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ABSTRACT

In this paper we present algorithms for automatically gen-
erating a road network description from aerial imagery. The
road network inforamtion (RNI) produced by our algorithm
includes a composite topoloigical and spatial representation
of the roads visible in an aerial image. We generate this
data for use by autonomous vehicles operating on-road in
urban environments. This information is used by the vehi-
cles to both route plan and determine appropriate tactical
behaviors. RNI can provide important contextual cues that
influence driving behaviors, such as the curvature of the road
ahead, the location of traffic signals, or pedestrian dense ar-
eas. The value of RNI was demonstrated compellingly in
the DARPA Urban Challenge !, where the vehicles relied on
this information to drive quickly, safely and efficiently.

The current best methods for generating RNI are man-
ual, labor intensive and error prone. Automation of this
process could thus provide an important capability. As a
step toward this goal, we present algorithms that automat-
ically build the skeleton of drivable regions in a parking lot
from a single orthoimage. As a first step in extracting struc-
ture, our algorithm detects the parking spots visible in an
image. It then combines this information with the detected
parking lot boundary and information from other detected

!The Urban Challenge (or the DARPA Urban Challenge)
was an autonomous vehicle competition in which competi-
tors had to build vehicles capable of auotnomously driving
60 miles amongst moving traffic in an urban environment.
Visit http://www.darpa.mil/grandchallenge for more infor-
mation.
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road-markings to extract a skeleton of the the drivable re-
gions within the lot.

Categoriesand Subject Descriptors

H.4 [Computer Vision Applications in GIS]: Spatial
Information Acquisition, Image and Video Understanding

1. INTRODUCTION

In general, for reliable autonomous driving, a robotic vehi-
cle must model both the parts of the environment that move
and the parts that don’t. In this paper, we focus on provid-
ing a strong prior for the former by developing algorithms
to extract a description of the road network a vehicle will
operate on. We term this information Road Netowrk Infor-
mation (RNI). RNI provides a topological representation of
geospatial elements (e.g., where intersections and road lanes
are and how they are connected). This information can be
used to inform a vehicle where it can drive, model what
can be expected, and provide contextual cues that influence
driving behaviors. This information is static and may be
provided a priori.

In contrast, moving obstacle information is dynamic (e.g.,
the location and speed of other vehicles) and obviously can-
not be generated a priori. Onboard sensors such as laser
range finders and vision sensors are used to generate this
information in realtime [18]. Even so, the algorithms used
to generate these models can exploit available road network
information to help interpret noisy or sporadic sensor data,
and focus attention on relevant portions of the sensor fields
of view.

The value of RNI was demonstrated during the Urban
Challenge competition [24, 25]. Figure 1 shows a small set
of road network information describing the starting chutes
of the Urban Challenge site. This information was used by
our vehicle to anticipate upcoming intersections and other
fixed rules of the road. In particular, RNI informs that the
speed limit is 30 miles per hour and that the first intersec-
tion (labeled as “I14135”) after leaving the starting chute is a
yield-intersection, which allows our vehicle to anticipate the



Intersection 14135,

- Type: Yield

- Entry waypoint: 131
- Exit waypoint: 83

Figure 1: An example of the road network information used
in the Urban Challenge. RNI is an internal representation
of a robotic vehicle’s driving environment and represented
topologically. In this example it is comprised of a set of
vertices (i.e., waypoints marked by blue “x” and checkpoints
marked by yellow “*”) and their connections. An intersection
is a region that includes a subset of waypoints between entry
and exit points [18]. Viewed best in color.

need to execute a yielding behavior. Without prior knowl-
edge of the road geometry and associated required behaviors,
achieving the level of performance demonstrated during the
challenge would be very difficult.

Currently road network descriptions are generated manu-
ally using a combination of GPS survey and aerial imagery.
These techniques for converting digital imagery into road
network information are labor intensive, reducing the po-
tential benefit provided by the broad availability of digital
aerial imagery. To fully exploit the benefits of digital im-
agery, these processes should be automated.

As a step toward this goal, we present a set of aerial im-
age analysis algorithms that extract the structure of parking
lot and build the skeleton of their drivable regions. The ex-
traction of parking lot skeletons are motivated by our local
motion planner which heavily relies on structures (e.g., road-
lanes) of urban environments to generate a smooth path to
its goal. Because of this dependence, for unstructured re-
gions such as parking lots, our planner has to superimpose
virtual structures onto parking lots and evaluate all the fea-
sible paths over this structure [10]. This two step process
(create virtual structure and apply nominal motion planning
algorithms) is computationally very expensive, and could be
avoided if the parking lot structure were known in advance.

Our algorithm to extract the structure of parking lots con-
sists of a hierarchical approach of generating and filtering
candidate parking spot hypotheses. To minimize human
intervention in the use of aerial imagery, we devise a self-
supervised learning algorithm that automatically generates
a set of parking spot templates to learn the appearance of
a parking lot and estimates the structure of the parking lot
from the learned model. The low-level layer, which extracts
and compiles geometrical meta-information for easy-to-find
parking spots, is highly accurate and serves as a prime source
of examples for self-supervised training. The high-level layer
uses outputs from the low-level layer to predict plausible

candidate hypotheses for more difficult parking spot loca-
tions and then filters some of erroneous hypotheses using
self-trained learners. The result of parking spot detection
is then combined with a parking lot boundary detector and
other detected lane markings to extract the skeleton of driv-
able regions with in the parking lot. Our method is described
in detail in Section 3.

2. RELATED WORK

The GIS community has a broad focus including build-
ing maps for human consumption in various applications
and contexts; theoretical studies of road network structure
for developing faster algorithms for the handling geospa-
tial data [8], extracting connectivity of roads from raster
maps [4], localizing moving objects on the known road net-
works [27], and many other topics. Among these, research on
raster map analysis shares the most commonality with our
approach in that it involves extracting interesting features
from a raster images of various maps [3, 4, 13]. For example,
in [4], the authors present image processing algorithms that
obtain locations and orientations of road intersections from
raster images and estimate the connectivity of the region
under investigation. They utilize combinations of mathe-
matical morphology operators (e.g., thining and thickening)
and heuristics. The distinction between the raster image
analysis and ours lies in the characteristics of images. Ex-
tracting data from rasterized maps has a different challenges
(e.g., aliasing or distored color vs. variations in illumination
and appearance, occlusions) than analyzing overhead aerial
imagery. In orthophoto analysis, Chen and his colleagues
propose a conflation algorithm that integrates two different
geospatial data such as vectorized road map and orthoim-
ages [2]. Their approach is similar to ours in that they use
a classification algorithm (i.e., a naive Bayes classifier) to
estimate boundaries of roads and generate and filter out hy-
potheses on interesting points for the conflation. But their
filtering is guided by information in vectorized road maps
whereas ours is based on learning of distributions on park-
ing spot appearance. Although there is a number of research
works on extracting road network structures from overhead
aerial imagery, to the best of our knowledge, our work is the
first attempt that builds the the map of a parking lot for
autonomous driving.

Overhead aerial images have been utilized to provide prior
information about environments for outdoor robot naviga-
tion. Despite being potentially out of date, aerial image
analysis provides an important source of information which
enables robots to plan globally to achieve their goals. In
combinations with other onboard sensors such as vision sen-
sors and laser range finders, aerial images have been used in
the generation of long-range paths [20, 26], localization [6],
maintenance of robots’ world model [17, 25], mapping [16],
and prediction of terrain traversability [21]. While overhead
imagery has been used as a complement to other onboard
sensors’ outputs to guide outdoor robot navigations, to the
best of our knowledge, there is no work for automatically
generating road network information from overhead aerial
images.

There are two similar works in the realm of parking struc-
ture analysis. Wang and Hanson propose an algorithm that
uses multiple aerial images to extract the structure of a park-
ing lot for simulation and visualization of parking lot activ-
ities [28]. Multiple images from different angles are used



to build a 2.5 dimensional elevation map of the parking lot.
This usage of multiple images makes it difficult to generalize
their method because it is not easy to obtain such images
for the same geographic location from publicly available im-
agery. Dolgov and Thrun devise algorithms that builds a
lane-network graph of a parking lot from sensor readings [7].
They first build a grid map of static obstacles from range
measurements about a parking lot and then use a Markov
Random Fields (MRFs) to infer a topological graph that
most likely fits the grid map. They define a series of poten-
tials to incorporate their prior on a road network. However,
instead of directly minimizing these potentials imposed on
road segments, a Voronoi diagram is used as a subset of
the topological road network. This work is the most similar
work to ours in that they building a road network for robotic
vehicles, but different in that they need to drive the robot
to collect range measurements, which are the sole input to
their mapping algorithm.

Most prior work in parking lot image analysis [9, 11, 29] fo-
cused primarily on detecting empty parking spots in surveil-
lance footage when the overall geometrical structure of the
parking lot is known. Our work addresses the more general
problem of extracting the entire parking lot structure from
overhead imagery. A similarity between our work and these
works on empty parking spot detection lies in the fact that
we utilize coherent structural patterns over entire image re-
gion.

The field of self-supervised learning has recently attract-
ing attention from the robot learning community since it
requires no (or substantially less) human involvement for
carrying out learning tasks. This framework is highly desir-
able for robot learning because it is usually hard to collect
large quantities of high-quality human-labeled data from any
real world robotic application domain.

Self-supervised learning frameworks typically utilize the
most precise data source to label other data sources that
are complementary, but unlabeled. For example, conven-
tional laser range finders provide accurate distance estimates
between the robot and surrounding objects, but have lim-
ited range. Sofman and his colleagues use local range esti-
mates as self-labeled examples to learn relations between the
characteristics of local terrain and corresponding regions in
aerial images [21]. These learned relations are used to map
aerial images to long range estimates of traversability over
regions that a robot is going to explore. Similarly, Stavens
and Thrun utilize laser range measurements to predict ter-
rain roughness [22]. They first analyze the associations be-
tween inertial data and laser readings on the same terrain
and use the learned rules to predict possible high shock ar-
eas of upcoming terrains. Lieb and his colleagues devised
a self-supervised approach to road following that analyzes
image characteristics of previously traversed roads and ex-
tracts templates for detecting boundaries of upcoming roads
[15]. In our algorithms, the low-level analysis phase extracts
lines forming parking lot lane markings, resulting in a collec-
tion of canonical parking spot image patches which can be
used as training examples. We additionally use these initial
parking spots to guide a random selection of negative exam-
ples, parking lot boundary segmentation, and road-marking
detection.
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Figure 2: A model of parking lot is illustrated.

3. AUGMENTING CARTOGRAPHIC
RESOURCESFOR AUTONOMOUSDRI V-
ING

In this section, we describe how the skeleton of a park-
ing lot is automatically built from an overhead image. We
formulate parking lot structure analysis as parking spot de-
tection because the structure may be easily recovered if the
image coordinates of all the visible parking spots are iden-
tified. Section 3.1 details the parking spot detection.

We define the skeleton of a parking lot as a depiction of
the drivable regions in the parking lot. To accurately build a
skeleton, the boundary of a parking lot with an image should
be identified since the image may also contain non-parking-
lot regions. Once the boundary is identified, drivable regions
can be determined by superimposing the parking lot struc-
ture over the estimated parking lot boundary. A normalized
safety of traversability value is assigned to drivable regions
to ensure reliable autonomous driving. Section 3.2 describes
this skeletonization process in detail.

3.1 Parking Spot Detection

Figure 2 illustrates how a parking lot is represented in
this paper. Our algorithm parameterizes each individual
parking spot by its height, width, orientation, and centroid
location in image coordinates. We define a parking block as
a row of parking spots of which open-end directions are the
same. Each parking block is characterized by the distance
between neighboring parking spots in the block (i.e., “D1”
in figure 2). Parking blocks are related to each other by two
distance measures: the distance between conjugate parking
spots (i.e., “D2”) and the distance between blocks (i.e., “D3”
in the figure 2).

If the image coordinates of all visible parking spots are
known, it would be trivial to estimate parameters shown in
the figure 2. However, in practice we must estimate these
parameters from the given image to determine the parking
lot structure. In what follows, we describe in detail our hier-
archical approach to detecting parking spots. Section 3.1.1
presents the multiple image processing steps involved in the
low-level image analysis layer. This layer accurately extracts
a set of easily found parking spots from the image. Section
3.1.2 details the high-level processing layer which then ex-
trapolates and interpolates the spots found by the low-level
analysis to hypothesize the locations of the remaining park-
ing spots. We then discuss our self-supervised hypothesis fil-
tering approach, which removes erroneous hypotheses from



the collection.

3.1.1 Low-Level Analysis: Detecting Canonical Park-

ing Spots

Geometrical and image characteristics differ between park-
ing lots. Most overhead aerial parking lot images contain a
number of well-illuminated empty parking spots. Our low-
level analysis extracts these easy-to-find spots to be used
by the high-level analysis as “seeds” for additional hypoth-
esis generation and by the final filtering stage as canonical
self-supervised training examples to adapt the filter to this
particular image. The low-level layer carries out multiple
image processing steps: line extraction, line clustering, and
(parking) block prediction.

Straight lines are important to understanding the shape
of a parking lot. We extract most of the available straight
lines using the approach proposed by [12]. The approach
computes image derivatives to obtain intensity gradients at
each pixel and quantizes the gradient directions using pre-
defined ranges. A connected component algorithm is then
used to group pixels assigned the same direction to form line
supporting regions. The first principal eigenvector of a line
supporting region determines the direction of the line.

Although a majority of extracted lines may align with
lane markings of the underlying parking lot, some of them
come from other image regions such as road lanes or con-
tours of other adjacent buildings. Since we only need the
lines aligned with the line-markings of the parking lot, it is
necessary to remove lines that do not belong to parking lot
structure. To this end, we first group the extracted lines
into clusters based on their orientations and then remove
lines that are either too short or too long from each of the
line clusters. The remaining lines are used for estimating
parameters of a parking block. A line cluster corresponds
to (at least) one of the parking blocks. > We repeat this
process (the removal of some of the extracted lines and esti-
mation of parameters of a parking block) to individual line
clusters.

For the parameter estimation, we first estimate the nom-
inal height of parking spot by computing the mode of each
line in the selected cluster. We next build a Euclidean dis-
tance matrix across all possible line pairs, quantize the dis-
tances and compute the mode to obtain the nominal width
of parking spots within a lot. Finally, we quantize the ori-
entations of lines and compute the mode again to estimate
the orientation of parking spots’ open-end.

The completion of these image processing steps results
in generating few, but highly accurate initial estimate of
true parking spots. Figure 3 shows the rectangular patches
around the image locations. Although most of these self-
supervised parking spot templates are in fact true parking
spots, some of them are not since the line analysis algorithm
is imperfect. To filter out these incorrect self-supervised
parking spot templates, we train a SVM with parking spot
examples, which are previously obtained [19], and conduct
a binary classification.

This low-level analysis is then extended to additionally
identify entire parking blocks. We project the centroids of

2For most of the testing images used in this paper, this is
true because individual images have a large portion or a
whole part of a parking lot. However, when a non-parking
lot image is given, our parameter estimation based on line
detection might not work.

An illustrative example image is shown. The
low-level analysis produces a set of self-supervised parking
spots that are depicted by rectangular patches around their
centroids. After filtering out some of the patches (i.e., red
patches), the remaining patches (i.e., green patches) are used
as positive example to train our hypothesis filters. Viewed
best in color.

Figure 3:

all the initial parking spots onto a virtual line whose orien-
tation is the mean of the initial parking spots’ orientation.
This projection returns distances of centroids from the ori-
gin, p; = ¢z cos(0;) + ¢ ysin(f;), where ¢;, and c¢;, are
image coordinates of parking spot centroid and 6; is the
open-end orientation of the ith initial parking spot (See [19]
for the details). After projection, boundaries between park-
ing blocks are clearly visible and the distance between peer
parking spots (i.e. D1 in the Figure 2) is used to determine
boundaries between parking blocks. From the discovered
parking blocks, we finish the parameter estimation by com-
puting three distances between parking blocks (i.e. D1, D2,
and D3 in the Figure 2).

3.1.2 High-Level Analysis: Interpolation, Extrapo-

lation, Block Prediction, and Filtering

The high-level layer is intended to detect all the visible
parking spots in an image. It first hypothesizes the parking
spot locations based on the parameters estimated by the low-
level layer. It then filters these hypotheses by classifying the
rectangular image patches around these hypotheses using
self-supervised classifiers.

Parking Spot Interpolation and Extrapolation A
parking spot hypothesis represents an image coordinate that
indicates the centroid of a potential parking spot. A rect-
angular image patch around the hypothesis is evaluated to
determine if a local characteristic of the image is similar to
that of a true parking spot. To cover the image regions
that possibly contain true parking spots, we use the image
coordinates of the centroids of each self-supervised parking
spot as the starting points in each of the discovered parking
blocks. We then generate parking spot hypotheses by select-
ing image locations through three processes: interpolation,
extrapolation, and block prediction. The hypothesis gen-
eration aims to cover the image regions, which potentially
contain true parking spots, that were initially undiscovered,
by using the estimated coordinates of parking spots at each
end of an estimated parking block. The interpolation pro-
cedure chooses image coordinates between two end parking
spots in a parking block, whereas the extrapolation proce-
dure extends hypotheses beyond the two boundary parking



Figure 4: A set of the generated parking spot hypotheses
is shown. Parking spot hypotheses are rectangular image
patches. Different rectangle colors indicate results of dif-
ferent hypothesis generation processes (red patches by the
interpolation, cyan ones by extrapolation, and green ones by
the low-level analysis). In this example image, there are 114
true parking spots and 411 parking spot hypotheses. Viewed
best in color.

spots. The estimated parking spot width is used as the spa-
tial interval between parking spot hypotheses. Finally, block
prediction aims at discovering any missing parking blocks.
We use the estimated distances between parking blocks and
select image regions to test for the existences of the missing
parking blocks.

Self-supervised Hypothesis Filtering The hypothe-
sis generation process produces n parking spot hypotheses
represented by the corresponding number of rectangular im-
age patches, g1, ..., gn. Figure 4 shows a complete set of the
generated parking spot hypotheses where individual parking
spot hypotheses are represented as rectangles. Each park-
ing spot hypothesis is evaluated to determine if it is a true
parking spot. We formulate this decision problem as bi-
nary classification for assigning a label, y; € {—1,+1}, to a
given patch vector, g;, where g; is an m (= height x width)-
dimensional column vector. Because raw intensity values
of a grayscale image patch might not be consistent even
in the same class, we use three different pieces of informa-
tion to inject invariance into our parking spot patch rep-
resentation: intensity statistics (such as mean, variance,
smoothness, skewness, uniformity, and entropy); responses
of the Radon transform; local histograms of oriented gradi-
ents (HOG) [5]. We compare the performance of hypothesis
filters trained by patches represented by these information
and ones in raw-intensity patches in the section 3.1.3.

Our experiments compare four machine learning techniques
as hypothesis filters for this binary classification task: Sup-
port Vector Machines (SVMs), Eigenspots, Markov Random
Fields (MRFs), and Bayesian Linear Regression (BLR).

Support Vector Machines SVMs are the de facto super-
vised learning algorithm for binary classification. They seek
to find the hyperplane that is maximizing a notion of margin
between each class [1]. Linear SVMs are fast, have publicly
available implementations, and handle high-dimensional fea-
ture spaces well.

Eigenspots Since processing these high-dimensional image
patches is computationally expensive, we reduce the dimen-
sionality of our vector space by using principal component
analysis (PCA) [1] to find the principal subspace of the self-

supervised parking spots obtained by the low-level analysis;
we retain the top & <« m dimensions of the original vec-
tor space. In homage to Turk and Pentland [23], we call
the eigenvectors of the parking spot space extracted by this
method the “Eigenspots” of the space.

We use this new space in two ways. Our first technique
simply measures the distance from a candidate patch to
the center of the space (i.e. the mean canonical parking
spot, ¥). Given a new image patch g, we compute, T(g) =
ID™/2E" (g — ®)||* where ¥ = et 3 i, D
is a diagonal matrix containing eigenvalues A1, ...\;, and E
is a matrix whose columns are the eigenvectors of the co-
variance matrix used in the PCA computation. T'(g) is also
known as the Mahalanobis distance [1] from the origin of the
Eigenspot space. If this distance is less than a threshold, we
classify the new image patch as a parking spot. Our second
usage simply pushes the examples through the PCA trans-
formation before training a SVM classifier and learning a
mixture of multivariate Gaussian distributions. Specifically,
we transform each example as g = D™V2ET (g — ¥).

Pairwise Markov Random Fields. Because SVMs and
Eigenspots only consider the local characteristics of an im-
age patch to perform the binary classification, their perfor-
mances are limited by the distribution of the training data.
Thus it is useful to investigate neighboring image patches
around the patch of interest as well as to look at the lo-
cal characteristics of the image patch. An image patch is
highly likely a parking spot when the majority of neighbor-
ing patches are parking spots, even the local characteristics
of the patch is unlikely classified as a parking spot.

To implement this idea, we use a pairwise Markov Ran-
dom Fields (MRFSs) [14]. A pairwise MRF, H, is an undi-
rected graphical model that factorizes the underlying joint
probability distribution P(Y, G) by a set of pairwise cliques.
3 M is comprised of a set of nodes and their edges where a
node models a random variable and an edge between nodes
represents dependence between them.

In this work, there are two different types of nodes: ob-
served and unobserved nodes. An observed node corre-
sponds to an image patch whereas an unobserved node is
the true label of the observed node. Although we observe
the value of a node (G = gi), the true label of the node
(Y = yr € {—1,+1}) is not observed. The task is then to
compute the most likely values of Y (i.e. whether a hypoth-
esis (g;) is parking spot (y; = 1) or not) given the structure
of the undirected graph, H, and characteristics of image
patches, G. The joint probability distribution is factorized
as

N
Pv,6) = ZTJe@.v) [T vy

JEN(4)

where ®(G;,Y;) is a node potential, U(Y;,Y;) is an edge
potential, Z is the partition function that ensures a proba-
bility density of this model, N(i) is the set of nodes in the
neighborhood of the ith node. Our implementation of MRF's
considers first-order neighbors.

As we assume that candidate parking spots are gener-
ated from a mixture of multivariate Gaussian distributions,
we estimate the node potentials using a Gaussian Mixture
model (GMM) [1]. Due to the possibility of two class labels,

3There may be bigger cliques in the graph, but the pairwise
MRF only consider pairwise cliques.



each node has two potentials: a potential being a parking
spot, ®(G;, Yj=41) and the other potential being not a park-
ing spot, ®(Gi,Y;=—1). The edge potential is computed by
Potts model [14].

U(Y;, ;) = (Y, Y;) = exp {—B(Yi - ¥;)°}

where (3 is a penalty factor for label disagreement between
nodes. In particular, if 5 = 0, edge potentials are identical
regardless of the label disagreement and only node potentials
are used. On the contrary, if 3 = oo, only the edge poten-
tials are meaningful and the node potentials are ignored.
For inferencing the most likely labels of individual parking
spot hypotheses in a given aerial image, we use loopy belief
propagation because it is easy to implement [30].

Bayesian Linear Regression Our self-supervised canonical
parking spots are highly accurate, but their number is often
too few to generalize over unseen image patches. To remedy
this insufficient number of positive examples, we use canon-
ical parking spots previously obtained from other aerial im-
ages. As we will show its benefit in the experimental results,
this certainly helps our hypothesis filters improve their per-
formances. However, naively consuming all the available
data might result in a solution overfitted to a given data. To
effectively utilize data, we employ a Bayesian linear regres-
sion (BLR). BLR provides a theoretical way of incorporating
previously obtained parking spot templates as a prior infor-
mation for the optimal weight vector learning. The optimal
weight vector, w*, is obtained by

p(W*|G) o arg max p(G|w)p(w)

p(Glw) [ (i vi)lw) o exp {2;2 > - w'e)?

1=1

1 _ _
exp {—§WZ w4+ ,uTZJ 1w}

(3

R

p(w)

where p(G|w) is the likelihood function and p(w) is the prior
distribution that is a zero-mean Gaussian. The final form
of BLR is a regularized linear regression where the parame-
ters of the resulting conditional Gaussian distribution of w*
given data D is

Sup = (GGT+/\I)_1

T 2 -t
mp = (GGT+ (V1) YG
where ) is a regularizing term that controls contributions of
the weight prior. We classify an image patch as positive if
the regression value is greater than the predefined threshold,

h(gi) =2I[y(g:) 2 0] - 1,6 €R.

where y(g;) = g w* is the output of BLR and I [y(g;) > d]
is an indicator function that returns 1 if y(g;) is greater than
§, otherwise 0.

3.1.3 Experimental Results

The goal of our task is to extract the structure of a parking
lot that is visible in an aerial image. The knowledge of the
image coordinates of parking spots facilitates estimation of
parameters that describe the structure of the parking lot.
Thus the purpose of our experiments is to verify how well
our filtering methods perform in detecting all the visible
parking spots in an aerial image.

}

We use twenty aerial images collected from Google * map
service. There are on average 116 visible parking spots in
each individual image in different shapes and under different
illumination conditions and a total of 2,324 parking spots
across all aerial images.

| fn fo acc
0.5512  0.0471 0.7008
0.3719 0.9382 0.2311

Self-supervised Parking Spots
Generated Hypotheses

Table 1: Performance comparison of parking spot hypothe-
ses generated by the low-level and high-level analysis layers
is measured by three different performance metrics. These
metrics include “false negative (fn),” “false positive (fp),” and
“accuracy (acc).”

Table 1 shows the micro-averaged performance of the hy-
pothesis generation by the low-level and the high-level anal-
ysis where the accuracy is defined as a ratio of the number
of correctly classified parking spots to the total number of
parking spots used in evaluation. This micro-averaged per-
formance is computed by merging contingency tables across
the twenty different images and then using the merged table
to compute performance measures. Since the self-supervised
examples are highly accurate (a low false positive rate (4.71%)),
their parking spot templates are used as positive examples
for training all filtering methods. An equal number of neg-
ative examples are randomly generated.

A false positive is a non-parking-spot example that is clas-
sified as a parking spot. A false positive output is quite risky
for autonomous robot driving; in the worst case, a false pos-
itive output might make a robotic vehicle drive somewhere
that the robot should not drive. Despite having nearly zero
false positives, the self-supervised parking spots recover only
43.55% of the true parking spots (1,012 out of 2,324 true
parking spots over 20 images.) This high false negative rate
5 may cause problems for autonomous driving: for example,
an autonomous robotic vehicle might not be able to park
itself even if there are plenty of parking spots available. By
using information provided by the low-level analysis, the
high-level hypothesis generation analysis reduces the false
negative rate from 55.12% to 37.19%. However, it increases
the false positive rate to 93.82% as well. The filtering stage
then corrects this shift in false positive rate by removing
erroneous hypotheses. Importantly, as we will see in the re-
sults, this technique cannot recover from false negatives in
the hypothesis generation.

Table 2 compares the performance of self-trained filter-
ing methods. The parking spot hypotheses generated by
the high-level layer were labeled by hand for the evaluation.
Hyper-parameters of SVMs were determined by 10-fold cross
validation.® Eigenspots are computed only using positive ex-
amples. For the MRF inference, we build a mesh from the
estimated layout of parking spot hypotheses where a node
in the grid corresponds to an image patch. We again use
positive and negative examples to obtain GMM and use the
obtained GMM to estimate node potentials. We observe the

“http://map.google.com

5 A false negative is a parking-spot example that is classified
as a non-parking-spot example.

SFor SVM implementation, we use libsvim which is publicly
available at http://www.csie.ntu.edu.tw/~cjlin/libsvm/



false negative

false positive

accuracy

SVMs

Eigenspots

SVMs w/ Eigenspots
MRFs w/ GMM
BLR

0.3830 = 0.0012 (0.0188)
0.3074 (0.0090)
0.3826 + 0.0221 (-0.0116)
0.3929 + 0.0301 (-0.0147)
0.3270 + 0.0009 (0.0184)

0.3136 & 0.0106 (-0.0230)
0.8004 (0.1085)
0.3227 + 0.0201 (-0.0256)
0.3644 & 0.0041 (-0.0098)
0.6611 = 0.0129 (-0.1007)

0.6627 & 0.0012 (0.0073)
0.3013 (-0.0880)
0.6603 & 0.0109 (0.0200
0.6280 + 0.0074 (0.0101

SVMs

Eigenspots

SVMs w/ Eigenspots
MRFs w/ GMM
BLR

0.4271 % 0.0350 (-0.0186)
0.2765 (0.0000)
0.4320 =+ 0.0111 (-0.1142)
0.3466 + 0.0786 (-0.1846)
0.4136 + 0.0313 (-0.0099)

0.0429 + 0.0112 (-0.0086)

0.3969 (0.0196)
0.0450 = 0.0276 (-0.0143)
0.0798 + 0.0145 (0.0110)
0.2827 + 0.0241 (0.0151)

)
)
0.4091 + 0.0070 (0.1238)
)

0.9189 =+ 0.0012 (0.0095
0.6151 (-0.0176)
0.9165 = 0.0012 (0.0242)
0.8937 = 0.0243 (0.0085)
0.7043 + 0.0232 (-0.0121

SVMs

Eigenspots

SVM w/ Eigenspots
MRFs w/ GMM
BLR

0.3951 & 0.0345 (0.0113)
0.2765 (0.0000)
0.3880 = 0.0011 (-0.0567)
0.3342 + 0.0188 (-0.1318)
0.3970 + 0.0114 (-0.0105)

0.0457 £ 0.0012 (-0.0105)
0.3759 (0.0144)
0.0486 & 0.0012 (-0.0165)
0.0817 + 0.0012 (0.0126)
0.2712 £ 0.0005 (0.0098)

)
0.9213 + 0.0111 (0.0085)

0.6335 (-0.0130)
0.9194 + 0.0042 (0.0204)
0.8945 %+ 0.0174 (0.0011)
0.7169 =+ 0.0011 (-0.0079)

Table 2: Results comparing different filtering methods.

results by varying ( in the range 0 to 10 with steps of size
2.7 We empirically set 2 as 3 for MRFs, 5 as A and .5 as a
threshold for binary classification for BLR implementations.

In the table 2, there are three blocks of rows describ-
ing three different experimental scenarios. In the first sce-
nario, we trained the filtering methods using a parking spot
templates from the image under analysis consisting of the
self-supervised parking templates as positive examples and
randomly generated negative examples. In the second sce-
nario, we trained these methods using self-supervised exam-
ples from all other images not including the target image.
Finally, in the last scenario we trained the methods using
self-supervised examples from all images. The randomly
generated negative examples were sampled while running
each of these scenarios. Due to this randomness in negative
examples, we averaged our results over 5 separate runs for
each scenario. Each cell in the table displays the mean and
standard deviation.

In addition, we wanted to measure the usefulness of our

feature representation over raw-intensity parking spot patches.

We re-ran the above experiments using the same parking
patches in raw-intensity values. The numbers in parentheses
indicates the performance difference between different park-
ing spot patch representations. Positive values in the ac-
curacy indicate improvements of our feature representation
over raw-intensity whereas negative values in false positive
and false negative columns indicate improvements. Over-
ally, the performance difference is negligible, but our feature
representation method enables our algorithms to reduce the
dimension (m) of parking spot patches’ from 240 to 93, re-
sulting in computationally more efficient solution (i.e., faster
training with less memory).

Ideally, the method with the lowest false positive and neg-
ative rates would be the best, but in practice it is hard to
achieve both of them simultaneously. For our autonomous
driving application, we prefer the method with the lowest
false positive to one with lowest false negative because a
false positive is more risky than a false negative. In gen-
eral, the performances of hypothesis filters are improved as

"We fit our Gaussian Mixture model us-
ing  the  publicly available = GMMBayes from
http://www.it.lut.fi/project/gmmbayes/

the amount of training data is increased. Linear SVMs per-
formed surprisingly well, particularly in terms of false pos-
itives and accuracy. Additionally, training an SVM using
the subspace generated by the Eigenspots analysis performs
only marginally better than simply using the Eigenspot dis-
tant measure computation. This performance difference can
potentially be decreased by statistically fitting the thresh-
old value used during distance measure classification. As
discussed in Section 3.1.2, MRF's utilize higher-level interac-
tions to improve prediction accuracy. However, estimating
the GMM requires a substantial amount of data; the per-
formance degradation in the first row of the table indicates
that the canonical parking spots extracted by the low-level
analysis alone were too few to accurately this fit this model.

3.2 Skeletonization

In this paper, skeletonization refers to a process of extract-
ing the framework of drivable regions in a parking lot image.
To accurately build a skeleton, we need to know the struc-
ture of a parking lot. This is done by estimating boundaries
of parking blocks that are obtained from parking spot detec-
tion. In parallel, we segment a given aerial image into two
regions: “parking lot” and “non-parking lot” regions. Then
the drivable regions in a parking lot are recovered by super-
imposing the constructed structure over the segmented park-
ing lot image. In this step, we use self-supervised examples
to find cues for parking lot for the boundary segmentation
and road-marking classification.

The following sections detail how self-supervised exam-
ples are used in segmenting the parking lot boundary and in
detecting road-markings.

3.2.1 Parking Lot Boundary Segmentation

The floodfill algorithm is a painting method that fills con-
nected regions within an image with a constant value. We
assume that the magnitude of image gradient in drivable re-
gions is similar to those of parking spots. After computing
magnitudes of the image gradient, we randomly select some
of the self-supervised parking spots and use them to obtain
a threshold value. The centroids of those selected parking
spots are used as starting points. Despite its simplicity, our
modified floodfill algorithm works reasonably well in that it
detects all the visible parking lot regions in our test images.



Figure 5(a) shows a binary image of the segmented drivable
region where autonomous vehicle can only drive on white
image regions.

3.2.2 Road-Markings Detection

Road-markings are important parts of drivable regions
and differentiated from other drivable regions by average in-
tensity and their color histograms. To detect road-markings
in a given parking lot image, we train a binary road-marking
classifier that assigns a pixel with one of the binary deci-
sions: road-marking (+1) or non-road-marking (—1). To
obtain a training set, we utilize road-markings that are parts
of the self-supervised parking spot templates. A set of the
randomly selected road-markings are used to learn charac-
teristics of road-marking in a particular parking lot. We
use Bresenham’s line algorithm to select pixels along the
selected lines and learn a multivariate Gaussian distribu-
tion of two different color spaces: Hue-Saturation-Intensity
(HSI) and RGB, in which individual pixels are represented
by six-dimensional vectors, x; € RS, 8

1

1 1 _
p(x:|Ck) = @m)iz e P {—5(&' — )T (% — Mk)}

where p(x;|C}) is a conditional probability of x given Cy, k €
{—1,1}, d is the dimension of a pixel vector, X = dx d is kth
class’ covariance matrix, and g = d x 1 is kth class’ mean
vector. We learn another Gaussian distribution for non-
road-marking class. The road-marking detection is done by
investigating the likelihood ratio between two classes:

: p(%;]C1)
y(xi) = 1 if log (p(x1|071)) >0
-1 otherwise

A result of the road-marking classification shown in Figure
5(b) which has a number of false positives along road lanes
outside of the parking lot. These errors occur because the
magnitudes of road lane are similar to those of parking spots.
However, since the detection result is used in conjunction
with other results (i.e., parking lot boundary segmentation
and parking spot detection) to build the skeleton of drivable
regions, it is acceptable to include some of the non-parking
lot regions.

3.2.3 Drivable Region Identification

There are three inputs for identifying drivable regions:
results of parking spot detection, results of road-marking
detection, and results of parking lot boundary segmenta-
tion. Although none of these inputs is perfect, a combi-
nation of these imperfect inputs works reasonably because
they are complementary to each other. For example, our
road-marking detection method produces a number of false
positives on road lanes (See Figure 5(a)). During the driv-
able region identification phase, these high false-positive re-
gions are disregarded because they are located outside of
the parking lot based on the result of parking lot boundary
segmentation result (See Figure 5(b)).

Based on the best result of parking spot detection, the
structure of parking lot is uncovered by computing bound-
aries of parking blocks. This structure can roughly tell us
how the geometric shape of a parking lot looks like, but can-
not tell where exactly an autonomous vehicle should drive.

8We utilized other color spaces such as Lab and YCbCr and
found that a combination of HSI and RGB works best.

To define drivable regions of a parking lot, the parking lot
structure is superimposed over the segmented parking block
boundaries. Then drivable regions of a parking lot become
clearly visible to the vehicle. However, the binary image
of drivable regions shown in 5(a) still has some errors. Al-
though these black speckles do not look significant in the
image, they may cause serious problems when used for au-
tonomous driving as they may be regarded as obstalces. To
remove these errors, we apply a mathematical morphology
operation (i.e., “close”) to smooth the segmentation binary
image. Since the smoothing can only remove small-size
speckles, we implement an heuristics to remove islands in
the drivable regions. These islands are in fact road-markings
(e.g., stop-lines, driving direction marking) on the drivable
region in the original image. While these features repre-
sent important contextual information, we want to remove
them from the description of the drivable regions. To re-
move these islands, we utilize the results of road-marking
detection. That is, for each of the islands in drivable re-
gions, it can be removed if an island does not belong to road-
markings that are parts of parking blocks. Figure 5(c) shows
the binary image of drivable regions after removing speckles
and islands. Finally to accurately depict boundaries of driv-
able regions, we apply a modified “brushfire” algorithm that
incrementally propagates distance values from non-drivable
regions (e.g., parking blocks). Figure 5(d) shows the final re-
sult of the skeletonization that depicts image regions where
a robotic vehicle may drive.

4. CONCLUSIONS

This work proposes orthoimage analysis methods that au-
tomatically build a parking lot map for autonomous driving.
In a hierarchical scheme, our algorithms analyze the struc-
ture and build the skeleton of drivable regions in a parking
lot from an orthoimage. For parking spot detection, a low-
level analysis layer extracts a set of easily detected canon-
ical parking spots and estimates parking blocks using line
detection and clustering techniques. A high-level analysis
then extends those spots using geometrical characteristics
of typical parking lot structures to interpolate and extrapo-
late new hypotheses and uses self-supervised machine learn-
ing techniques to filter out false positives in the proposed
hypotheses. Our experiments show that training the clas-
sifiers using a self-supervised set of canonical parking spots
extracted by the low-level analysis successfully adapts the
filter stage to the particular characteristics of the image un-
der analysis. Self-supervised examples are also effectively
utilized to train a road-marking detector and a parking lot
boundary segment. A composite of this information is then
used to extract the structure of a parking lot.

Future work will complete the automatic building of RNI
by first fitting a mesh of roadlanes and by then annotating
contextual information (e.g., location of stoplines, speed lim-
its) to the obtained skeleton. Although we have extensively
evaluated our filtering methods in various metrics, there are
no quantitative performance evaluations on boundary seg-
mentation, road-marking detection, and skeleton building.
We will evaluate these methods with more complex park-
ing lot images. We will also continue to work on improv-
ing the performance of parking spot detection. Particularly,
a high false negative rate might be acceptable in terms of
safe-autonomous driving in any parking lots. However, it
might cause a serious problem when actually generating the



(c) The structure of a parking lot is superimposed
The red

(b) The results of the road-marking detection.

%

(d) The final results of skeletonization.

Safety of

over parking lot boundary segmentation.
rectangles represents boundaries of parking blocks
whereas the green triangles are detected parking

traversability is color-scaled for visualization purpose.
Red corresponds to highest safety of traversability
whereas blue is lowest safety of traversability. Viewed

spots. Viewed best in color.

Figure 5:
skeletonization process.

skeleton of a parking lot because a high false negative out-
put underestimate the actual area of the parking lot. We
will also consider generalizing our methods to more complex
parking configurations.
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