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Abstract

Novelty detection is often treated as a one-class clasifitaroblem: how to
segment a data set of examples from everything else thatvimitonsidered novel
or abnormal. Almost all existing novelty detection techugg, however, suffer from
diminished performance when the number of less relevagin@ant or noisy features
increases, as often the case with high-dimensional feapaees. Additionally, many
of these algorithms are not suited for online use, a trattithi@ghly desirable for many
robotic applications. We present a novelty detection dtigar that is able to address
this sensitivity to high feature dimensionality by utihigj prior class information within
the training set. Additionally, our anytime algorithm islsuited for online use when
a constantly adjusting environmental model is beneficiaé afply this algorithm to
online detection of novel perception system input on an@utdnobile robot and argue
how such abilities could be key in increasing the real-wagglications and impact of
mobile robotics.

IMost figures in this paper are best viewed in color.
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1 Introduction

Many autonomous unmanned ground vehicles (UGVs) have addéan a level where
they are competent and reliable a high percentage of theitimeany environments
[1, 2, 3]. Most of these systems, however, are heavily engineerettiéodomains they
are intended to operate in. Any deviation from these domaften results in sub-
optimal performance or even complete failure. Given thd obsuch systems and
the importance of safety and reliability in many of the tasiet they are intended for,
even a relatively rare rate of failure is unacceptable. Imymdomains that are prime
candidates for mobile robotic applications such as spapteation, transportation,
military reconnaissance, and agricultural tasks, theafglatastrophic failure, however
small, is a primary reason why autonomous systems are stilémutilized despite
already demonstrating impressive abilities.

One approach to addressing this limitation is for a UGV to bk do identify
situations that it is likely untrained to handbeforeit experiences a major failure.
This problem therefore becomes one of novelty detectionv &aobot can identify
when perception system inputs differ from prior inputs sg@rmng training or previous
operation. With this ability, the system can either avoigdaidocations to minimize
risk or stop and enlist human help via supervisory contraééta-operation (see Figure
1).

Two common limitations of novelty detection systems ardipalarly relevant to
the mobile robotics domain. Autonomous systems often ne&ghtn from their expe-
riences and continually adjust their models of what is ndrana what is novel. For
example, if human feedback were to confirm that a certaindypavironment selected
as novel is actually safe to handle with the existing autonsystem or demonstrate to
the system the proper way to handle the situation (a])nthe model no longer needs
to identify such inputs as novel. Most novelty detectionrapphes, however, build a
model of the normal set of examples a priori in batch in ordetetect novel examples
in the future but are unable to update that model online withetraining.

Furthermore, existing novelty detection techniques seani$hed performance
when using high-dimensional feature spaces, particulghign some features are less
relevant, redundant, or noisy. These qualities are paatigicommon in features from
many UGV perception systems due to the variety of sensorsiacettainty about how
these features relate to novelty. For example, the relevahcamera-based features
such as color and texture of an area of the environment tdtyqee similarity metrics
in general) is difficult to understand as subsets of the feataould contain redun-
dant information or be mostly irrelevant. It is thereforgiontant for novelty detection
techniques to be resilient to such feature properties.

We present an online approach that addresses these compimarps with nov-
elty detection techniques. We approach the problem of nowkltection as one of
online density estimation where seen examples generatdlaarice of familiarity in
feature space. When prior class information is availableshav how using Multiple
Discriminant Analysis (MDA) for generating a reduced dirsiemal subspace to op-
erate in rather than other common techniques such as Ralr@gnmponents Analysis
(PCA) can make the novelty detection system more robuststeess associated with
high-dimensional feature spaces. In effect, this createwer dimensional subspace



Figure 1: Sample result from online novelty detection althon onboard Crusher, a
large UGV. Chain-link fence was detected as novel (top afid nevelty shown in
red) with respect to the large variety of terrain and vedmtgdreviously encountered.
After an initial stretch being identified as novel, subseduertions of the fence are no
longer flagged (right) due to the algorithm’s online tragability. As with all future
similar images, insets within the top image show a first-gergew (left inset) and the
classification of the environment by the perception systetm ioad, vegetation, and
solid obstacle in blue, green and red respectively (rigbgtn

that truly capturesvhat makes things noveAdditionally, our algorithm can be framed
as a variant of the NORMA algorithm, an online kernelized {Sup Vector Machine
(SVM) optimized through stochastic gradient descent, &edefore shares its favor-
able qualities$]. Along with its anytime properties, this allows our algbm to better
deal with the real-time demands of online tasks.

While this work was targeted toward mobile robotics appiars, the approaches
here are more generally applicable to any domain which caeftiérom online novelty



detection.

The next section presents background on novelty deteatidmtques and some
example applications. Sectidpresents our novelty detection algorithm, followed
by an explanation of how this technique can be applied to laabbotics in Section
4, results from field testing on a large UGV in Sectidrand concluding remarks in
Section6.

2 Novelty Detection

Novelty detection techniques (also referred to as anomalyudier detection) have
been applied to a wide range of domains such as detectingstalifaults p], abnor-
mal jet engine operatior¥], computer system intrusion detectid$,[and identifying
masses in mammogramd][ In the robotics domain some have incorporated novelty
detection systems within inspection robat§,[11].

Novelty detection is often treated as a one-class classificaroblem. In training
the system sees a variety of “normal” examples (and correfipg features) and later
the system tries to identify input that does not fit into therted model in order to
separate novel from non-novel examples. Instances of afalities or novel situations
are often rare during the training phase so a traditionaisdfi@r approach cannot be
used to identify novelty in most cases.

Most novelty detection approaches fall into one of seveatdgories. Statistical or
density estimation techniques model the “normal” classrdenoto identify whether a
test sample comes from the same distribution or not. Suctoappes include Parzen
window density estimators, nearest neighbor-based estimyaand Gaussian mixture
models [L2]. These techniques often use a lower-dimensional reptatsamof the data
generated through techniques such as PCA.

Other approaches attempt to distinguish the class of iostam the training set
from all other possible instances in the feature spacedl&opf et al. [L3] show how
an SVM can be used for specifically this purpose. A hyperglsnconstructed to
separate the data points from the origin in feature spackdyneaximum margin. One
application of this technique was document classificaticgh [A noticeable drawback
of this approach is that it makes an inherent assumptiorttieatrigin is a suitable prior
for the novel class. This limitation was addressed b§] py attracting the decision
boundary toward the center of the data distribution rathantrepelling it from the
origin. A similar approach encloses the data in a sphere winail radius, using kernel
functions to deal with non-spherical distributed déit6] [ These techniques all require
solutions to linear or quadratic programs with slack vddalio handle outliers.

Another class of techniques attempts to detect novelty lbypcessing the resp-
resentation of the data and measuring reconstruction efrithie input. The key idea
here is that instances of the original data distributionesgected to be reconstructed
accurately while novel instances are not. A simple thresbah then be used to detect
novel examples. The simplest method of this type uses a sobslee eigenvectors
generated by PCA to reconstruct the input. An obvious litiwtahere is that PCA
will perform poorly if the data is non-linear. This limitath was addressed by using a
kernel PCA based novelty detectd7]. Benefits of more sophisticated auto-encoders,



neural networks that attempt to reconstruct their inputsugh narrow hidden layers,
have been studied as wellg).

Online novelty detection has received significantly leg¢srdion than its offline
counterpart. Since it is often important to be able to adjustmodel of what is con-
sidered novel in real-time, many of the above techniquesetrsuitable for online use
as they require significant batch training prior to operatié/hile Neto et al. 1] re-
placed the use of PCA for novelty detection with an impleragoh of iterative PCA,
performance was still largely influenced by the initial ds¢d used for training. Mars-
land proposed a unique approach that models the phenomérabituation where
the brain learns to ignore repeated stimafl]] This is accomplished through a clus-
tering network called a Grow When Required (GWR) network. Tasvork keeps
track of firing patterns of nodes and allows the insertionefmodes to allow online
adaptation.

Markou and Singh have written a pair of extensive surveylagidetailing many
additional novelty detection applications and technidudé€s20Q].

The performance of the above-mentioned novelty detectipmaaches, however,
quickly deteriorates as the number of less relevant or rfetyires grows. The dispro-
portionately high variance of many of these features madiifitult for many of these
algorithms to capture an adequate model of the training aladetheir effects quickly
begin to dominate more relevant features in making premtisti Our algorithm ad-
dresses this crucial limitation in cases where class indion is available within the
training set while still being suitable for online use.

3 Approach

3.1 Formalization

The goal of novelty detection can be stated as follows: g@emaining setD =
{x}1. Ny € X wherex; = {z},...,2F}, learn a functionf : X — {novel,not-
novel}. Inthe online scenario, each time stgpovides an exampbe, and a prediction
f+(X¢) is made.

We perform online novelty detection using the online densstimation technique
shown in Algorithml. All possible functionsf are elements of eeproducing kernel
Hilbert spaceH [21]. All f € H are therefore linear combinations of kernel functions:

t—1
fi(x) = Zaik(xiaxt) 1)
i=1

We make the assumption that proximity in feature space ecthyr related to sim-
ilarity. Observed examples deemed as novel are therefarembered and have an
influence of familiarity on future examples through the l&rfunctionk(x;,x;). A
novelty thresholdy, and a learning ratey, are initially selected. For each exampgie
the algorithm accumulates the influence of all previousgnsgovel examples (ling).

If this sum does not exceedthen the example is identified as novel and is remem-
bered for future novelty prediction (lind. Non-novel examples are not stored as they



have minimal impact on future novelty computations (everutgh a coefficient of is
assigned in lin® for clarity, these examples are not stored). We suggestiginging
the Gaussian kernel with an appropriate variante

2
=gl

k(Xi,Xj) =e 2 (2)

Algorithm 1 Online novelty detection algorithm
1: given: A sequence of features = (X;)1..r; @ novelty threshold; a learning rate
n
. outputs: A sequence of hypothesés= (f1(x1), f2(X2),...)
s initialize: t «— 1
loop
Fo(xe) = SiZy aik(Xi,Xe)
if fi(x;) < ythen
Qg <1
else
ap «— 0
end if
t—1t+1
. end loop
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3.2 Improved Dimensionality Reduction

Especially if the number of features is large, it may first leeessary to project the
high-dimensional input; into a lower-dimensional subspace more suitable for ngvelt
detection using distance metrics. The most common chord@ifbamong dimension-
ality reduction (and novelty detection) techniques is PE&A finds a linear trans-
formation that minimizes the reconstruction error in a tespiares sense. If subsets
of the features are redundant, noisy or are dominated disptionally by a subset of
the training set, however, applying techniques such as RCAny unsupervised di-
mensionality reduction technique for that matter, mayd/idisappointing results as
precisely the most relevant directions for differentiatimay be discarded in order to
reduce reconstruction error of a less relevant portion efélature space.

Rather than optimizing for reconstruction errdiscriminant analysiseeks trans-
formations that are efficient for discriminating betweeffedent classes within the
data. Multiple Discriminant Analysis, a generalizationFischer’s linear discrimi-
nant for more than two classes, computes the linear tramsfiown that maximizes the
separation between the class means while keeping the dkgbudions themselves
compact, making it useful for classification taskg][

We argue that when prior class information for the trainiegis available, using
MDA to construct a lower dimensional subspace using labelaglses not only op-
timizes for known class separability but likely leads to ambility between known
classes and novel classes. In cases described earlieetiudit in poor performance
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Figure 2: All data points projected onto the subspace definyethe first three basis
vectors computed by PCA (top) and LDA (bottom). Only the ffmir classes were
used to construct the subspaces (‘other man-made’ claswitd®eld as a test class).
The LDA-based projection clearly shows significantly moeparation between the
new man-made class and the known classes, implying a masbkusubspace for
novelty detection.

when using PCA, MDA will largely ignore features that do nat & class discrimi-
nation, instead focusing on the obviously differentiatiegtures. The key observation
here is that novelty detection is about encountering nessels, so by using discrimi-
nating ability as the metric for constructing a subspace, @an capture the combina-
tions of features that make known classes nevigh respect to each othend likely
generalize to previously unseen environments, in effepturang what makes things
novel

Experimental validation of this theory within the domainnodbile robotics is pre-



sented in Sectiondand>5.

3.3 Framing aslInstance of NORMA

The NORMA algorithm is a stochastic gradient descent allgorithat allows the use
of kernel estimators for online learning tasks [As with our algorithm,f is expressed
as a linear combination of kernetk) (NORMA uses a piecewise differentiable convex
loss functionl such that at each stépwe add a new kernel centeredxatwith the
coefficient:

ap = —nl' (Xe, ye, fr) 3

Our algorithm can easily be framed as an online SVM instafid¢@RMA using
a hinge loss function as follows:

Yy o= 7 (4)
Z(Xt7yt7 ft) = maw(oayt - ft(xt>) (5)

Taking the derivative off), we get:

—1 if ft (Xt) <7
0 otherwise

U(Xe,ye, i) = { (6)

As before, the gradient of our loss is non-zero only when tweiaulated contri-
butions from stored examples are less than the noveltyhibles, signifying that the
example is novel. Fron8] and @) we then get:

o {77 if fe(xe) <~ @)

0 otherwise

This is equivalent to the update steps in lifeend9 of Algorithm 1, showing that
our algorithm can be framed as a specific instance of the NORM@rithm.

NORMA produces a variety of useful bounds on the expectedutative loss §].
For novelty detection this directly relates to the numbegxamples that are expected
to be flagged as novel. This means we are competitive witteptsp the besf € H
in terms of representing our sample distribution with theegst number of examples.
This is to our advantage both from a computational persgeaince memory and pre-
diction costs scale with the number of remembered examatewell as performance
since we want to minimize false positives that may be costlyandle.

3.4 Query Optimization

Without further measures, the potential number of basistfans stored by Algorithm
1 could grow without bound. NORMA deals with this issue by dewg all coeffi-

cientsa; and dropping terms when their coefficients fall below someshold. This is
unsuitable for our application since we do not want to regdigitflag similar examples



Algorithm 2 Online novelty detection algorithm with query optimizatio

1: given: A sequence of featureés = (x;)1...r; a novelty threshold; a learning rate
7; @ maximum example storage capadiy

2: outputs: A sequence of hypothesés= (f1(X1), f2(X2),...)
3:initializee t < 1;;n <0

4: loop

5 1+ 1

6 fu(x) <0

7. while fy(x;) < yandi <ndo

8: Je(Xe) — fe(Xe) + ik (X, X¢)

9: 1— 1+ 1

10:  end while

11 if fi(X¢) < v then

12: Opy1 <M

13: Xp+1 < Xt

14: n«—n-+1

15: i+ 1i—1 [liwasincremented one extra time
16:  endif

17.  optimize sequence: Move («;, X;) to front
18: if n > N then

19: Delete(a;, X;)isn

20: n <« N

21:  endif

22 t+—t+1

23: end loop

Atline 17, if fi(x¢) = not-nove]: indexes the example that broke the novelty threshold. Other-
wise,i indexesx;.

as novel. Instead, we propose a modified anytime versionradlgorithm that ensures
efficient and bounded computation (see AlgoritBm

This algorithm takes advantage of the fact that familiadontribution to new
queries is often dominated by only a few examples. First,avesasily gain some effi-
ciency by only processing stored examples until we havehezhthe novelty threshold
(line 7). The key performance improvement, however, comes fronsdagience op-
timization in line17. For each prediction, the stored example that breaks theltyov
thresholdy, or the new novel example itself, is moved to the front of teieds it is more
likely to impact future queri&s This is a slight variation of the traditional problem of
dynamically maintaining a linear list for search queriesvidich the move-to-front
approach was proven to be constant-competitive, meanirajgooithm can beat this
approach by more than a constant fac®][ As well as allowing us to bound the
number of stored examples (lidd), this gives our algorithm an anytime property by
enabling it to as quickly as possible classify as much of tihirenment as possible as
not novel. When this algorithm is unable to run to completiae tb time constraints,

2Another variant is to move stored examplegmaz (1 5k (Xt, X;) to the front of the list.
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Figure 3: Robot used for novelty detection testing (left)l @anhigh-level illustration
perception system data flow (right). Features for noveltgcteon are taken from the
steps highlighted in red.

it will fail intelligently by generating false positives bmever potentially dangerous
false negatives.

4 Application to Mobile Robotics

A natural application of our algorithm is to online noveltgtdction for a mobile robot.
The Crusher UGV of the UPI Program (shown in Fig@jahat was used throughout
our tests is intended for operation in complex, outdoorm@mments, performing local
sensing using a combination of ladar and camera senagsllhe perception system
assigns traversal costs by analyzing the color, positiensitly, and point cloud distri-
butions of the environmen2f, 25]. A large variety of engineered features that could be
useful for this task are computed in real-time (see Figiyt@nd the local environment
is segmented into columns @f) cm? voxels in order to capture all potentially rele-
vant information (see Figurg). Each voxel (tagged with its corresponding features)
is passed through a series of classifiers and combined wiliti@thl density-related
features to create a more compact set of intermediate ésatoore suitable for traver-
sal cost computation. The system then interprets theserésathrough hand-tuned or
learned methods to create a final traversal cost for thatitwcan the world that can be
used for path planning purposes.

To perform novelty detection we used subsets of the initial features as well as
the intermediate classification and density features foh eaxel. This vertical vox-
elization approach is effective for mobile robots sincefhesence of specific features
at certain vertical positions are highly relevant to theipact on traversal cost. For ex-
ample, solid objects at wheel height are likely to be smalksowhile similar features
higher off of the ground are more likely to be trees or man-enaldjects. Similarly,
such spatial information is vital to effective novelty deten. This forced us to deal
with a relatively high-dimensional feature spade features) as well as with the asso-
ciated issues described earlier.

We deal with this problem by using MDA with an extensive lityraf hand-labeled
examples across many environments and conditions to cengplawer dimensional
subspace more suitable for density estimation as desciibéte previous section.
Of the available classes, four were used to construct a-tlireensional subspace:



Camera Image

Cone Above Cone Below Surface Normal (3)

Figure 4: Example raw engineered features from the UGV'sqmion system used
by the novelty detection algorithm. NDVI (normalized diface of vegetation index)
is a useful metric for detecting vegetation.

Figure 5: Illustration of the perception system’s voxdiiaa of vertical columns within
the environment and subsequent classification. The voais &re actually much
smaller within the system but are enlarged for demonstigtiarposes. In the per-
ception system, each voxel is2@ cm? cube and due to the size of the vehicl,
voxels in the vertical direction are computed at each locatn order to include all
potentially relevant information.
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road/dirt, rocks, bushes and barrels (see Fig)reA fifth class of examples corre-
sponding to various non-barrel man-made objects was wdhbeverify the suitability
of this subspace (see Figure

Figure 2 shows the projection of all five classes onto the first thremsbheectors
computed by PCA and LDA using the first four classeghe LDA projections clearly
show better separation between the new set of man-made ksan the original
four classes. As expected, the most overlap occurs withdhrelrlass as barrels share
common properties with other man-made objects such as sisadices, colors, etc.
Since we would desire these new examples to be identifiedves redative to the rest
of the classes, this separation implies that this is a mdtatde subspace for use as a
similarity metric within a novelty detection system.

Because our algorithm is efficient for online use, the ngualodel can start unini-
tialized or can be seeded with a sampling of examples usadgltraining so that
it can identify areas that are novel and potentially unsafbandle with the current
perception system.

5 Experimental Results

Our novelty detection algorithm (with query optimizatiomgs tested using our large
UGV on an a natural outdoor environment to evaluate its entiovelty detection per-

formance (the algorithm ran in real-time on logged data)e Tést environment tra-
versed by the robot consisted of combinations of road, gradglirt, a large variety of

vegetation, a series of small barrels, several ditchege laeavily-sloped piles of rocks
and a long chain-link fence.

We projected all examples into the three-dimensional satespgenerated by MDA
as described in the previous section from the first four Habeled classes (not using
the non-barrel man-made objects class). To best exhibibiiiae novelty detection
abilities of our algorithm, the model was initialized to ¢aim no prior examples. As
the environment was explored, perception system featuees aweraged int0.8 cm?
grid locations for use as online batches of examples. Thagevere identified as novel
relative to the current model (composed of everything fnestly identified as novel)
were incorporated into the model as described earlier.

The vehicle’s initial environment consisted of fairly optmrain with some light
scattered vegetation scattered on both sides. As expeéastaiices of such vegetation
were detected as novel the first few times they were seen (geeB).

The vehicle then encountered areas of much denser, largetat®n. Initially,
a majority of such vegetation was identified as novel wittpees to previous inputs
(see Figure9). As the vehicle continued navigating through similar egen, the
model adapted and no longer identified such stimuli as n®es Figurel0). Figure
11demonstrates this learning process through a series dieadimages of this initial
environment, identifying all future locations that are abwith respect to theurrent
model. Output is shown at three points in time: near the lmggof navigation, just
before initial encounters with dense vegetation and aftesieig a small amount of

3All features were initially rescaled to zero-mean, uniti@ace.
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Figure 6: Examples of hand labeled class categories (bosld, i grass, rock, tree
trunk, tree branches, etc.)
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Figure 7: Sample hand labeled examples in the 'other marehwdaks used for vali-
dation of dimensionality reduction effectiveness. Thigegary excluded instances of
barrels which were used as a separate class.

dense vegetation. It is clearly visible how the system adgptickly, causing future
similar instances to no longer be flagged as novel.

Proceeding through the environment, the vehicle then erteosia series of plastic
barrels (see Figur&2). As desired, the first several appear as novel with respect t
the large variety of vegetation previously seen while l@i@rels are no longer novel
due to their strong similarity to the initially seen barrelSimilarly, a long stretch
of a chain-link fence is identified as novel late in the couisme Figurel). Again,
the initial portions of the fence triggered the novelty détm algorithm while later
portions were no longer novel due to the algorithm’s adaptatAdditional examples
of novel instances identified during traversal appear infEd3.

Overall, the novelty detection algorithm was able to idgrail major unique ob-
jects (vegetation, barrels, fence, etc.) with a relatisehall amount of false positives

13



Figure 8: After initialization with no prior novelty modelarious small vegetation was
detected as novel (identified in red).

Figure 9: Initial encounter with larger and denser vegetatiesults in a significant
amount of detected novelty (identified in red).
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Figure 10: Similar vegetation as that shown in Figdiencountered a short time later.
Notice how almost all vegetation is no longer novel due talsirty to previous stim-
uli.

due to effective adaptation to the environment. When PCA gas to create the fea-
ture subspace, the lack of separability between classeka@sn either unacceptably
many false positives or false negatives, depending on peteairohoices. As with any
algorithm, the success of this approach is heavily depdratetihe quality of features.

Computation time comparisons between the two algorithntkisrtourse highlight
the effectiveness of query optimization (see Figlde While the average computation
time required per novelty query using Algoritihgrows with the number of stored ex-
amples, Algorithn2 experiences temporary spikes in computation time as nogaka
are encountered but query optimization allows the algorith quickly adapt its or-
dering of examples in order to maintain a bounded computdtimughout navigation
and allow effective anytime novelty prediction.

15



Figure 11: Novelty of all future perception input using @nt novelty model on
vegetation-heavy terrain shown in Figu&® and10at three points throughout traver-
sal. Robot’s past and future path is shown in light and dagkeigrespectively and nov-
elty of terrain is indicated by a gradient from yellow (moalely novelty) to red (high
novelty). Robot is initialized without a prior novelty mdde

6 Conclusion

Our algorithm addresses two significant limitations of mmastelty detection approaches.
By using MDA for supervised dimensionality reduction rattien unsupervised tech-
niques such as PCA, this algorithm operates on a subspatcés theore conducive

to viewing novelty as a distance metric and is therefore mesistant to many of
the issues associated with high-dimensional feature spa&dditionally, this algo-
rithm’s adaptive abilities, computational bounds and engtproperties make it a log-
ical choice for many online novelty detection tasks. As tabsystems continue to
improve, such approaches can help capitalize on theitiabildy acting as a safeguard
against the inevitable dangers of unfamiliar situations.
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Figure 12: Series of barrels encountered later in the couf$e initial barrels are
detected as novel (red shade) even after significant exposia large variety of veg-
etation (top and left). Later barrels are no longer idertif&s novel due to online

training.
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Figure 13: Additional examples of novel instances iderditiaring later traversal (red
shade): first encounter with a ditch (left) and a large, Hgaloped pile of rocks

(right).
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Figure 14: Average computation in milliseconds per novgltigry on3.2 GHz CPU
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5 seconds throughout navigation. Computational complefitklgorithm 2 remains
bounded due to the order optimization step (lfi®. These timings do not include
feature computation and projection costs as they are icEntnder both algorithms.
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