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Abstract— Using domain knowledge to decompose difficult
control problems is a widely used technique in robotics. Previous
work has automated the process of identifying some qualitative
behaviors of a system, finding a decomposition of the system
based on that behavior, and constructing a control policy based
on that decomposition. We introduce a novel method for auto-
matically finding decompositions of a task based on observing the
behavior of a preexisting controller. Unlike previous work, these
decompositions define reparameterizations of the state space that
can permit simplified control of the system.

I. INTRODUCTION

One common approach to finding control policies for

robotic systems is to decompose a task into subtasks that

are individually less difficult to solve. Methods like state

space funnels [1], [7], behavioral primitives [2]–[4], hybrid

systems [5], and reinforcement learning [6] are all variations

of this approach. In practice, however, finding a useful de-

composition is most often not automatic and relies on expert

human knowledge of a particular problem domain.

Methods for automatically identifying equivalence classes

of trajectories using geometric structure in phase space have

been shown [8], [9]. It has also been demonstrated that,

once identified, these structures can be used to generate

controllers autonomously [10]. Recent work in the POMDP

dynamic programming community [11], [12] has emphasized

the value of observing existing control policies to guide the

search for optimal policies. The key idea in this work is

that an existing policy is a task independent representation of

information about the task domain in which it operates. Our

approach combines automatic problem decomposition with

the use of information from observed policies. Rather than

finding a decomposition to aid the search for a policy, we

find a natural decomposition for a problem by observing a

preexisting solution.

The method described in this paper decomposes observed

motions of a system into exemplar motions based on a measure

of the local rate of convergence. Each motion class has an asso-

ciated exemplar motion that is representative of all the motions

in that class. Exemplar motions are automatically generated

and are used as the basis for building new parameterizations

of state space that are unique to each motion class. We believe

that it is often the case that the behavior of the observed policy

can be closely reproduced by a linear controller operating in

the reparameterized state space near an exemplar motion.

Section II of this paper presents definitions of the exemplar

motions of a system and defines a reparameterization of state

space based on these classes. Section III presents a method

for numerically computing these motions and associated repa-

rameterizations. Section IV presents an example of this method

applied single link inverted pendulum swing up task. Section

V discusses operation of the method in higher dimensions,

provides theoretical justification for the methods described

in section II, and compares this work to previous efforts.

Section VI discusses ongoing and future work on extending

the technique to deal with the sparseness of human motion

capture data.

II. DEFINITIONS

This section presents a definition of exemplar motions based

on observed trajectories as well as a reparameterization of

state space that can simplify the control policy associated with

each exemplar. Exemplar motions are found by searching for

regions of state space where the flow of the system is strongly

convergent and identifying trajectories about which the system

is most convergent. A single stable region may have several ex-

emplar motions if the rate of convergence varies significantly

over the region. Because the definition of the exemplar motions

is sensitive to variations in the rate of convergence, is is often

the case that the rate of convergence toward an individual

exemplar is fit well with simple parametric models. This can

permit the use of linear control policies in the reparameterized

state space. Fig.1 illustrates the definitions provided in this

section.

Exemplar motions

Consider a time invariant, fully observable, deterministic

system with state x, control input u, system dynamics ẋ =
f (x,u) and control policy u∗ = c(x). If u∗ is used to control

the system, then every point in the state space lies on some

trajectory

G(d,x) = x+
Z d

0
f (x,u∗)ds (1)

Samples of these trajectories for the example problem

discussed in section IV are illustrated in blue in Fig.4 and

Fig.6.



Fig. 1. Trajectories of a possible system(left), Tangent manifolds of a section of that system (center), and ST-Space reparameterization about a key trajectory
of the system (right)

Qualitatively, exemplar motions of the system are the set

of trajectories that other trajectories converge toward. Flow

convergence is not an appropriate metric for defining these

exemplar motions because we are not concerned with con-

vergence in the direction of flow caused by a change in

the rate of flow. However, a convergence metric that reflects

only convergence tangent to the direction of flow is useful.

Exemplar motions for the example problem are illustrated by

red lines in in Fig.5 and Fig.6.

A ‘flow tangent manifold’ M(x,d) is defined such that

f (x,u∗) is normal to M(x,d) at all points in M(x,d) and

G(d,x) ∈ M(x,d). Some flow tangent manifolds for the ex-

ample problem are shown in black in figures Fig.5 and Fig.6.

Define the flow tangent divergence of f (x,u∗) to be the

scalar quantity

q(x) = ∇ · (v(x,u∗) f (x,u∗)) (2)

where v(x,u∗) is an orthonormal basis of the tangent space

of M(x,0). The quantity q(x) is useful for describing how

a ball in M(x,d) grows or shrinks with changes in t. If

q(x) > 0 then a ball on the manifold grows in volume and

adjacent trajectories diverge. Likewise, if q(x) < 0 a ball on

the manifold shrinks and adjacent trajectories converge.

For certain values of x and ranges of d, G(d,x) are local

extrema of q(x) along the manifold M(x,d). This means

that there are some system trajectories that are locally the

maximally divergent or convergent trajectories in a region.

The local minima of q(x) are, qualitatively, representatives of

a class of similar trajectories. Additionally, in two dimensions,

the local maxima of q(x) can act as boundaries between these

classes.

State space reparameterization

State space can be reparameterized using coordinate systems

embedded in the flow tangent manifolds. Given a manifold

M(x0,d0) any point in state space xp can be parameterized

using the coordinate vector (s,d) where

ST (xp) = M(x0,d0 +d)+
Z s

0
v(ST−1(s,d0 +d)ds (3)

This parameterizes the point xp in terms of the distance

along the trajectory starting at x0 needed to reach the manifold

that xp lies on, and the distance along that manifold from xp

to the trajectory associated with x0. The space resulting from

this reparameterization is called ’ST-space’. This reparameter-

ization is shown visually in Fig.6.

III. IMPLEMENTATION

The design of the algorithm used to find the exemplar

motions and state space reparameterizations defined in section

II is not trivial. Observed policies contain noise and discretiza-

tion artifacts that create unwanted extrema in the flow tangent

divergence. Fig.2 illustrates the many local extrema that occur

if the flow tangent divergence is computed directly from the

observed policy. This section describes a method for robustly

locating trajectories that lie on extrema of the flow tangent

divergence.

Finding trajectories composed of local extrema of the flow

tangent divergence, q(x), is difficult because the numerical

computation produces artifacts due largely to discretization of

the policy. Numerical stability can be achieved by maximizing

the curvature of quadratic approximations to the flow tangent

manifolds integrated over a complete trajectory of the system.

Although similar to the extrinsic curvature of M(x,d), flow

tangent divergence can be influenced by change in rate of flow

along the manifold,

∂| f (x,u∗)|

∂v(x,u∗)
(4)

while the curvature depends only on change in the direction

of f (x,u∗). This does not, however, affect the location of local

extrema in the curvature. Therefore, both manifold curvature

and flow tangent divergence can be used to find exemplar

motions.



The curvature of the flow tangent manifold at a point y is

approximated by fitting a second order polynomial to a ball in

the flow tangent manifold containing y, centered at y, and of

radius w. The radius w is chosen by searching for the largest

value of w that does not cause the residual of the fit to exceed

a threshold value. This procedure improves the quality of the

metric as shown in Fig.3. The quadratic approximation can

also be used to iteratively search for local extrema of the

curvature along the manifold using a second order Newton-

Raphson method. q̂(x) denotes curvature computed using this

approximation.
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Fig. 2. Noise in the directly computed flow tangent divergence of system
flow

Although quadratic approximation is effective for obtaining

well behaved estimates of the curvature along the manifold,

it is not sufficient for making stable estimates of exemplar

motions. The exemplars are found by locating local extrema

of the mean estimated curvature over trajectory segments on

which the estimated curvature has uniform sign.

argmax
x

Z t f

t0

q̂(G(d,x))ds (5)

where t0 and t f are the minimum and maximum values for

which

s0 ≤ 0

s1 ≥ 0

q̂(G(d,x))q̂(G(0,x)) > 0 when s0 ≤ t ≤ s1

Exemplar trajectories are found by following the gradient

of this metric along any flow tangent manifold.

IV. EXAMPLE PROBLEM

This section presents the application of our method to an

example problem in two dimensions. The flow tangent man-

ifolds, exemplar motions, and ST-space reparameterizations

are shown. The system considered is a single link pendulum

attempting to reach the unstable equilibrium pose (θ = 0 = 2π)

Position (rad)

V
e

lo
c
it
y
 (

ra
d

/s
)

Approximated Curvature of Flow Tangent Manifolds

 

 

0 1 2 3 4 5 6
−4

−3

−2

−1

0

1

2

3

4

−5

−4

−3

−2

−1

0

1

2

Fig. 3. Curvature computed from quadratic approximation of flow tangent
manifolds

with limited torque while minimizing distance to the goal state

integrated over time. The center of the figure corresponds to

the minimum energy state of the pendulum. The identification

of task spines was previously considered in [13], although this

work used a quadratic approximation to the value function for

the computation.

An optimal control policy was found via dynamic pro-

gramming. The blue lines in Fig.4 show trajectories followed

by the system using this controller. Visual inspection of the

figure shows that there appear to be four qualitative trajectory

classes in the system. These classes correspond to trajectories

originating at the minimum energy state (π,0) and those

originating at a high energy state (∗,± inf). The trajectories

originating from (π,0) can enter the goal from either the left

or the right, resulting in a total of four expected trajectory

classes terminating at the goal state.

The procedure described in section III is applied to this

system, resulting in the flow tangent manifolds and exemplar

motions shown in Fig.5. The exemplar motions identified by

the system correspond to the four classes of motion identified

by hand. One limitation visible in this result is that the system

is not aware of unstable equilibria, in particular the two saddle

points located approximately at (0.7,0) and (2π−0.7,0).

Fig.6(a) shows a chosen trajectory, its associated flow

tangent manifolds, and the intersections of neighboring tra-

jectories with those manifolds. Fig.6(b) shows the mapping of

this trajectory and its neighbors into the associated S-T space.

In this space the manifold lines that are spaced at constant
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Fig. 4. Some observed trajectories of the controlled inverted pendulum.

distance intervals along the key trajectory would appear as

evenly spaced horizontal lines. The ST space provides an

unambiguous mapping from points in state space to particular

points on the key trajectory and, in this case, its behavior

appears easily fit by a simple parametric model.

V. DISCUSSION

We believe that control in ST-Space can allow linear con-

trollers to operate over larger regions of state space. If the

flow tangent manifolds about a trajectory G(d,x) are well

approximated by second order polynomials with coefficients

linear in the distance along G(d,x) then the direction of the

ST-space flow will be linear in the coordinates:

f (x,u∗) ≈ ST−1(As) (6)

The key limitation of our current approach lies in the

method used for the identification of key trajectories. Our

current method optimizes a scalar value — the curvature of

the flow tangent manifold. While this works well for one-

dimensional manifolds which arise in a two-dimensional state

space, the notion of a single number for the curvature of a

point in a higher-dimensional manifold is not well defined.

One possible solution is to find trajectories that maximize the

minimum curvature of the manifold in any direction.

In higher dimensions the choice of coordinates for the

tangent spaces of flow tangent manifolds is undefined. Without
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Fig. 5. Automatically identified spines of the inverted pendulum task. Solid
lines are suggested boundaries, dashed lines are exemplar motions.

a smooth function for determining the basis of the tangent

space at each point on the manifold it is impossible to define

the mapping from state space to ST space in general. If a coor-

dinate system is defined for one manifold it can be propagated

to other manifolds coherently by projecting a small ball on the

original manifold to a new manifold using corresponding inter-

section points of observed trajectories. As the size of the ball

on the original manifold decreases the transformation between

the original and projected balls asymptotically approaches a

linear transformation. This transformation can be applied to

the basis of the tangent space at the center of the original ball

to find the orientation of the basis of the tangent space at the

center of the projected ball. This provides a useful definition

of the basis of a tangent space on the new manifold.

Because the algorithm searches for the local maxima of a

scalar function in a high dimensional space, it may be well

suited to operation with higher dimensional systems. However,

the cost of computing the approximated curvature of the flow

tangent manifolds near a trajectory does grow exponentially

in the number of dimensions.

VI. FUTURE WORK

We are currently exploring the identification of component

strategies in human motion. It is widely believed that human

motion, during balance and gait, for example, exhibits discrete
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Fig. 6. top: An exemplar motion and its neighbors are shown intersecting
flow tangent manifolds spaced uniformly along the exemplar. bottom: The
ST-space mapping of the trajectories shown in the top illustration.

recovery strategies in response to unexpected perturbations

[14]. For example, in response to a push, a person might

raise their arms, or take a step forward, or move their hips,

to stay in balance. We believe that our technique can help us

automatically identify these discrete strategies, thereby helping

us understand human balance better, as well as helping us

control humanoid robots to balance better.

Working with human motion data requires a method that can

operate in a state space with many dimensions. Furthermore,

the number of available trajectory traces, say from human

motion capture, populates this state space sparsely. These chal-

lenges require a reformulation of our approach to operate with

a set of example trajectories where computing the derivative

of the control on the manifold tangent to the trajectory is not

possible, due to a sparse covering.

We are also interested in using this technique as part of

an algorithm for actually finding optimal policies. The key

bottleneck in the search for optimal policies is the curse of

dimensionality — the search space grows exponentially in the

number of state space dimensions. Hence, a good heuristic

that identifies interesting (and conversely, boring) points in

the state space where attention, and hence computation, can

be focused (or defocused) is crucial. Because the behavior

of trajectories in a region around the exemplar trajectories is

characterized by convergence to that trajectory, we believe that

linear controllers will perform well in these regions, making

the points near an exemplar trajectory not very interesting.

The boundaries between trajectory classes could potentially be

used in a fashion analogous to the simplex method introduced

by [9].
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