
 

 

 

  

Abstract—Tremor was recorded under simulated 

vitreoretinal microsurgical conditions as subjects attempted to 

hold an instrument motionless. Several autoregressive models 

(AR, ARMA, multivariate, and nonlinear) are generated to 

predict the next value of tremor. It is shown that a sixth order 

ARMA model predictor can predict a tremor having an 

amplitude of 96.6 ± 84.5 microns RMS with an error of 8.2 ± 

5.9 microns RMS, a mean improvement of 47.5% over simple 

last-value prediction. 

I. INTRODUCTION 

ORMAL physiological hand tremor causes extraneous 

movement during microsurgery, making some high-

precision operations difficult or impossible. Tremor is 

defined qualitatively as any roughly sinusoidal involuntary 

motion [1]. In recent years, quantitative modeling of tremor 

has been a subject of research [2, 3]. 

Several researchers have developed robotic systems to 

compensate or suppress tremor during microsurgery, 

including teleoperated systems and the Johns Hopkins 

“steady hand” system [4]. In our laboratory, a fully handheld 

active instrument called “Micron” has been developed, 

which measures its own motion, separates tremor from 

desired motion, and actuates the tool tip in real time to 

compensate for the tremor [5].  

In a system such as Micron, a model of the tremor can be 

used for prediction during operation, and can also serve as a 

substitute for the human user in simulations of the control 

system. In this paper, several classes of autoregressive 

modeling techniques are applied to model tremor measured 

from five people under three different scenarios. Previous 

research has employed autoregressive techniques for tremor 

analysis, but these generally have not involved visual 

feedback, and certainly not with magnification [3, 6]. 

Furthermore, importantly, most such studies have simplified 

the spectrum by bandlimiting techniques such as prefiltering 

[6], analyzing the acceleration signal rather than 

displacement [3], or windowing for spectral analysis [7]. In 

contrast, this research involves modeling of the entire 
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spectrum of movement (except for any constant bias or 

linear trend) during instrument pointing or station-keeping in 

a simulated vitreoretinal surgical environment, with 

magnified visual feedback, using standard autoregressive 

(AR), AR moving average (ARMA), multivariate AR, and 

nonlinear-augmented AR techniques. 

II. METHODS 

A. Equipment 

To accurately measure the Micron instrument tip, an 

optical system called ASAP (Apparatus to Sense Accuracy 

of Position) is used to provide the real-time position and 

orientation of the instrument. Two LEDs mounted to the 

instrument inside diffuse spheres pulse square waves, one at 

2 kHz and the other at 3 kHz. The two signals are sensed by 

orthogonal position-sensitive detectors (PSD’s) (DL10, UDT 

Sensors Inc. Hawthorne, CA, USA) and demodulated to 

measure the tip position with an error of less than 10 µm 

RMS (root mean square) [8].  

 

B. Experimental Procedure  

Tremor data was acquired from five non-medical 

personnel subjects under a board-approved protocol. The 

setup, shown in Figure 1, shows a subject inserting the 

instrument through the hollowed out eye of the face mask. 

The instrument tip position and orientation is recorded by 
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Figure 1. (a) ASAP measuring and displaying instrument position on 

LCD screen. (b) Instrument tip with LEDs being inserted through face 

mask eye. The two notches on opposite sides function as simulated 

sclerotomies to brace the tool. 
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ASAP and displayed on the LCD computer monitor at 25X 

magnification. This “virtual Micron” setup mimics retinal 

surgery, a practical application of the Micron system.  

The study involved three test conditions.  

1. The first scenario asked the subject to hold the 

instrument vertically through the eye. The subject 

braced the instrument in a notch at the side of the eye 

and maintains the X, Y, and Z position of the tool tip 

at a set point on the screen (pointing task). This 

approximated a typical retinal surgery where the 

surgeon braces the tool against the sclera (the white 

of the eye).  

2. Secondly, subjects were required to perform the same 

test as above, except without the bracing (i.e. the 

instrument shaft is not in contact with the face).  

3. The last scenario asked the subjects to close their 

eyes and maintain the instrument as still as possible 

while bracing it against the notch in the eye.  

In all three cases, the hand rested on the forehead of the 

face for stabilization. Each subject completed the three 

scenarios, rested briefly, and then completed the three 

scenarios again in reverse order. This second dataset enabled 

cross-validation of the models. All tremor was recorded at a 

sampling rate of 1 kHz for a duration of 60 s, with 45 s 

extracted from the middle of each recording to avoid ramp-

up and ramp-down effects. The means and linear trends in 

the data were removed for normalization purposes. To 

reduce sensor noise, the signal was decimated to 40 Hz. 

C. Modeling Techniques 

Autoregressive techniques simplify a dataset to a 

mathematical model dependent only on a small number of 

parameters [7]. These parameters are estimated from the data 

and can be used to recreate the signal or predict future values 

of the signal. Autoregressive techniques model a signal as a 

linear combination of past inputs and outputs. A standard 

autoregressive (AR) model of order � represents the value of 

signal � at position � by a weighted average � of the 

previous signal values and some error ��: 
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Multivariate AR models exploit relationships that exist 

between multiple signals [9]. For Micron, three tremor 

signals corresponding to the X, Y, and Z axis are available 

and may provide additional information when modeled 

together. In this case, �� is a three element vector of the X, 

Y, and Z tremor components and the averaging coefficients 

are 3x3 matrices � such that: 
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An autoregressive moving average (ARMA) considers not 

only previous signal values, but a weighted average � of 

some additional input [10]. For a single signal, the input is 

taken to be the error terms �� of previous predictions: 
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These autoregressive techniques can only model linear 

systems. Although there is some evidence [11] for tremor as 

a linear process, a complete characterization of tremor has 

not been achieved. Thus, autoregressive techniques 

augmented with nonlinear regression via wavelet networks 

[12] were briefly investigated to model any nonlinear 

processes that might be appearing in the tremor or visual 

feedback loop. 

For each subject and scenario, all four model types were 

estimated for orders one to forty on the first dataset. Except 

for the multivariate autoregression, each X, Y, and Z 

component of the tremor was treated as a separate signal and 

modeled by itself. To validate how well the constructed 

model represents the particular subject and scenario being 

analyzed, it was applied to the second dataset recorded under 

identical conditions. The evaluation criterion for the model 

was the root mean squared error (RMSE) magnitude of the 

difference between the true recorded signal and the predicted 

signal. A simple last-value predictor, x�n = xn-1, was also 

calculated as a baseline for comparison. 

III. RESULTS 

The mean RMS tremor amplitude is 73.7 ± 53.9, 100.6 ± 

100.2, and 115.5 ± 89.8 µm for Scenarios 1-3 with 3.4 ± 3.0 

µm sensor noise. Each model is applied to predict tremor. 

A.  AR and ARMA Models 

Figures 2-4 show the result of applying AR and ARMA 

models of increasing order. The data in each figure are 

derived from one person across scenarios and tremor signal 

Figure 2. AR and ARMA results for X (top), Y (middle), and Z (bottom) 

tremor components for a typical subject under Scenario 1 (instrument 

braced against side of eye). For this sample, tremor amplitude is 45.4, 62.9, 

and 5.4 µm RMS in x, y, and z, respectively.  
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components. The RMSE magnitudes achieved by predictions 

of AR and ARMA models 1 to 40 are displayed and 

compared to the simple baseline last-value predictor. Order 

40 predicts the next value from one second of past signal. 

As evidenced by the graphs, both AR and ARMA models 

perform better than the baseline predictor. While for high 

orders AR and ARMA models converge, the ARMA model 

tends to converge much more quickly, by sixth order or 

lower, which is in agreement with [6, 7]. The results shown 

are from a typical subject; for some subjects the RMSE 

trends slightly upwards for higher orders of AR. Figures 8-

10 provide a graphical understanding of the frequency and 

phase characteristics of the generated sixth order ARMA 

models by presenting Bode plots for the X, Y, and Z models 

derived from one subject’s Scenario 1 test.  

Numerically, the last-value predictor achieves a mean 

reduction of 81.5% in RMSE magnitude over all the subjects 

and scenarios. Using this as a baseline predictor, Figure 5 

shows that AR and ARMA models improve the prediction 

by roughly 20-50%, depending on the model order used. 

B. Nonlinear and Multivariate Models 

The nonlinear model used was a wavelet network [12] that 

augmented the standard autoregressive model. One 

interesting result of adding the wavelet nonlinear regression 

is the tendency of the nonlinear regression to overfit the 

data. For the dataset used to construct the model, the 

nonlinear approached improved the prediction. However, 

when tested on the cross-validation dataset, the results 

showed very slight improvement. For a fifth-order model, 

the nonlinear regression reduced the RMSE by 0.1%.  

In contrast, the multivariate standard autoregressive model 

led to a 0.2% increase in RMSE on the cross-validation set 

for a second-order model and oftentimes yielded an unstable 

fit at higher model orders. In many instances, for orders 

larger than 15, the multivariate models no longer outperform 

last-value prediction. While an improvement can be 

achieved on the training dataset, performance was markedly 

degraded on the cross-validation set. 

C. Generalized ARMA Model 

While a model per person per scenario is indeed useful, a 

unified model that generalizes across both people and 

scenarios would be more advantageous as it alleviates the 

need for a pre-usage calibration step. Because it has proven 

superior in prediction than an AR model and is less complex 

than a nonlinear model, only the ARMA model was 

investigated. First, the variances of the model parameters 

were examined. Figure 6 shows a box and whisker plot of 

the first six coefficients for all ARMA models. This shows 

the median values for the coefficients, in addition to the 

lower and upper quartiles, and the furthest data points within 

Figure 5. Mean percentage improvement for AR and ARMA in comparison 

with last-value prediction. 

Figure 6. Box and whisker plot of the ARMA coefficients (the error term 

coefficients yield a similar plot with smaller coefficients). 

Figure 3. AR and ARMA results for X (top), Y (middle), and Z (bottom) 

tremor components under Scenario 2 (instrument not braced against side of 

eye). For this sample, tremor amplitude is 46.4, 31.9, and 24.1 µm RMS in 

x, y, and z, respectively. 

Figure 4. AR and ARMA results for X (top), Y (middle), and Z (bottom) 

tremor components for a typical subject under Scenario 3 (instrument 

braced, but no visual feedback). For this sample, tremor amplitude is 254.0, 

166.1, and 15.2 µm RMS in x, y, and z, respectively. 
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a factor of 1.5 of the interquartile range. Outliers are 

represented as crosses.  

The ARMA error coefficients are similar for different 

trials. By taking the mean of these coefficients, an averaged 

ARMA model can be constructed that represents all subjects 

and all scenarios. Applying the averaged model to each 

cross-validation run shows a slight drop in overall accuracy 

from 48.0% to 47.5% improvement over the baseline. A 

reduction in accuracy of approximately half a percent may 

be a preferable alternative to a time-consuming calibration 

routine that learns the ARMA coefficients for each new user. 

The predicted RMSE for Scenarios 1-3 is 8.9 ± 9.3, 9.2 ± 

9.2, and 9.8 ± 8.9 µm. Additionally, the frequency and phase 

responses are shown in Figure 7 as a Bode diagram. 

IV. DISCUSSION 

In this preliminary study of modeling and predicting 

tremor using autoregressive techniques with five subjects 

under three different scenarios, a sixth-order ARMA model 

predicted tremor 48.0% better, on average, than a baseline 

last-value predictor. A single ARMA model derived from an 

average of all ARMA models shows that the problem can be 

generalized across all three scenarios and subjects with only 

a 0.55% drop in accuracy. With this single ARMA model, 

the tremor was predicted with a mean of 8.2 ± 5.9 µm 

RMSE using raw hand movement signals with a mean of 

96.6 ± 84.5 µm RMS amplitude.  

This paper also investigated other autoregressive models. 

The standard AR model performs nearly as well as ARMA, 

but only at much higher model orders. The multivariate AR 

model did not generalize well from the data used to estimate 

the model to the cross-validation data. AR models 

augmented with nonlinear wavelet networks marginally 

increased prediction performance, but likely not enough to 

warrant the additional complexity. Plans for future work 

include studies with larger numbers of subjects and more 

realistic microsurgical movements. 
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Figure 10. Bode diagram of Scenario 1 ARMA model for Z component 

Figure 9. Bode diagram of Scenario 1 ARMA model for Y component  

Figure 8. Bode diagram of Scenario 1 ARMA model for X component 

Figure 7. Bode diagram of sixth order mean ARMA model. 
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