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Abstract We address the problem of knee pathology

assessment by using screw theory to describe the knee

motion and by using the screw representation of the motion

as an input to a machine learning classifier. The flexions of

knees with different pathologies are tracked using an

optical tracking system. The instantaneous screw parame-

ters which describe the transformation of the tibia with

respect to the femur in each two successive observation is

represented as the instantaneous screw axis of the motion

given in its Plücker line coordinates along with its corre-

sponding pitch. The set of instantaneous screw parameters

associated with a particular knee with a given pathology is

then identified and clustered in R6 to form a ‘‘signature’’ of

the motion for the given pathology. Sawbones model and

two cadaver knees with different pathologies were tracked,

and the resulting screws were used to train a classifier

system. The system was then tested successfully with new,

never-trained-before data. The classifier demonstrated a

very high success rate in identifying the knee pathology.

Keywords Knee kinematics � Screw axis � Pathology

classification � Support vector machines

1 Introduction

Assessment of joint pathology is not always trivial and

requires, in most cases, a combination of visualization data

with physical subjective tests performed by the physician.

Diagnosis is particularly complex for the knee joint due to

its complex structure and six degrees of freedom (DOF)

motion. For example, in order to assess anterior cruciate

ligament (ACL) deficient knees, there are currently three

main tests that can be performed by physicians: Lachman

test, pivot shift test and the anterior drawer test [20]. All of

these tests are subjective and are performed manually by

the physician while manipulating the patient lower limb. In

our study, we demonstrate a method for which kinematic

measurements of the knee are used to automatically iden-

tify knee pathologies.

Several studies have been dedicated to three-dimen-

sional (3D) anatomically based knee models (e.g. [7, 11],

etc.). In order to describe the 6-DOF motion of the knee,

several studies have used the helical axis method, known

also as screw motion [4, 5, 10, 12, 16, 21, 22, 25]. Screw

motion was also used for study of other joints such as

pelvis [14]. We also use screw coordinates to represent

knee motion, and use this data to train a machine learning

classifier that is later capable of identifying knee patholo-

gies. Researchers have used classifiers in order to identify

knee deficiencies. Andriacchi et al. [1] studied the anterior–

posterior linear motion of the femur with respect to the

tibia during gait cycle. The experimental data was pre-

sented by a one-dimensional curve correlating flexion an-

gle to anterior–posterior displacement. This curve was later

used to assess the dynamic anterior–posterior motion of the

knee in the patient with ACL deficient pathology who did

not develop the neuromuscular adaptation [13]. Machine

learning methods were also used to classify changes in gait
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characteristics of elderly non-fallers [17]. This research

particularly shows that some foot placement gait measures

(e.g., step width and stride variability) displayed greater

associations with fall prediction. In [3] the researchers used

support vector machines (SVM) classifier in order to form

an automatic recognition of gait changes, due to ageing,

using three types of gait measures: walking velocities and

foot-ground reaction forces in the vertical and anterior–

posterior directions. Test results indicated an overall

accuracy of 91.7% by the SVM classifier in its capacity to

distinguish the two gait patterns.

In our proposed method we incorporate all six DOF of the

knee motion and represent it as a set of instantaneous screw

parameters (ISP), which are then used to classify knee

motion. For that, we track knee flexion by using an optical

tracking system. The information provided is composed of

multiple frames of relative bone states. We then calculate

ISP that describe the momentary transformation between

each two successive frames. We show that a set of ISP that

describes a given knee motion forms a variety of points or a

cluster. Moreover, we show that knees with similar classes

(e.g. healthy or ACL/PCL deficient) share similar clusters.

Finally, we hypothesize that once a large data set of different

knees with different pathologies is created and classified

(using supervised learning techniques), the kinematics of an

untrained knee can be associated with one or more of the

clusters reflecting on its pathology.

2 Methods

2.1 Representation of screw motion (twist)

Any given displacement of a rigid body can be effected by a

rotation about an axis combined with a translation parallel

to that axis [2]. This way of defining rigid body displace-

ments is termed finite screw displacement or a twist [8].

Mathematically, the motion finite transformation can be

described as a combination of a translation, d, parallel to a

fixed axis A in space, and a rotation / about the same axis

(Fig. 1). The ratio of the translation to the rotation com-

ponents is known as the pitch of the screw, p, and is given as

p ¼ d

/
: ð1Þ

The six parameters of the screw $ are

$ ¼ s
s0 � sþ ps

� �
¼ L M N P� Q� R�½ �T ð2Þ

where s, is a unit vector along the screw axis direction, s0 is

a position vector of a point on A, and p is the pitch in

Eq. (1). Two extreme examples are pure rotation, p = 0,

(Eq. 3) and pure translation, p = ¥, (Eq. 4):

$ ¼ s
s0 � s

� �
: ð3Þ

$ ¼ 0

s

� �
: ð4Þ

We refer the reader to [15, 19] for a deeper discussion on

screw motion of rigid bodies.

2.2 Calculating the ISP of a finite motion

Calculating the ISP of a rigid body undergoing a motion is

not intuitive. Few methods have been presented in the lit-

erature regarding this issue. However, all methods provide

the instantaneous screw axis parameters ($), and its cor-

responding pitch (p) given two finite configuration of a

rigid body. In this work the algorithm presented in

Davidson has been used (8, Sect. 4.6.4). Since this algo-

rithm is long and is not the scope of this report we refer the

reader to that book for a full description of the algorithm.

2.3 Cluster analysis of the screw parameters

In this work we use the SVM technique as described in [23,

24]. Generally speaking, the SVM algorithm creates a

hyperplane that separates the data into classes with the

maximum margin (Fig. 2). Given training examples la-

beled either ‘‘yes’’ or ‘‘no’’, a maximum margin hyper-

plane splits the ‘‘yes’’ and ‘‘no’’ training examples, such

that the distance from the closest examples (the margin) to

the hyperplane is maximized. To be more precise, suppose

we have a data set

fxi; yig; i ¼ 1; 2; . . . ; l; yi 2 f�1;þ1g; xi 2 R: ð5Þ

We want to find a hyperplane which separates the po-

sitive from the negative data points; this is the ‘‘separating

hyperplane’’. The points x which lie on the hyperplane

satisfy w � xþ b ¼ 0 where w is normal to the hyperplane,

bj j= wk k is the perpendicular distance from the hyperplane

to the origin, and wk k is the Euclidean norm of w.

If the data is linearly separable then the SVM algorithm

simply looks for the separating hyperplane with the largest

margin, we can find this hyperplane by minimizing

1

2
ðw�wÞ ð6Þ

under the constraints of

yiðxi � wþ bÞ � 1 � 0 for all i’s. ð7Þ
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In the usual case of SVM analysis the data is first

transformed into a higher-dimensional space by means of a

kernel function (e.g. Gaussian Radial Basis Func-

tion—RBF) and then the hyperplane with the maximal

margin is found.

If the data is not linearly separable, the modified version

can be introduced as an optimization problem with a cost

function for misclassification

min
1

2
ðw�wÞ þ C

Xl

i¼1

ni ð8Þ

under the constraints of

yiðxi � wþ bÞ � 1� ni for all i’s, ð9Þ

where ni are slack variables and the C constant is a trade-

off between maximizing the width of the margin and

minimizing slack variables. Non-zero ni will indicate a

misclassified data point.

Once classified and trained the classifier can classify

new data with a class reflecting on the pathology of the

source of the data which is associated with the class

(Fig. 3). For a detailed overview of the SVM classifier we

refer the reader to Burges [6] (Fig. 4).

3 Experimental settings

3.1 Sawbones experiment

For our first experiment we used Sawbones model of the

femur and tibia. The two bones were connected by four

rubber tubes to simulate the lateral collateral ligament

(LCL), medial collateral ligament (MCL), posterior cruci-

ate ligament (PCL), and the anterior cruciate ligament

(ACL). It is worth noting that the mechanical properties of

the actual ligaments are very different from those of the

rubber tubes; however, we believe that this experimental

setting provides a simplified first test for the validation of

the suggested method (note that the patella is also not in-

cluded for the same reason). During the experiment, optical

trackers were attached to both bones (Fig. 5), and were

tracked using the Polaris� system by NDI (Fig. 6). During

the experiment settings, tibia was quasistatically manipu-

lated from flexion to full extension by pulling the bone with

a long (approximately 2 m) wire connected as close as

possible to the center of the tibia bone, while keeping the

wire within the sagittal plane of the tibia as much as pos-

sible. As opposed to a physician manipulating the tibia

while grasping it, the manipulation of the tibia with the

long wire imposes minimal constraints on the motion, and

may provide more information on the kinematics of the

Fig. 2 Different clusters correlating to different path/set of screws

Clasification system
Observation

Knee pathology

Fig. 3 AI system to identify knee pathology

A

x
1

p

x
2

x

y

z

Fig. 1 Screw motion (Helical motion)

Fig. 4 Knee model with Sawbones and artificial ligaments
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knee. For each manipulation from flexion to full extension

approximately 300 observations are taken. This number

depends on the speed that the tibia is manipulated.

For the training of the classifier we used five classes:

healthy knee model and four different pathologies—rup-

tured ACL, ruptured LCL, ruptured MCL, and a combi-

nation of a ruptured MCL and ruptured ACL. Thirty runs

were used for training, and 30 additional runs were used for

testing.

3.2 Cadaver experiment

Following the Sawbones experiment, we ran a set of

identical tests on two cadaver right knees (Fig. 7). Both

knees included the patella. Similar to the Sawbones

experiment, the tibia tracker positions were recorded in the

femur tracker reference frame. Focusing on the cruciate

ligaments, three classes were recorded, i.e. healthy knee,

ACL deficient knee, and a combined ACL, PCL deficient

knee.

For each of the classes 20 runs were recorded while

quasistatically pulling the leg with a string attached to it.

For training the SVM classifier, half of the observations

were used, whereas the other halves were used for testing.

Moreover, in order to confirm that our method is not sen-

sitive to sampling frequency (i.e. number of points per unit

of time) we created several testing sets of screws by

sampling the ISP at different sampling frequencies (twice

and four times the original frequency). This process of the

experiment is important since it is very hard to control and

synchronize the sampling frequency of the data and

velocity of the knee flexion per patient.

3.3 Registration of anatomical reference frames

Although the screw representation of a motion is invariant

in the same reference frame, it is still dependent on the

global reference system in which it is described. Without a

proper definition of a global reference system between

patients, the resulting screws will differ, though still

describing the same motion. For this purpose we use the

anatomical reference frame (ARF) of both tibia and femur

as our global system among patients. In the tibia ARF, the

z-axis lies along the mechanical axis1 (for a left knee the

proximal is the positive direction and for a right knee the

distal is the positive direction.) The transverse axis

orthogonal to the mechanical axis serves as the x-axis

where the medial direction is the positive direction for both

knees. Finally, the y-axis is the axis orthogonal to both

axes, where the anterior direction is the positive direction.

The coordinate system is centered at the tibial knee center

point (Fig. 8). As for the femur ARF, the z-axis also lies

along the mechanical axis (proximal is positive for a left

knee, distal positive for a right knee), the transverse axis

orthogonal to the mechanical axis serves as the x-axis

(medial is always positive), and the orthogonal axis to the

two serves as the y-axis (anterior is always positive). The

femoral ARF is also centered at the femoral knee center

point (Fig. 8).

For the reported experiment we attached optical trackers

both to the tibia and the femur. Then, while the trackers are

still attached, both bones were scanned by CT. This proce-

dure allows performing registration between the CT coordi-

nate system and the other coordinate systems as can be seen

in Fig. 9. Next, the following transformations were obtained

from the CT scans using the HipNavTM system2 [9]:

CTTFA Femoral ARF to CT reference-frame
CTTTA Tibial ARF to CT reference-frame
TTTCT CT reference-frame to tibia tracker reference-

frame
FTTCT CT reference-frame to femur tracker reference-

frame.

Fig. 5 Experimental setup with optical trackers attached (Sawbones)

Fig. 6 Observation while flexing the knee (Sawbones)

1 For femur: mechanical axis refers to the line drawn from the center

of the femoral head to the medial tibial spine; for tibia: mechanical

axis refers to the angle formed by a line drawn from the medial tibial

spine and the center of the ankle joint.
2 See discussion on registration and registration free procedure in the

conclusion
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During the experiment we obtained FTTTTi.e. tibial tracker

reference-frame in the femoral tracker reference-frame. We

then transformed all data to the anatomical reference

system which is the tibial ARF, FATTA; as observed in the

femoral reference frame. We obtained FATTA as

FATTA ¼ FATFT � FTTTT|fflffl{zfflffl}
observed

� TTTTA ð10Þ

where

FATFT ¼ CTTFA

� ��1 � FTTCT

� ��1 ð11Þ

and finally

TTTTA ¼ TTTCT � CTTTA: ð12Þ

Substituting Eqs. (1) and (2) into Eq. (10) we obtain
FATTA as a function of FTTTT: Presenting and then ana-

lyzing the data in both bones’ ARFs allows to repeat this

procedure in other patients and therefore analyze data

across patients, however, given in the same reference

frame.

4 Results

4.1 Sawbones test

A set of results of the Sawbones screw axes is given in

Figs. 10 and 11. In Fig. 10 one can see a plot of a single

axis given in three views: transverse view (left), coronal

view (middle) and a general 3D view of the femur. When

the instantaneous screw axes are plotted sequentially, they

form a one-parameter rolled surface of lines [18].

Fig. 7 Experimental setting:

male, 81 (left), male, 68 (right)

Fig. 8 Tibial ARF (left) and

Femoral ARF (right)

Fig. 9 Tibial, femoral, CT, and camera coordinate systems
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Thirty sets of ISP were used for training the SVM

classifier, and a different 30 sets were used for testing it.

The results of this process are given in Table 1. The col-

umns correspond to the different classes (e.g. healthy,

ruptured ACL, etc.) and the rows present the average and

standard deviation of the success rate of the classes’

identification. Note that the AVG given in the table cor-

responds to the percentage of the screws per set that were

associated with the correct class (averaged on all runs).

Referring to Table 1, if we set the threshold for deter-

mining a pathology to 82%, we would get 100% success in

identification.

While testing these classes, we observed that the main

difference between the cases occurred in the last third

portion of the flexion–extension motion. This observation

suggested that it is sufficient to use the last third portion for

the training phase. As a result of this modification, success

percentage in some of the classes increased (Table 2). The

possibility of gaining increased accuracy by performing the

identification and clustering on a subset of the experimental

data should be further investigated.

4.2 Cadaver experiment results

It is very difficult to distinguish the differences between the

motion of the three knee classes (healthy knee motion, and

ACL, ACL + PCL deficient knees) as presented in Fig. 12.

However, looking at the instantaneous screw axis it is

easier to distinguish the classes. A sample plot of the screw

axes of the instantaneous screws for an ACL deficient knee

is given in Fig. 13. The resulting plot is a one-parameter

rolled surface. Figure 14 is similar to Fig. 13 with an

exception that all screw axes of the three classes of one

knee are plotted in the same graph. Also plotted in Figs. 13

and 14 (marked with an arrow) is the striction curve of the

rolled surface. This curve connects the closest points

(distance wise) of two successive screw axes [18]. This

curve can also serve as a means to classify kinematic

pathologies using curve-fitting techniques; however, we do

not use this extra data in this report.

Fig. 10 Screw axis of the first

observation: transverse view,

coronal view (middle) and a 3D

view of the femur

Fig. 11 Screw axis of all

observations: coronal view; 3D

view

Table 1 Sawbones experiment: testing all screws in each run (% of

correct classification)

Healthy

knee

Ruptured

ACL

Ruptured

LAT

Ruptured

MED

Combination:

ruptured

MED + ACL

Average 82 99 93 92 87

SD 13.7 1.3 4.4 3.9 6.7

Table 2 Sawbones experiment: testing only last 30% of screws per

run (% of correct classification)

Healthy

knee

Ruptured

ACL

Ruptured

LAT

Ruptured

MED

Combination:

ruptured

MED + ACL

Average 85 99 92 90 90

SD 11.5 0.7 7.0 5.3 11.7
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The results of the SVM classifier are given in Table 3.

As can be observed for all classes, the system was able to

identify the class with high accuracy. The results of the

classifier for a different sampling frequency, i.e. the knee

has been manipulated in a different speed resulting in a

coarser sampling, are presented in Tables 4 and 5. Since

the success rate for the classification process for both ca-

daver knees across all three pathologies did not decrease

substantially, this indicates that sampling frequency does

not have to be maintained among experiments (patients).

5 Discussion

In this work we further demonstrate a new method for

identifying knee pathologies solely based on kinematics

observations. During the experiment we computed the

instantaneous screws that describe the knee flexion. These

screws were later used for training a classifier to identify

different pathologies. The results from both the Sawbones

experiment and the two cadaver experiments indicate that it

is possible to cluster a set of instantaneous screws which

correlates to different knee pathologies, and later use this

data to identify knee pathology for a knee never used for

training. The classifier was able classify the different

050100150200250

-400

-350

-300

-250

-200

-150

0

X

Y

Fig. 12 Tibia tracker origin in femur tracker reference frame

(projected onto the sagittal plane) (healthy, ACL, and ACL + PCL

deficient)

Fig. 13 A views of all the screw axes for ACL deficient knee (knee

#2)

Table 3 Testing all screws in each run: cadaver study (two knees)

(sampling full) (true classification %)

Healthy

knee

Ruptured

ACL

Combination:

ruptured

ACL + PCL

Average 77 83 94

SD 4.9 4.7 1.9

Table 4 Testing all screws in each run: cadaver study (two knees)

(sampling half) (true classification %)

Healthy

knee

Ruptured

ACL

Combination:

ruptured

ACL + PCL

Average 78 74 96

SD 5.6 9.2 1.6

Table 5 Testing all screws in each run: cadaver study (two knees)

(sampling third) (true classification %)

Healthy

knee

Ruptured

ACL

Combination:

ruptured

ACL + PCL

Average 79 74 96

SD 6.6 8.5 2

Fig. 14 Striction curves for all three pathologies (knee #2)
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pathologies with a high success of about 80–90%. We

further demonstrate that the capability of the classifier to

identify pathologies does not depend on the sampling fre-

quency, i.e. sampling frequency and motion velocity do not

have to be synchronized between patients.

In this report we used the SVM algorithm as our clas-

sifier. Although this tool has been reported as suitable for

biomechanics and gait analysis studies [3], this method has

at least one noticeable drawback—the testing method of

the classifier. In our SVM classification method, each

screw is independently tested against the whole training set

while disregarding its relative location in the flexion–

extension motion. One possible improvement to explore is

to use a different classifier such as the Hidden Markov

Model method which will also take into account the se-

quence and relative location of each instantaneous screw

within the set of screws which define the motion, i.e. the

system’s internal dynamics.

For this report we used a registration procedure in order

to define the anatomical reference system of both the tibia

and the femur as a global reference systems among pa-

tients. One option to simplify this process is to use tracked

ultrasound to identify anatomical landmarks which define

the anatomical reference system [10]. Another option is to

use a parameterized striction curve (Figs. 9, 10) [18]. This

curve can then be used by the classifier.

6 Conclusion

To conclude, we introduce a new concept of an expert

system which is capable of identifying knee pathologies

based on its kinematic observation. The major advantage of

the presented method is the use of the ISP to represent the

6-DOF knee kinematics, combined with the use of the

SVM classifier. Further investigation should be conducted

in order to improve the method; however, the initial results

are very promising. It is worth noting that although we

report our results for knee kinematics, the same concept

can be applied to any other joint or mechanical system of

moving rigid bodies.
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