs,,...,bs, >, whereg is a goal (link) and theby; from g to the ENDOF_TRIP link. In addition, the statistics
are each binned factors. A state in the extended model ctor the time spent on; are updated, where the time spent
then be represented byl,c>. A condition can be partially onl; is determined as the time stamp the first trip data point
specified by having some of its elements be don't care valuebat is onl; until the time stamp of the first trip data point
Partially specifying conditions can useful when trying to prethat is onl;.
dict the next link, since in certain situations one may not want An important assumption for learning models that can
to completely specify all the factors. For instance, if thergield accurate predications is that the training data is reliable.
is no data in the model corresponding to the current timaAle have found, however, that the mapping from GPS data
of-day, one may want to get a prediction that is independer link name is not always accurate (likely due to noise in
of the time of day. We say two conditions match if eactthe GPS data). To improve the fidelity of the learned models,
pair of elements is either equal or at least one is don't carare have developed algorithms to detect and fix two common
matchci,cj) = (g = gj A DontCargg;) A DontCarggj)) V. classes of mapping problems, which we gilér andstubs
vk € [1,n] by, = br,; ADontCargby, ) ADontCargby, ). Jitter is a phenomenon where the sequence of links in a
For the extended model, a single hash table Is used ffip jumps from some main link to another link and then back
represent the probability distributiop(li|sj), wheres; is a  to the main link, where the two occurrences of the main link
tuple <lj,cj >. The hash key is the preceding lihkand the are heading in the same direction (see fig. 2 (a) and (b)). The
entries of the hash table are vectors of the fetrh, cj,m>,  combination of noise in the GPS data and a link close by,
indicating that when the condition was the vehicle drove roughly parallel to, the main link can cause the wrong link
mtimes from linkl; to link l;. A special link ENDOF_TRIP  to be chosen. This introduces cycles in the model, which can
is used to indicate the situation where lihkis the last link |ead to serious problems in terms of prediction. In particular,
of the trip. the route determination algorithm can loop indefinitely. For
The transition probabilityp(li| < 1j,cj >), wherecj may that reason, the actual algorithm checks for cycles in the
be only partially specified, is determined essentially byoute (i.e., looking for the same link to appear more than
marginalizing out the don't care elements of the conditiorence) and terminates if a cycle is found.
Specifically, p(li| < 1j,¢j >) is calculated by accessing the
entry in the hash table associated with lihkand iterating

through the vector elements Iy, ¢k, m¢ > to calculate g‘
s my|li = Iy v match(cj, ck) r
p(mlli = l) = 3) £ El Nota =
I Z m(|matC|’(Cj ’ Ck) E Jitter E Jitter -
V. LEARNING THE MODEL 2 R 3 - | Stb
= Link
Both the basic and extended HMMs are learned from b e
a set of trips. A trip is a sequence of data points, where @ (0) ©

each data point includes a link and a time stamp indicatingg. 2. Schematics showing the types of links that are considered to be
when the vehicle was on the link (note that the same lini¢ter noise (a), not true noise (b), and a stub link (c).
may appear multiple times in succession, if multiple data
points are collected while the vehicle stays on the link). Detecting jitter links is relatively straightforward. The
The link associated with the last data point of the trip isalgorithm goes through the trip keeping track of the current,
considered to be the goal destination of that trip. In additiodast, and penultimate links encountered (note, since the same
for the extended model, each trip data point includes a fulljnk may legitimately appear several times in a row, the
specified condition (a set of binned values representing ttadgorithm updates the current, last, and penultimate link only
additional factors). when there is a change). If the current link is the same as
The actual learning algorithm is quite simple. The basithe penultimate link, then the last link is considered to be
idea is to go through the trip sequence and, whenever thereaiditter link, and is removed from the trip sequence. While
a transition from one link; to anothet;, to access element this algorithm works correctly in all the data that we have
l; in the hash table and increment the number of transitiorseen, so far, fig. 2 (b) shows a hypothetical situation where
to l;, under the appropriate conditions. More specifically, ithe algorithm would incorrectly prune a link.
the goal link (last link in the trip sequence)dghen, for the A stub is a phenomenon where the sequence of links in
basic model, one finds whether the entrylj,g,m> exists a trip forms a three-way intersection (see fig. 2 (c)), where
and, if so, incrementm; otherwise a new element is addedthe sequence of links in the trip is link A, followed by the



stub link, followed by link B. Stubs arise due to GPS noisethose cells is the total percentage of all correct predictions,
when a link that is perpendicular to, and intersects with, theot including not in model links; The parenthesized number
actual route of the trip is chosen. Detecting stub links igs the percentage of unforced predictions that were correct.
more difficult than detecting jitters. Our current algorithm First, note that the percentage of links not in the model is
computes which end of the stub link is closest to link A andather small. This helps support our assumption that much
which end is closest to link B. If the same end is closestf driving is routine. Second, note that the percentage of
to both links, then we consider it to be a stub link and iforced transitions is quite high, averaging nearly 95%. This
is removed from the trip sequence. While there are sevemaleans that in almost all cases the right prediction will be
hypothetical configurations of curved links that can make thismade without any difficulty. Third, note that the overall
heuristic fail, fortunately, to date, we have not seen examplgsediction accuracy is around 99%. Even with a relatively
of them in our data. small amount of training data (less than a months worth of

driving), performance is nearly perfect. This bodes quite well

V1. EXPERIMENTAL VALIDATION for using such an approach on an actual vehicle.

A number of tests were conducted to test the accuracy On the other hand, the effect of including additional factors
of the predictive capability of the model. The models wergs much less clear-cut. First, note that predicting using speed
based on data obtained from GM that represented aboufsathe top percentage, or tied for the top. This was somewhat
month of urban driving with a low-cost GPS unit. The datasurprising, but the likely explanation is that slowing down is
set used most extensively included 46 separate trips in thgyood indication of when a driver will make a turn (although
Michigan area. A second data set recorded in the Pittsburghcould also indicate a stop sign or traffic light). Time-of-day,
area but not presented here was also used in developmgptthe other hand, performed rather poorly compared to some
with comparable results. Both data sets included the usugf the other constraints. This may be because the binning we
GPS problems found in urban domains: drop outs (commathose (every 2 hours) was suboptimal. It would be useful to
in Pittsburgh due to tunnels and bridges), noise, and biastry different binnings to see which works best. Finally, note

One interesting result is that accuracy, overall, is fairlthat using all the constraints together is the worst choice. This
high, often above 98%. The main reason for this is thas likely because with all the constraints being used there may
around 95% of the transitions in the models are forceghe no data available to make a prediction. We recommend,
meaning that there is only one next link for a given link. Fotherefore, to use the all the constraints first and, if the
unforced transitions, the accuracy is still quite good (typicallgonfidence is low, to try using individual constraints. Overall,
70-80%), but this accounts for only about 5% of the totajt is possible that the results would change if there were
predictions. In retrospect, this is not too unusual, sincgore training data, increasing the confidence in individual
people tend to drive fairly long distances along the samgredictions.
road going from place to place passing many intersections, The results above were with jitters and stubs removed
but turning relatively infrequently. Still, the magnitude of(see Section 3.4). We ran a test to determine the effect on
the unforced transitions was surprising. In what follows, Weerformance of removing jitters and stubs. Each test was
provide results on the percentage of forced transitions angn py learning a model with all of the data and then testing
the accuracy for unforced and overall. against all the data. This was not done using cross validation,

For the following tests, we used ten-fold cross validatioRg the percentages are generally higher. The results reported
where the models were learned on 90% of the data (42 tripg)e without any additional constraints predicting the next link
and then tested using the other 10% of the data (4 trips). Thisven just the previous link. With jitters and stubs removed,
is repeated 10 times, each time holding out a different set @{e accuracy was 97.8%, with the system predicting correctly
4 testing data, with the average over all tests reported. |1 times out of 197 unforced situations (71.6%). With
looked at three additional factors day-of-week (binned inttj':ust jitters removed, the accuracy increased to 98.1%, with
weekend and weekday), time-of-day (binned every 2 hoursyp 794 accuracy for unforced situations (132 out of 172).
and speed (binned into less than 10mph and greater th@fith just stubs removed, the accuracy was 98.4%, with
10mph). Note that since we use cross-validation, there ay8 494 accuracy for unforced situations (105 out of 143).
some links that appear in the test data that are not i”C|UdWerestingly, in this case the accuracy for removing both

in the training data. Since no reasonable prediCtion can lﬂ&ers and stubs was the same as for removing 0n|y stubs.
made for such links, we report those statistics separately.

Specifically, table | shows each cross-validation test, and VIl. RELATED WORK

the average of all of themNot in modelindicates the

percentage of links that were not in the model, along with Prediction of short-term human behavior is a rapidly
the actual number of such links (in parentheses). Forceptowing area of research. In the field of intelligent transport
percentage indicates the percentage of links for which thesystems, most work has focused on predicting or recognizing
was exactly one possible transition, not counting io¢ in  short behavior [2], or building cognitive models of how
modellinks. No constraintsday-of-weektime-of-day speed humans make these types of decisions [3]. More specifically
andall indicate the prediction accuracy with that particulato this paper, the work of [4], [5] are perhaps most closely
combination of additional factors. The top number in each aklated. [4] makes use of a HMM approach incorporating



Not in Forced No Day-of-Week Time-of-Day Speed All

Model Percentagel Constraints
1 36.0% (103) 95.1% 98.4% (66.7%)| 98.9% (77.8%)| 98.9% (77.8%)| 98.9% (77.8%)| 98.4% (66.7%)
2 17.1% (24) 92.2% 98.3% (77.8%)| 96.5% (55.6%)| 96.5% (55.6%)| 99.1% (88.9%)| 96.5% (55.6%)
3 4.6% (9) 93.1% 99.5% (92.3%)| 99.5% (92.3%)| 95.7% (38.5%)| 99.5% (92.3%)| 95.7% (38.5%)
4 16.2% (31) 95.6% 99.4% (85.7%)| 100% (100%) | 99.4% (85.7%)| 100% (100%) | 99.4% (85.7%)
5 17.7% (42) 96.9% 99.5% (83.3%)| 100% (100%) | 100% (100%) | 100% (100%) | 99.0% (66.7%)
6 7.7% (13) 94.8% 99.4% (87.5%)| 99.4% (87.5%)| 98.7% (75%) | 99.4% (87.5%)| 98.7% (75%)
7 7.8% (25) 94.6% 98.3% (68.8%)| 98.3% (68.8%)| 97.3% (50%) | 99.3% (87.5%)| 96.3% (31.2%)
8 9.7% (14) 95.4% 98.5% (66.7%)| 98.5% (66.7%)| 98.5% (66.7%)| 98.5% (66.7%)| 98.5% (66.7%)
9 15% (59) 94.0% 98.8% (78.9%)| 99.1% (84.2%)| 99.1% (84.2%)| 99.1% (84.2%)| 98.8% (78.9%)
10 12.7% (35) 95.8% 98.8% (70%) | 98.3% (60%) | 99.2% (80%) | 99.6% (90%) | 99.2% (80%)

[ Ave. ]| 15.1% (355)] 94.8% [ 98.8% (77.7%)] 99.0% (78.6%)[ 98.4% (68.9%)] 99.3% (87.4%)[ 98.0% (62.1%)]|

TABLE |
CROSS VALIDATION RESULTS FOR THE PREDICTIVE MODEL AND THE AVERAGE VALUERESULTS WERE GATHERED ON A REAL DRIVING DATA FROM A
MONTH OF EVERYDAY DRIVING. CATEGORIES ARE Not in modeLINKS NOT IN THE MODEL, Forced percentageiNKS FOR WHICH THERE WAS ONLY
ONE TRANSITION, No constraintsday-of-weektime-of-day speedAND all INDICATE THE PREDICTION ACCURACY WITH CONSTRAINT

a 1D Kalman filter to provide an improved map matchplaces where choices have to be made most of the predictions

ing mechanism. [5] uses a HMM of driver routes to alsare forced. For places where choices are available, the use

provide better map matching and makes use of the routé additional factors (time-of-day, speed, day-of-week) often

information for prediction. Our approach differs in that ouimprove prediction accuracy immeasurably.

HMM model focuses on the road link level and utilizes a Our future work will focus on extending the model to

different representation — each state incorporates knowledgeovide confidence estimates for each prediction, and using

of the destination and also records additional informatiothis to automate the selection of constraints to provide the

(time of day, day of week, link duration) that can be used omost accurate route prediction.
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approach exploits the underlying road graph available from analysis using robust operators and sparse bayesian learningEm

the map database and matching mechanisms. In contrast [8], International Workshop on Machine Vision for Intelligent Vehicles

[9] represent the raw position information directly (thus thes] p. b. saivucci, “Inferring driver intent: A case study in lane-change

state is continuous rather than being discrete and sparse).:\i/leteggoné"o(iJrl1 Human Factors and Ergonomics Society 48th Annual
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