
Learning to Predict Driver Route and Destination Intent

Reid Simmons, Brett Browning, Yilu Zhang & Varsha Sadekar

Abstract— For many people, driving is a routine activity
where people drive to the same destinations using the same
routes on a regular basis. Many drivers, for example, will drive
to and from work along a small set of routes, at about the
same time every day of the working week. Similarly, although
a person may shop on different days or at different times, they
will often visit the same grocery store(s). In this paper, we
present a novel approach to predicting driver intent that ex-
ploits the predictable nature of everyday driving. Our approach
predicts a driver’s intended route and destination through the
use of a probabilistic model learned from observation of their
driving habits. We show that by using a low-cost GPS sensor
and a map database, it is possible to build a Hidden Markov
Model (HMM) of the routes and destinations used by the
driver. Furthermore, we show that this model can be used
to make accurate predictions of the driver’s destination and
route through on-line observation of their GPS position during
the trip. We present a thorough evaluation of our approach
using a corpus of almost a month of real, everyday driving.
Our results demonstrate the effectiveness of the approach,
achieving approximately 98% accuracy in most cases. Such
high performance suggests that the method can be harnessed for
improved safety monitoring, route planning taking into account
traffic density, and better trip duration prediction.

I. INTRODUCTION

Much of our driving is routine in that we tend to go to the
same destinations over and over, following the same routes
at the same time of day, or day of week. Even when better
routes exist, such as shorter, or faster routes given the current
traffic conditions, we tend to stick with routes that we have
used in the past. It is this observation that motivates the ideas
presented in this paper.

The problem we focus on in this paper is to develop a
system that collects data on the habits of individual drivers
by observing what destinations they drive to and what routes
they take to get there. Using that data, the system should be
able to predict the driver’s intended route and destination
based on what has been observed of the driver’s route taken,
so far.

There are several possible uses for such types of pre-
dictions. In terms of navigation systems, the predictions
could be used to provide better route guidance without
requiring input from the driver and instead relying on the
prediction to infer the driver’s intent. Smarter route guidance
could be provided through the integration of real-time traffic
estimates. Alternatively, the vehicle could estimate the time

This work was supported by General Motors.
Reid Simmons and Brett Browning are with the Robotics Insti-

tute, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA,
15224 {reids,brettb }@cs.cmu.edu . Yilu Zhang and Varsha
Sedakar are with the Electrical & Controls Integration Lab, General
Motors R&D and Planning, 30500 Mound Road, Warren, MI, 48090
{yilu.zhang,varsha.k.sadekar }@gm.com

of arrival at the predicted destination and alert the driver
if she is going to be late (by accessing calendar information
stored on the drivers PDA). Another application area is safety
warning, where knowledge of the driver’s intended short-
term route can be used to reduce false alarm rates.

In this paper, we present a Hidden Markov Model (HMM)
based approach to providing real-time predictions on driver
destination and route. Our approach is based on building the
probabilistic model through observation of the driver’s habits
via a map database and a low-cost GPS sensor. Our results
demonstrate that this approach can achieve significant levels
of accuracy on real, everyday driving data.

The paper is structured as follows. In the ensuing section
we describe the basis of our approach and provide the
mathematical machinery required to understand the HMM
approach. We then describe how we build a HMM for
learning and predicting driver routes and destinations. Based
on this model, we present the experimental results using a
corpus of real driving data. We then conclude the paper.

II. THE APPROACH

The fundamental assumption in this project is that driving
is largely routine, and that past performance can be used
to predict what the driver will do in the future. We further
assume that a route map is available as is a sensor, such as
GPS, that can tell us what segment of the map the vehicle is
on, what speed the vehicle is traveling, and the time at which
the sensor reading is taken. Additional information (such as
turn signal state, which lane the vehicle is in) may be useful,
but has not been explored in this project, to date.

While one would like to make perfect predictions, this is
not possible due to the nature of driving. Even if a driver has
very set routines, it is still possible for the driver to deviate
from them once in a while. For instance, if a driver always
goes to work at 9AM on weekdays, using the same route
every time, once in a while she may go somewhere else at
that time, such as a doctors appointment. Alternatively, a
driver may have more than one route to a given destination,
such as work, and choose between them at random, in order
to have some variety. In another variant, the drivers preferred
route may be closed for construction, forcing him to take a
different route.

All of this points to the fact that the prediction of driver
intent must be probabilistic. One can predict intent with a
certain probability and confidence, but can never be 100%
sure of the prediction. For that reason, our approach is to use
a statistical model for making the predictions and to learn
the model from past driving experience. The basic idea is to
collect data on every trip a driver takes and to incrementally

update the statistical model based on that experience. The
model is then used, on-line, to predict driver intent for the
next trip, after which that trip is used to, once again, update
the model.

The statistical model used in this project is a Hidden
Markov Model [1]. A Hidden Markov Model (HMM) is
a Markov chain that can be used to track processes with
hidden state. In this case, the process is the sequence of
driver actions used to follow a route, and the hidden state is
the driver’s intended destination and route.

While learning HMMs, in general, requires large amounts
of data, it is feasible in this case mainly because the structure
of the model is already known, it is the road-map of the area,
and there are only a small number of transitions between
nodes in the model (i.e., a limited number of road segments
intersect at any one point). In addition, although the number
of road segments in a map database can be very large,
the statistical model will be relatively small because any
single user tends to traverse only a very small percentage
of the roads in a region. Clearly this would not be true
for salespeople, delivery people, etc, but in those cases the
basic assumption about most routes being routine is also
violated, making this approach less applicable for those types
of drivers.

III. HIDDEN MARKOV MODELS

A Markov model is a graphical statistical model that
captures a sequential model of behavior. It is a tuple<
S,A,T >, whereS is a (finite) set of states,A is a (finite) set
of actions, andT is the transition functionT : S×A×S→ℜ,
where T(si ,a,sj) = p(si |sj ,a), which is the probability of
transitioning to statesi given that the system is in statesj

and actiona is executed.
Given a Markov model and an initial state distribution

π, one can predict the state distribution that results from
carrying out a sequence of actions< a1,a2, ...,an >. If pt(si)
is the probability of being in statesi at time t (where
π(.) = p0(.) is the initial state distribution), thenpt+1(si) =
∑sj∈Spt(sj)T(si ,at+1,sj). Note that while the exact state of
the system is uncertain when doingprediction, it is assumed
that the state is known for certain after the actions are
actuallyexecutedin the world.

A Hidden Markov model (HMM) is a Markov model
with hidden (unobservable) state [1]. An HMM is a five-
tuple< S,A,O,T,Z,π >, whereS, A, andT are the same as
with the Markov model andπ is the initial state distribution.
In addition, O is a (finite) set of observations andZ is the
observation functionZ : O×S×A→ ℜ, whereZ(o,s,a) =
p(o|s,a), which is the probability of receiving observation
o given that the system ends up in states after executing
action a. For many problems,Z is the same for all values
of a, (i.e.,Z(o,si ,a j) = Z(o,si ,ak)). In what follows, we will
useZ(o,s) as shorthand forZ(o,s,a), when Z is the same
for all values ofa.

As in a Markov model, the exact state of the system is
uncertain when predicting the effects of actions. Unlike a
Markov model, however, the state may remain uncertain even

after executing the actions. For a HMM, both transitions and
observations are used to help infer the next state distribution.
The same equation as given above for Markov models is used
to predict the state distribution at timet +1 given the state
distribution at timet and the actionat+1. In addition,ot+1,
the observation at timet +1 is used to further constrain the
state distribution:

pt+1(s)← pt+1(s)Z(ot+1,s,at+1)
p(ot+1)

(1)

Where p(ot+1) is a normalizing factor and is given by

p(ot+1) = ∑
si∈S

pt+1(si)Z(ot+1,si ,a
t+1) (2)

IV. PREDICTING DRIVER INTENT WITH A HMM

We now describe our approach to predicting driver intent
using a HMM, starting with the road graph representation
that underlies the approach. We then describe our basic
model containing route and destination information, and
the extended model that incorporates contextual information
such as time of day, day of week, and vehicle speed.

A. The Road Graph

The core of the representation used in our approach resides
in the use of the road graph provided by the mapping
database. The mapping database enables us to abstract away
from pure GPS locations, towards a street-level graph rep-
resentation. Fig. 1 shows an example street map using a
GUI debugging tool. Concretely, the map is represented as
an undirected graphG = (V,E) consisting of verticesV
for each intersection, and edgesE linking each intersection
(i.e. e= (v1,v2)). Note that each edge in the map database
typically contains other information, however, we ignore this
for now. We will generally consider a directed version of this
graph where edges are ordered to reflect the traveling direc-
tion between the intersections. The map database provide a
unique one-to-one mapping from each edge to a unique label.
We will use the termlink to indicate the unique labeling of
a directed edge between two intersections.

B. The Basic Model

The basic model represents state using pairss=< l ,g >,
where l is a link and g is a goal (destination). Actions
are not represented explicitly, so the transition function
T is a function from states to states:T(si ,sj) = p(si |sj).
Observations are the current link location (a segment in
the map database), derived from the vehicles GPS position,
speed, and heading. In this work, the observation function
is deterministic:Z(ol ,s) = p(ol | < l ,g >) = 1, whereol is
the observation of linkl . That is, our model assumes that
the mapping from GPS position to map link is perfect. In
practice, this is not completely true and some pre-filtering
is required to remove matching errors. However, it is a
reasonable approximation and makes the model considerably
more compact, requires less data to obtain a reasonable
model, and improves computational performance of predic-
tion algorithms.

Fig. 1. An example road graph showing the links describing the road
segments for a small portion of Detroit.

To reduce the size of the models, the transition probabil-
ity function is split into two. Instead ofp(si |sj), we use
p(l i |sj) and p(g|l). So, p(< l i ,gi > |sj) is determined as
p(gi |l i)p(l i |sj). That is, given the current state we first predict
the next link that the driver will go to, and then predict his
goal destination, based on that link.

A link l is just an alphanumeric string. In the map
database, links are bidirectional. However, the model needs
to distinguish which direction the link is traversed. So, each
link name from the map data base is appended with an R or
L, indicating whether the link is traversed right-to-left or left-
to-right. Goals are the same as links (i.e., the link on which
the trip ended). Bothp(g|l) and p(l |s) are implemented as
hash tables. Forp(g|l), the key to the hash table is the goalg
followed by the linkl and the value of an entry is the number
of times thatl has been traversed when the destination of
the trip wasg. Another hash table, whose key is the goal
links, that stores the number of times that goal has been the
destination of a trip.

For p(l i | < l j ,g j >), the hash key is the preceding link
l j and the entries of the hash table are vectors of the form
< l i ,g j ,m>, indicating that the vehicle drove from linkl j

to link l i m times when the goal destination wasg j . The
probability p(l i | < l j ,g j >) is calculated by dividingm by
the sum of all vector entries:∑x < lx,g j ,mj > (that is, all
the transitions from< l j ,g j >). In addition, with each hash
entry l j is stored the mean and variance of the time spent
on the link for all trips that traversed that link. Initially, we
were planning on using that information to reason about the
traversal times (e.g., to predict how long a trip would take,
or to predict when a trip was taking significantly longer than
average), but to date this data has not been utilized.

The main use of the model is to predict the next link
to which the driver will transition. Given a link and a
distribution of possible goals, the next link is predicted using

p(l |s) and the goal distribution is updated usingp(g|l). In
particular, we can computep(l |s) = ∑ p(l | < lx,g >)p(g)
from current link lx, for each known goal.

Given the ability to predict the next link, we can predict
a complete route in several ways. One, we can use the goal
probability distribution to predict each link in turn, until we
reach some goal. Second, we can use the goal probability
distribution to predict each link in turn, until we reach the
most probable goal. Note that since the prediction of links
is used to determine the goal probability distribution, this
actually amounts to finding the most likely route through the
map, irrespective of the goal. Another approach is to provide
the system with a goal, a priori (i.e.,p(g) = 1) and then use
that goal to bias the prediction of subsequent links (ending
the route generation when that goal has been reached). In
our implementation, each of these methods was available.

C. The Extended Model

For prediction intended goal and route, the basic model is
proficient, however, additional accuracy can be achieved with
better context. Our extended model incorporates context by
augmenting the state representation to with additional factors,
such as time-of-day and day-of-week. State is represented as
a tuple< l ,g, f1, f2, ... fn >, wherel is a link, g is a goal, and
fi is one of the additional factors. The transition function
T(si ,sj) and the observation functionZ(ol ,s) are defined as
in the basic model.

Many of the additional factors (such as time-of-day) are
continuous quantities. Since it is difficult to learn HMMs
with continuous state parameters, we choose to discretize
the factors into a finite number of bins. The idea is that
the bins would have semantic meaning that would help to
improve prediction accuracy. For instance, we might want
to bin time-of-day into pre-dawn (up until 8AM), morning
rush-hour (8-10AM), late morning (10-noon), early afternoon
(noon-4), evening rush-hour (4-7PM), and night time (after
7PM). Each factor can have its own binning defined, in terms
of number of bins and where the bin boundaries occur. Bins
are numbered starting with zero, and they are closed on the
left and open on the right for instance, the time-of-day bin
8-10AM is interpreted as all times greater-than-or-equal to
8AM and less-than 10AM. The set of bins is circular (this
is important for time-of-day and day-of-week), so that any
value greater-than-or-equal to the last boundary is considered
belonging to the first bin. Thus, in the example given above,
the night time bin (after 7PM) would actually be the same
as the pre-dawn bin (before 8AM). If one does not want the
bins to be circular, one can define a bin whose final value is
greater than any legal value. For instance, in defining bins
for the speed factor, one can choose the last bin value to be
1000 mph, thus ensuring that no roll-over will occur.

Note that, even for factors that are already discrete (such
as day-of-week), it may be desirable to define bins, since
this increases the ability to generalize from the data. For
instance, one might want to bin day-of-week into weekend
and weekday, under the assumption that ones routine trips
during the week may differ significantly from those during

the weekend, but that there is not much difference within
those two categories. The ability to add new factors and
define bins is very flexible, and allows for experimentation to
determine which set of bins maximizes prediction accuracy.
Note, however, that the HMM model must be re-learned
when new factors (or new bins) are added.

Based on this, we define a conditionc as a tuple<
g,bf1,bf2, ...,bfn >, where g is a goal (link) and thebfi
are each binned factors. A state in the extended model can
then be represented by< l ,c>. A condition can be partially
specified by having some of its elements be don’t care values.
Partially specifying conditions can useful when trying to pre-
dict the next link, since in certain situations one may not want
to completely specify all the factors. For instance, if there
is no data in the model corresponding to the current time-
of-day, one may want to get a prediction that is independent
of the time of day. We say two conditions match if each
pair of elements is either equal or at least one is don’t care:
match(ci ,c j) = (gi = g j ∧DontCare(gi)∧DontCare(g j))∨
∀k∈ [1,n] (bfki = bfk j ∧DontCare(bfki)∧DontCare(bfk j).

For the extended model, a single hash table is used to
represent the probability distributionp(l i |sj), wheresj is a
tuple< l j ,c j >. The hash key is the preceding linkl j and the
entries of the hash table are vectors of the form< l i ,c j ,m>,
indicating that when the condition wasc j the vehicle drove
m times from linkl j to link l i . A special link ENDOF TRIP
is used to indicate the situation where linkl j is the last link
of the trip.

The transition probabilityp(l i | < l j ,c j >), wherec j may
be only partially specified, is determined essentially by
marginalizing out the don’t care elements of the condition.
Specifically, p(l i | < l j ,c j >) is calculated by accessing the
entry in the hash table associated with linkl j and iterating
through the vector elements< lk,ck,mk > to calculate

p(mk|l i = lk) =
∑mk|l i = lk∨match(c j ,ck)

∑mk|match(c j ,ck)
(3)

V. LEARNING THE MODEL

Both the basic and extended HMMs are learned from
a set of trips. A trip is a sequence of data points, where
each data point includes a link and a time stamp indicating
when the vehicle was on the link (note that the same link
may appear multiple times in succession, if multiple data
points are collected while the vehicle stays on the link).
The link associated with the last data point of the trip is
considered to be the goal destination of that trip. In addition,
for the extended model, each trip data point includes a fully
specified condition (a set of binned values representing the
additional factors).

The actual learning algorithm is quite simple. The basic
idea is to go through the trip sequence and, whenever there is
a transition from one linkl j to anotherl i , to access element
l j in the hash table and increment the number of transitions
to l i , under the appropriate conditions. More specifically, if
the goal link (last link in the trip sequence) isg then, for the
basic model, one finds whether the entry< l i ,g,m> exists
and, if so, incrementsm; otherwise a new element is added

< l i ,g,1>. For the extended model, the update is essentially
the same, except one is looking for entry< l i ,c,m>, where
c is the condition of the last trip data point associated with
l j , augmented with the goal linkg. Similarly, the number of
times the goalg was visited is incremented and, for the basic
model, the number of times the pair< l j ,g > was seen is
incremented. For the extended model, a transition is added
from g to the ENDOF TRIP link. In addition, the statistics
for the time spent onl j are updated, where the time spent
on l j is determined as the time stamp the first trip data point
that is onl j until the time stamp of the first trip data point
that is onl i .

An important assumption for learning models that can
yield accurate predications is that the training data is reliable.
We have found, however, that the mapping from GPS data
to link name is not always accurate (likely due to noise in
the GPS data). To improve the fidelity of the learned models,
we have developed algorithms to detect and fix two common
classes of mapping problems, which we calljitter andstubs.

Jitter is a phenomenon where the sequence of links in a
trip jumps from some main link to another link and then back
to the main link, where the two occurrences of the main link
are heading in the same direction (see fig. 2 (a) and (b)). The
combination of noise in the GPS data and a link close by,
roughly parallel to, the main link can cause the wrong link
to be chosen. This introduces cycles in the model, which can
lead to serious problems in terms of prediction. In particular,
the route determination algorithm can loop indefinitely. For
that reason, the actual algorithm checks for cycles in the
route (i.e., looking for the same link to appear more than
once) and terminates if a cycle is found.

(a) (b) (c)

Fig. 2. Schematics showing the types of links that are considered to be
jitter noise (a), not true noise (b), and a stub link (c).

Detecting jitter links is relatively straightforward. The
algorithm goes through the trip keeping track of the current,
last, and penultimate links encountered (note, since the same
link may legitimately appear several times in a row, the
algorithm updates the current, last, and penultimate link only
when there is a change). If the current link is the same as
the penultimate link, then the last link is considered to be
a jitter link, and is removed from the trip sequence. While
this algorithm works correctly in all the data that we have
seen, so far, fig. 2 (b) shows a hypothetical situation where
the algorithm would incorrectly prune a link.

A stub is a phenomenon where the sequence of links in
a trip forms a three-way intersection (see fig. 2 (c)), where
the sequence of links in the trip is link A, followed by the

stub link, followed by link B. Stubs arise due to GPS noise,
when a link that is perpendicular to, and intersects with, the
actual route of the trip is chosen. Detecting stub links is
more difficult than detecting jitters. Our current algorithm
computes which end of the stub link is closest to link A and
which end is closest to link B. If the same end is closest
to both links, then we consider it to be a stub link and it
is removed from the trip sequence. While there are several
hypothetical configurations of curved links that can make this
heuristic fail, fortunately, to date, we have not seen examples
of them in our data.

VI. EXPERIMENTAL VALIDATION

A number of tests were conducted to test the accuracy
of the predictive capability of the model. The models were
based on data obtained from GM that represented about a
month of urban driving with a low-cost GPS unit. The data
set used most extensively included 46 separate trips in the
Michigan area. A second data set recorded in the Pittsburgh
area but not presented here was also used in development
with comparable results. Both data sets included the usual
GPS problems found in urban domains: drop outs (common
in Pittsburgh due to tunnels and bridges), noise, and bias.

One interesting result is that accuracy, overall, is fairly
high, often above 98%. The main reason for this is that
around 95% of the transitions in the models are forced,
meaning that there is only one next link for a given link. For
unforced transitions, the accuracy is still quite good (typically
70-80%), but this accounts for only about 5% of the total
predictions. In retrospect, this is not too unusual, since
people tend to drive fairly long distances along the same
road going from place to place passing many intersections,
but turning relatively infrequently. Still, the magnitude of
the unforced transitions was surprising. In what follows, we
provide results on the percentage of forced transitions and
the accuracy for unforced and overall.

For the following tests, we used ten-fold cross validation
where the models were learned on 90% of the data (42 trips)
and then tested using the other 10% of the data (4 trips). This
is repeated 10 times, each time holding out a different set of
4 testing data, with the average over all tests reported. We
looked at three additional factors day-of-week (binned into
weekend and weekday), time-of-day (binned every 2 hours),
and speed (binned into less than 10mph and greater than
10mph). Note that since we use cross-validation, there are
some links that appear in the test data that are not included
in the training data. Since no reasonable prediction can be
made for such links, we report those statistics separately.

Specifically, table I shows each cross-validation test, and
the average of all of them.Not in model indicates the
percentage of links that were not in the model, along with
the actual number of such links (in parentheses). Forced
percentage indicates the percentage of links for which there
was exactly one possible transition, not counting thenot in
modellinks. No constraints, day-of-week, time-of-day, speed
and all indicate the prediction accuracy with that particular
combination of additional factors. The top number in each of

those cells is the total percentage of all correct predictions,
not including not in model links; The parenthesized number
is the percentage of unforced predictions that were correct.

First, note that the percentage of links not in the model is
rather small. This helps support our assumption that much
of driving is routine. Second, note that the percentage of
forced transitions is quite high, averaging nearly 95%. This
means that in almost all cases the right prediction will be
made without any difficulty. Third, note that the overall
prediction accuracy is around 99%. Even with a relatively
small amount of training data (less than a months worth of
driving), performance is nearly perfect. This bodes quite well
for using such an approach on an actual vehicle.

On the other hand, the effect of including additional factors
is much less clear-cut. First, note that predicting using speed
is the top percentage, or tied for the top. This was somewhat
surprising, but the likely explanation is that slowing down is
a good indication of when a driver will make a turn (although
it could also indicate a stop sign or traffic light). Time-of-day,
on the other hand, performed rather poorly compared to some
of the other constraints. This may be because the binning we
chose (every 2 hours) was suboptimal. It would be useful to
try different binnings to see which works best. Finally, note
that using all the constraints together is the worst choice. This
is likely because with all the constraints being used there may
be no data available to make a prediction. We recommend,
therefore, to use the all the constraints first and, if the
confidence is low, to try using individual constraints. Overall,
it is possible that the results would change if there were
more training data, increasing the confidence in individual
predictions.

The results above were with jitters and stubs removed
(see Section 3.4). We ran a test to determine the effect on
performance of removing jitters and stubs. Each test was
run by learning a model with all of the data and then testing
against all the data. This was not done using cross validation,
so the percentages are generally higher. The results reported
are without any additional constraints predicting the next link
given just the previous link. With jitters and stubs removed,
the accuracy was 97.8%, with the system predicting correctly
141 times out of 197 unforced situations (71.6%). With
just jitters removed, the accuracy increased to 98.1%, with
72.7% accuracy for unforced situations (132 out of 172).
With just stubs removed, the accuracy was 98.4%, with
73.4% accuracy for unforced situations (105 out of 143).
Interestingly, in this case the accuracy for removing both
jitters and stubs was the same as for removing only stubs.

VII. RELATED WORK

Prediction of short-term human behavior is a rapidly
growing area of research. In the field of intelligent transport
systems, most work has focused on predicting or recognizing
short behavior [2], or building cognitive models of how
humans make these types of decisions [3]. More specifically
to this paper, the work of [4], [5] are perhaps most closely
related. [4] makes use of a HMM approach incorporating

Not in Forced No Day-of-Week Time-of-Day Speed All
Model Percentage Constraints

1 36.0% (103) 95.1% 98.4% (66.7%) 98.9% (77.8%) 98.9% (77.8%) 98.9% (77.8%) 98.4% (66.7%)
2 17.1% (24) 92.2% 98.3% (77.8%) 96.5% (55.6%) 96.5% (55.6%) 99.1% (88.9%) 96.5% (55.6%)
3 4.6% (9) 93.1% 99.5% (92.3%) 99.5% (92.3%) 95.7% (38.5%) 99.5% (92.3%) 95.7% (38.5%)
4 16.2% (31) 95.6% 99.4% (85.7%) 100% (100%) 99.4% (85.7%) 100% (100%) 99.4% (85.7%)
5 17.7% (42) 96.9% 99.5% (83.3%) 100% (100%) 100% (100%) 100% (100%) 99.0% (66.7%)
6 7.7% (13) 94.8% 99.4% (87.5%) 99.4% (87.5%) 98.7% (75%) 99.4% (87.5%) 98.7% (75%)
7 7.8% (25) 94.6% 98.3% (68.8%) 98.3% (68.8%) 97.3% (50%) 99.3% (87.5%) 96.3% (31.2%)
8 9.7% (14) 95.4% 98.5% (66.7%) 98.5% (66.7%) 98.5% (66.7%) 98.5% (66.7%) 98.5% (66.7%)
9 15% (59) 94.0% 98.8% (78.9%) 99.1% (84.2%) 99.1% (84.2%) 99.1% (84.2%) 98.8% (78.9%)
10 12.7% (35) 95.8% 98.8% (70%) 98.3% (60%) 99.2% (80%) 99.6% (90%) 99.2% (80%)

Ave. 15.1% (355) 94.8% 98.8% (77.7%) 99.0% (78.6%) 98.4% (68.9%) 99.3% (87.4%) 98.0% (62.1%)

TABLE I

CROSS VALIDATION RESULTS FOR THE PREDICTIVE MODEL AND THE AVERAGE VALUE. RESULTS WERE GATHERED ON A REAL DRIVING DATA FROM A

MONTH OF EVERYDAY DRIVING. CATEGORIES ARE: Not in modelLINKS NOT IN THE MODEL, Forced percentageLINKS FOR WHICH THERE WAS ONLY

ONE TRANSITION, No constraints, day-of-week, time-of-day, speedAND all INDICATE THE PREDICTION ACCURACY WITH CONSTRAINT.

a 1D Kalman filter to provide an improved map match-
ing mechanism. [5] uses a HMM of driver routes to also
provide better map matching and makes use of the route
information for prediction. Our approach differs in that our
HMM model focuses on the road link level and utilizes a
different representation – each state incorporates knowledge
of the destination and also records additional information
(time of day, day of week, link duration) that can be used or
not during the query process. Our work does not addressed
the map matching problem other than to introduce two new
simple filtering methods for post-filtering map matches.

In robotics and artificial intelligence, prediction of human
behavior has also been explored in a number of settings [6],
[7]. For example [8], [9] build probabilistic models of
the routes taken by pedestrians using either GPS or an
external sensor. These authors used a related graphical
model approach (Hierarchical Markov Random Fields). The
major difference between their work and ours centers on
the underlying representation of state. As explained, our
approach exploits the underlying road graph available from
the map database and matching mechanisms. In contrast [8],
[9] represent the raw position information directly (thus the
state is continuous rather than being discrete and sparse).
The complexity of the two resulting approaches differ sig-
nificantly. Given the availability of the map data base and
the restricted travel of vehicles to roadways, using a HMM
over the road graph is viable for modelling driver routes and
leads to significant efficiency gains.

VIII. CONCLUSIONS AND FUTURE WORK

This paper presented an approach to predict driver intent
using Hidden Markov Models. The underlying premise is
that drivers have certain routine routes and that by learning
a model based on previous experience, one can accurately
predict what a driver will do in the future. We presented this
approach along with experimental results drawn from a cor-
pus of real driving data. The results demonstrate an accuracy
of over 98% accuracy of prediction in most cases. Much of
this accuracy is due to the fact that there tend to be very few

places where choices have to be made most of the predictions
are forced. For places where choices are available, the use
of additional factors (time-of-day, speed, day-of-week) often
improve prediction accuracy immeasurably.

Our future work will focus on extending the model to
provide confidence estimates for each prediction, and using
this to automate the selection of constraints to provide the
most accurate route prediction.

IX. ACKNOWLEDGMENTS

We would like to thank our partners at General Motors
Dick Johnson and Sarmad Hermiz for their contributions to
this project. Additionally, we would like to thank Carnegie
Mellon students Chris Yeung, Dewey Yang, and Ashwin
Gupta for their contributions to this project.

REFERENCES

[1] L. Rabiner and B. Juang,Fundamentals of Speech Recognition. Pren-
tice Hall, 1993.

[2] J. Mccall, D. Wipf, M. Trivedi, and B. Rao, “Lane change intent
analysis using robust operators and sparse bayesian learning,” inIEEE
International Workshop on Machine Vision for Intelligent Vehicles,
2005.

[3] D. D. Salvucci, “Inferring driver intent: A case study in lane-change
detection,” in Human Factors and Ergonomics Society 48th Annual
Meeting, 2004.

[4] P. Lamb and S. Thiebaux, “Avoiding explicit map-matching in vehicle
location,” in The 6th ITS World Congress (ITS-99), 1999.

[5] J. Letchner, J. Krumm, and E. Horvitz, “Trip router with individualized
preferences (trip): Incorporating personalization into route planning,” in
Eighteenth Conference on Innovative Applications of Artificial Intelli-
gence (IAAI-06), 2006.

[6] A. Pentland and A. Liu, “Modeling and prediction of human behavior,”
Neural Computation, vol. 11, pp. 229–242, 1999.

[7] D. Schulz, W. Burgard, D. Fox, and A. Cremers, “People tracking with
mobile robots using sample-based joint probabilistic data association
filters,” International Journal of Robotics Research, vol. 22, no. 2, 2003.

[8] L. Liao, D. Fox, and H. Kautz, “Hierarchical conditional random
fields for gps-based activity recognition,” inInternational Symposium
of Robotics Research, 2005.

[9] ——, “Location-based activity recognition,” inAdvances in Neural
Information Processing Systems 19, 2005.

