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Abstract— This paper presents a learning-enhanced market-
based task allocation approach for oversubscribed domains.
In oversubscribed domains all tasks cannot be completed
within the required deadlines due to a lack of resources. We
focus specifically on domains where tasks can be generated
throughout the mission, tasks can have different levels of
importance and urgency, and penalties are assessed for failed
commitments. Therefore, agents must reason about potential
future events before making task commitments. Within these
constraints, existing market-based approaches to task allocation
can handle task importance and urgency, but do a poor job of
anticipating future tasks, and are hence assessed a high number
of penalties. In this work, we enhance a baseline market-based
task allocation approach using regression-based learning to
reduce overall incurred penalties. We illustrate the effectiveness
of our approach in a simulated disaster response scenario by
comparing performance with a baseline market-approach.

I. INTRODUCTION

Several application domains that require teamwork, such
as disaster response and grid computing scheduling, present
scenarios where agents cannot complete all tasks even if they
act optimally. These domains are categorized as oversub-
scribed, where the team resources are insufficient to com-
plete all tasks within the required deadlines. Oversubscribed
domains present several challenges to task-allocation. The
primary challenge is to determine which tasks should be
completed, based on estimates of future constraints, and
thus minimize penalties. Within this problem space, we
focus on domains where the selection of tasks for execution
significantly impacts the quality of the allocation solution.
Specifically, we are interested in domains that exhibit the
following characteristics:

• The set of tasks are not known prior to execution and
new tasks are issued throughout the mission.

• All tasks are not equal in importance and urgency.
• Failed or broken commitments incur a cost in proportion

to the importance and urgency of the tasks.
Existing market-based approaches to task allocation con-

tain no mechanism for reasoning about future tasks and
thus perform poorly in domains that demonstrate the above
characteristics. Of course, precisely anticipating the future is
impossible, especially given the uncertainty in many over-
subscribed domains. However, learning techniques can be
used to identify and exploit patterns in the characteristics and

rate of emergence of tasks. Thus, the primary contribution
of this work is the design, implementation, and evaluation
of a learning-enhanced market-based allocation approach for
oversubscribed domains.

The following section explores related work. We then
introduce an oversubscribed fire fighting disaster response
domain that has the requisite characteristics followed by a
description of our approach and implementation. Experimen-
tal results and discussion are then presented followed by
conclusions and an exploration of future work.

II. RELATED WORK

Market-based approaches have been applied effectively to
coordinate teams in a variety of domains [4]. The widest
application in multi-robot domains has been in scenarios
where the set of tasks to be allocated is known ahead of
time, and the goal of the allocation is to assign tasks to
robots to minimize a cost function such as total path length
across all robots. For these domains sequential single-item
auctions have been shown to give solutions within a constant
factor of the optimal allocation [8] and to provide solutions
that compare well against parallel and combinatorial auctions
[7] while being inexpensive in terms of computation and
communication. Some work has addressed improving single-
item auctions to gain even better performance. Zheng et
al. evaluate using lookaheads and rollouts to get better
allocations [13], and several approaches focus on using inter-
agent re-auctions to improve performance [3] [14]. However,
none of this work considers tasks that have constraints
such as deadlines with penalties for failure. Thus, existing
methods of improving single-item auctions are ineffective
when a team must reason about the urgency and importance
of different tasks. For example, a re-auction can improve
the allocation solution by changing the assignment for a
particular task, but in the oversubscribed domains explored in
this paper, some robot must still perform the task or the team
will be assessed a penalty for not completing the task. The
re-auction can address small inefficiencies in task allocation,
but cannot affect the possibly larger inefficiencies associated
with the acceptance of a relatively unimportant task in a
domain oversubscribed with important tasks.

The Trading Agent Competition Supply Chain Manage-
ment (TAC SCM) scenario has spurred substantial research
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in adaptive market-based approaches. Of special interest are
approaches for adapting and optimizing bidding for customer
orders [1] [9]. These approaches seek to predict probabilities
of bid acceptance for variously priced bids and to determine
optimal bids based on this information to improve one
component of TAC SCM agents. While statistical learning
techniques are employed to good effect in these approaches,
the TAC SCM domain is a competition where each agent
seeks to maximize profit at the expense of other agents; the
oversubscribed domains addressed in this paper instead focus
on cooperative agents working together to solve a problem.

Substantial work exists in reinforcement learning for im-
proving task allocation [12] [2]. We are aware of only one
previous approach, however, that uses learning to improve
bidding over time in a collaborative multi-robot market-based
approach. Schneider et al. use a notion of opportunity cost
to modify the bids of heterogeneous robots in a domain with
time-discounted rewards but no deadlines or penalties [10] -
the omission of deadlines and penalties makes the decision
about whether or not to allocate certain tasks have little
effect on overall efficiency. This method serves to spread
high-reward tasks among robots with different capabilities,
leading to an increase in the overall reward obtained by
the team. Schneider et al.’s notion of opportunity cost is
of primary benefit in domains with heterogeneous agents.
However, their mechanism is unlikely to limit penalties in
the class of oversubscribed domains addressed by our work
as it does not help agents to reason about the effects that
current allocations will have on the future possibilities.

III. THE OVERSUBSCRIBED FIRE FIGHTING DISASTER
RESPONSE DOMAIN

We evaluate our allocation approach in an oversubscribed
fire fighting disaster response domain. In the fire fighting
domain teams of robotic fire fighters rove around a bounded
disaster zone extinguishing fires of various magnitudes. New
fires are continuously discovered at various buildings scat-
tered around the city, and an objective score is assigned
to each fire based not only on the value of the affected
building but also on the magnitude of the fire. This means
objective score for a particular fire is dependent on the time
at which it is extinguished, the initial value of the building,
and the fire’s magnitude. Penalties result when the team
agrees to put out a fire but fails to do so in the allotted
time. Good performance in this domain requires reasoning
about importance and urgency and making good decisions
about what tasks the team should and should not accept.

In this domain we model the continuous issue of new
tasks using a Poisson process, the standard distribution used
in queuing theory to represent stochastic arrival times of
independent tasks [5]. The Poisson process is governed by
a parameter λ which represents the expected rate of task
issuance, as governed by the Poisson probability distribution.

Relative importance and urgency are associated with the
value of the affected building and the magnitude of the fire
respectively. An efficient allocation should consider a fire
at a more valuable building to be more important than a

fire at a less valuable building, and should consider a high-
magnitude fire to be more urgent than a low-magnitude fire.
In our experiments we include four building classes with four
different Gaussian value distributions, ranging from the least
valuable private residences to the most valuable malls. We
also use four different magnitudes of fire, with alarms rated
1 to 4. There are more low-value than high-value buildings,
and more low-magnitude than high-magnitude fires, so a
particular fire issued from the Poisson distribution is more
likely to occur at a low-value building and to be a small
fire. Larger fires cause damage more quickly than smaller
fires and take longer to extinguish. Though fires cannot
spread in this example domain there is still an interest in
not letting large fires rage uncontrolled, so the deadlines for
larger fires are nearer to issue and the penalties for failure
greater. Therefore 16 possible pairings of building type and
fire magnitude emerge.

IV. MARKET-BASED ALLOCATION FOR
OVERSUBSCRIBED DOMAINS

The basic idea behind a market-based task-allocation
mechanism is to assign tasks via an auction, where agents
bid a value in a shared currency based on their perceived
fitness for a task [4]. Tasks are awarded to the lowest bidder
if the goal is minimizing cost, or to the highest bidder if the
goal is to maximize reward.

A. Auction Mechanism

In our implementation, incoming tasks are sent to a team
dispatcher, who acts as an auctioneer. The dispatcher is the
only auctioneer in this implementation and agents do not
re-auction tasks amongst themselves. As a new task T is
issued, the team dispatcher starts an auction by issuing a
call for bids containing all pertinent information about T .
The call for bids is sent to all agents in the team. The agents
construct bids for the task (see Section IV-C) and return
their bids to the dispatcher. The dispatcher then assigns the
task to the highest positive bidder. If no bid is positive the
dispatcher refuses the task, allowing the disaster response
coordinators to recruit additional agents to handle refused
tasks. The dispatcher then informs the winning agent that it
has won, and that agent adopts the task into its schedule.

B. Agent Schedule Optimization

Each agent keeps a schedule of all tasks to which it has
been assigned, and each has the ability to optimize their
schedules. As the reward function for tasks are monotonically
non-increasing, an agent with one or more tasks on its sched-
ule should never be idle - it should always be executing the
first task in its schedule. Thus, scheduling entails choosing
an ordering of the tasks that yields high summed reward.

Computing the schedule value is straightforward, depend-
ing only on the ordering of tasks in the schedule, the agent’s
current location, the current global time, and a method for
computing travel time between goal locations. Our algorithm
first computes the arrival time at the first scheduled task
given the starting location and global time, and adds the
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task duration to get a scheduled task completion time. If
that completion time is before the task’s deadline then that
task’s reward given the completion time is added to a running
total and the algorithm computes the completion time of the
next emergency task. If the completion time is after the task’s
deadline then the penalty is subtracted from the running total.
As there is no benefit in moving to the location of the failed
task, the algorithm will compute the completion time of the
next scheduled task using the position and time of completion
of the last successfully completed task.

We perform schedule optimization by either generating
every possible sequence of tasks for sufficiently small sched-
ules and choosing the highest reward (and thus optimal)
schedule, or by using a simulated annealing local search
with a set number of iterations for larger schedules. The
local search algorithm produces an optimized but possibly
non-optimal schedule.

C. Agent Bidding
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Fig. 1. Baseline bidding for a new task T as illustrated in the oversub-
scribed fire fighting domain.

When an agent receives a call for bids it creates a new
schedule consisting of both its old schedule and the new
task. It then optimizes the new schedule as described in
Section IV-B and determines the total value of the new
schedule. The difference between the value of the new
schedule and the value of the old schedule is the marginal
schedule improvement M associated with the new task. In
the baseline market implementation this M value is returned
to the auctioneer as the agent’s bid. Note that M may be
negative if incorporation of the new task into the schedule
leads to a marginal decrease in reward. If communication is a
concern, a negative bid need not be returned to the auctioneer.
See Figure 1 for an example of bid calculation.

D. Winning An Auction

As stated previously, the auction will be awarded to the
agent placing the highest postive bid for the task. When an
agent is informed that it has won an auction it can replace its
old schedule with the optimized schedule used in bidding.
Any time the agent adopts a new schedule it is possible
that some tasks assigned to the agent will not be completed

by their deadlines. We assume that it is beneficial for other
assets to have as much time as possible to cope with this
intended failure - thus the dispatcher is informed that the
task has failed, and can pass that information back to the
proper authorities.

V. LEARNING-ENHANCED MARKET-BASED ALLOCATION

Our learning approach is inspired by the performance of
our baseline approach: agents often do not receive the value
for a task that they expect when they are bidding on that
task. To illustrate this observation, consider Figure 1. In the
old schedule before bidding for T the task F has an expected
reward of 5. If the agent wins the auction for task T with a
bid of 4 based on its new schedule, then the actual reward
received for F will be its penalty, -3. Thus the agent was
originally expecting to make 5 for F , but actually received
-3 for the task. If agents can learn to anticipate that some
tasks tend to result in lower reward than when scheduled at
bid time and modify their bids accordingly, we can expect
an overall increase in solution quality.

Our approach to learning is to use data accumulated by
agents during the course of execution to construct a model
that maps scheduled task value at bid time and a host of
schedule features to actual value recorded for a task. Once
the model is constructed the agents can use it during bidding
to map from scheduled reward to predicted reward, and bid
based on substituting the predicted value for the scheduled
value. We use a support vector regression based approach
[11] to perform this mapping.

A. Training Data Collection

In order to study the performance during the different runs,
all agents collect training data during operation. Each time
an agent wins a task from a task auction that agent records
a feature vector derived from its bid for the task. The most
important entry in the feature vector is the reward for the new
task at its scheduled completion time. The rest of the feature
vector is populated with salient features to help the regression
from scheduled task reward to received task reward. We use
the following entries in our feature vector:

1) The new task’s scheduled slack - the number of cycles
from the scheduled completion time of the task to the
task’s deadline.

2) The number of previously scheduled tasks in the
agent’s old schedule.

3) The total time taken for all tasks in the old schedule.
4) The marginal increase in schedule length between the

old schedule and the new schedule.
5) The marginal difference in summed slack for all tasks

between the old schedule and the new schedule.
6) The scheduled reward for the task.
We chose these features because they correlate with situa-

tions where a substantially different reward was received for
a task than was scheduled at bid time. For example, if a task
is scheduled near its deadline it means that it has a low value
for feature one, scheduled slack. This means that any delay
in the schedule due to the incorporation of the new task will
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likely result in failure for the low-slack task. Similarly, if
feature four has a high value it means that the agent must
add substantially to its schedule to reach the location of a
task. A task that requires an agent to go substantially out of
its way is less likely to be successfully completed.

The training target values are collected when the agent
receives a reward for either successfully completing the task
or when it fails to complete the task and the penalty is
assessed. The agent adds the target value to the feature vector
for the task and records the vector in a form suitable for
the regression model generation program. We assume the
data is held in a central repository shared among all agents.
However, if communication costs were a concern agents
could keep individual training data files.

B. Learning a Model

Our chosen method of learning a regression model is
support vector regression (SVR) [11] with a radial-basis
kernel and an ε-insensitive loss function. We chose to use
SVR as it is naturally well-suited to multivariate regression
problems, is quite fast due to kernalization, and has been
implemented in several freely available packages; we use the
libsvm package [6] . We train an SVR model by passing
the training data file to a libsvm training program, which
produces a model file which can then be used to produce a
predicted target value for a new feature vector.

There are two primary parameters we must set to use SVR:
the width of the γ for the radial-basis kernel function and the
cost parameter C for defining regression error. We used a grid
search approach with cross-validation [6] to tune parameters.
This cross-validation could occur online, but we found that
small adjustments to parameters did not result in a substantial
difference in performance.

C. Bidding Using the Model
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Fig. 2. Learning-enhanced bidding for a new task T as illustrated in the
oversubscribed fire fighting domain.

When a new task T is being auctioned each agent deter-
mines a marginal reward M . In the new optimized schedule
T will have a scheduled reward S based on T ’s scheduled
time of completion. The agent then computes a feature vector

in exactly the same fashion as if generating training data.
This feature vector, including the S value, and the model
file are passed to libsvm, which generates the predicted P
value for the task. The agent then substitutes the P value
in the bid in place of the S value, giving a final bid of
M − S + P . This process is illustrated in Figure 2.

D. Timing of Model Generation

Our learning approach depends on creating a model file.
We have two different approaches to generating the model
file. The first approach is off-line learning. In this “Pre-
learning” approach we first generate data in several long
experiments using the baseline approach. We then create the
model outside the standard operation of the system, and then
run new experiments using that model without alteration.
As this approach is off-line, it is not useful for learning
during operation, but provides a good method of testing the
soundness of our approach. Our second approach learns in
an online fashion. In the “Online Learning” approach, the
agents initially use the baseline approach and bid based on
scheduled task value. Then after a predefined interval the
agents create a model file using all the data accumulated
thus far in the trial. The agents then begin using that model
to bid based on learned predicted task value. The agents
continue to log training data after the initial model creation
and periodically create a new model based on all data
accumulated up to that point in the trial. This approach is
fully online and automated.

VI. EXPERIMENTAL RESULTS

This section describes experimental results in which we
evaluate our learning-based approaches versus our baseline
approach in the oversubscribed disaster response domain.

A. Simulation Design

For our experiments we use 5 agents, modeled as points
and assigned random start locations, operating in a bounded
world with a number of known obstacles. In each trial the
same set of fire-fighting tasks is randomly generated – using
a λ value of 4

5 in our Poisson process – and then issued
at the indicated times to agents operating in three parallel
worlds associated with the three approaches. This ensures
that performance differences between the three worlds should
occur exclusively at the allocation level.

We ran 15 trials of 10,000 time cycles each to obtain
the reported results. The Prelearning approach used a model
created using the data accumulated from 3 trials of 2000
time cycles of the baseline solution, where all agents were
logging training data to a central location. For the Online
Learning approach we used a learning time of 750 cycles
and centralized logging.

B. Overall Performance

Our simulation results show that the learning-enhanced
versions significantly outperform the baseline approach, by
62.7% for Prelearning and 63.2% for Online Learning. Fig-
ure 3 shows the total score achieved by the three approaches
in our experiments.
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Fig. 3. Average total scores (total reward - total penalty) and standard
deviations yielded by agents using the baseline and learning approaches.
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Fig. 4. Average total reward and standard deviations for all success-
fully completed tasks yielded by agents using the baseline and learning
approaches.

The improved performance exhibited by our learning
approaches is due both to increased reward received for com-
pleted tasks and by committing significantly fewer penalties.
Figure 4 shows both learning approaches received 14% more
reward than the baseline approach, and Figure 5 shows that
the learning approaches were assessed approximately 33% of
the penalties incurred in the baseline approach. Thus, both
learning approaches are significantly better at determining
(at bid time) which tasks are best suited for execution.

The Online Learning and Prelearning approaches perform
equivalently within the standard deviations. That the Online
Learning method can equal the performance of the Prelearn-
ing approach makes a strong argument that our learning
approach could be effectively employed even in scenarios
where the data from previous trials is not available.

C. Respecting Importance and Urgency

Despite the fact that new tasks are constantly being issued
all three approaches demonstrate the ability to consider
importance and urgency during task allocation. Figure 6
shows that fires at higher value buildings are addressed
at much higher rates than those at lower value buildings
across all approaches. The No Learning approach, however,
does worse at respecting importance when compared to the
learning approaches, addressing more low importance tasks
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Fig. 5. Average total penalties and standard deviations for all failed tasks
yielded by agents using the baseline and learning approaches.

and fewer high importance tasks. By refusing to address low
importance tasks the agents in the learning approaches have
more flexibility to profitably complete higher value tasks.
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Fig. 6. Completed task percentages for the building classes arranged from
least average value on the left to greatest average value when agents use
the baseline and learning approaches.

In Figure 7 we show the Time To Completion (TTC)
metric for successfully completed tasks. TTC measures the
duration from task issue to completion. We can see that in all
three approaches fires of higher magnitude are extinguished
more quickly on average than those of lower magnitudes.
The learning approaches have faster TTCs on fires of lower
magnitude, while the No Learning approach has slightly
faster average TTCs on higher magnitude fires. This is partly
due to the fact that agents in the No Learning approach
address fewer high urgency tasks. Figure 8 shows TTC
averaged over all completed tasks; the learning approaches
average almost 16% faster TTC.

While the No Learning approach does a reasonable job of
respecting importance and urgency, the learning approaches
complete more high value tasks and offer faster service on
average, resulting in the reward increases shown in Figure 4.
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VII. CONCLUSIONS AND FUTURE WORK

In this paper we demonstrate that a learning-enhanced
market-based approach can perform allocations that incur
few penalties despite operating in an oversubscribed environ-
ment while respecting the relative importance and urgency of
different tasks. This approach outperforms a baseline market-
based allocation as demonstrated in a simulated disaster re-
sponse domain. We show that even when there is substantial
uncertainty associated with future tasks our learning method
can dramatically increase performance.

A central strength of our approach is that regression-
based learning can implicitly encapsulate many aspects of
task distributions in a manner that is highly relevant to the
market without requiring an explicit model of task parame-
ters or rates. The underlying rate and task distributions will
become substantially more chaotic in real-world data sets,
and modeling parameters explicitly will become increasingly
difficult. Our approach should yield effective results even
when parameters cannot be directly estimated.

This work takes a few important steps towards effective
performance of market-based task allocation for oversub-
scribed domains. However there remain a number of chal-

lenges that require additional research. Our future work will
explore two main research directions. The first direction
involves improving our learning techniques, enabling agents
to recognize and avoid even greater sources of inefficiency in
allocation. In the near future, we will enable agents to learn
about the relative value of schedules instead of tasks. In the
second research direction we extend our learning-enhanced
market-based approach to capture additional sources of envi-
ronmental uncertainty beyond the uncertainty associated with
future tasks.
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