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ABSTRACT
Recent research in robot exploration and mapping has
focused on sampling hotspot fields. This exploration
task is formalized by [3] in a decision-theoretic planning
framework called MAXP. The time complexity of solv-
ing MAXP approximately depends on the map resolu-
tion, which limits its use in large-scale, high-resolution
exploration and mapping. To alleviate this computa-
tional difficulty, this paper presents an information-
theoretic approach to MAXP (iMAXP); by reformulat-
ing the cost-minimizing iMAXP as a reward-maximizing
problem, its time complexity becomes independent of
map resolution and is less sensitive to increasing robot
team size. Using the reward-maximizing dual, we de-
rive a novel adaptive variant of maximum entropy sam-
pling, thus improving the induced policy performance.
We also demonstrate the superior performance of explo-
ration policies for sampling the log-Gaussian process to
that of policies for the Gaussian process in mapping the
hotspot field. Lastly, we provide sufficient conditions
that, when met, guarantee adaptivity has no benefit un-
der an assumed environment model.

Categories and Subject Descriptors
G.1.6 [Optimization]: convex programming; G.3 [Pro-
bability and Statistics]: stochastic processes; I.2.8
[Problem Solving, Control Methods, and Search]:
dynamic programming; I.2.9 [Robotics]: autonomous
vehicles

General Terms
Algorithms, Performance, Experimentation, Theory
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1. INTRODUCTION
Recent research in multi-robot exploration and map-

ping [3, 8] has focused on sampling environmental fields,
some of which typically feature a few small hotspots in
a large region [9]. Such a hotspot field (e.g., plankton
density and mineral distribution in Fig. 2) is charac-
terized by continuous, positively skewed, spatially cor-
related measurements with the hotspots exhibiting ex-
treme measurements and much higher spatial variability
than the rest of the field. With limited (e.g., point-
based) robot sensing range, a complete coverage be-
comes impractical in terms of resource costs. So, to
accurately map the field, the hotspots have to be sam-
pled at a higher resolution.

The hotspot field discourages static sensor placement
because a large number of sensors has to be positioned
to detect and refine the sampling of hotspots. If these
static sensors are not placed in any hotspot initially,
they cannot reposition by themselves to locate one. In
contrast, a robot team is capable of performing high-
resolution hotspot sampling due to its mobility. Hence,
it is desirable to build a mobile robot team that can
actively explore to map a hotspot field.

To learn a hotspot field map, the exploration strat-
egy of the robot team has to plan resource-constrained
observation paths that minimize the map uncertainty
of a hotspot field. The recent work of [3] formalizes
this exploration task in a decision-theoretic planning
framework called the multi-robot adaptive exploration
problem (MAXP). So, MAXP can be viewed as a gen-
eralization of active learning [1] due to its sequential
nature. It unifies formulations of exploration problems
along the entire adaptivity (see Def. 2.2) spectrum, thus
allowing the performance advantage of a more adaptive
exploration policy to be theoretically realized. The map



uncertainty is measured in terms of the mean-squared
error criterion, which causes the time complexity of solv-
ing MAXP (approximately) to depend on the map reso-
lution. This limits its practical use in large-scale, high-
resolution exploration and mapping.

The principal contribution of this paper is to alleviate
this computational difficulty through an information-
theoretic approach to MAXP (iMAXP) (§2), which mea-
sures map uncertainty based on the entropy criterion.
Unlike MAXP, reformulating the cost-minimizing iMAXP
as a reward-maximizing problem causes its time com-
plexity of being solved approximately to be independent
of the map resolution and less sensitive to larger robot
team size (§3 and §5). Additional contributions from
this reward-maximizing formulation include:
• making the commonly-used non-adaptive maximum

entropy sampling problem adaptive (§3), thus improv-
ing the performance of the induced exploration policy;
• given an assumed environment model (e.g., occupancy

grid map), establishing sufficient conditions that, when
met, guarantee adaptivity provides no benefit (§4);
and
• explaining and demonstrating the superior performance

of exploration policies for sampling the log-Gaussian
process (`GP) to that of policies for the commonly-
used Gaussian process (GP) in mapping the hotspot
field (§4 and §6).

Related Work. Beyond its computational gain, iMAXP
retains the beneficial properties of MAXP: it is novel
in the class of model-based strategies to perform both
wide-area coverage and hotspot sampling. The former
considers sparsely sampled areas to be of high uncer-
tainty and thus spreads the observations evenly across
the environmental field. The latter expects areas of high
uncertainty to contain highly-varying measurements and
hence produces clustered observations. Since iMAXP
builds upon the formal framework of MAXP, it uniquely
covers the entire adaptivity spectrum; a more adaptive
strategy can exploit clustering phenomena in a hotspot
field to produce lower map uncertainty. In contrast, all
other model-based strategies [4, 5, 8] are non-adaptive
and achieve only wide-area coverage; they are observed
to perform well only with smoothly-varying fields. Like
MAXP, iMAXP can plan non-myopic multi-robot paths,
which are more desirable than greedy or single-robot
paths [4, 5, 8]. For a thorough discussion of existing
exploration strategies, we refer the interested reader to
the related work in [3].

2. COST-MINIMIZING PROBLEM FORMU-
LATIONS

Using the methodology of constructing MAXP, we for-

malize here the information-theoretic exploration prob-
lems at the two extremes of the adaptivity spectrum.
Exploration problems within the spectrum can be for-
malized in a similar manner. Not surprisingly, the re-
sulting cost-minimizing formulations differ from that of
MAXP by only the entropy criterion.

Notation and Preliminaries. Let X be the domain
of the hotspot field corresponding to a finite, discretized
set of grid cell locations. An observation taken (e.g., by
a single robot) at stage i comprises a pair of location
xi ∈ X and its measurement zxi . More generally, k ob-
servations taken (e.g., by k robots or 1 robot taking k
observations) at stage i can be represented by a pair of
vectors xi and zxi , which, respectively, denote k loca-
tions and their corresponding measurements.

Definition 2.1 (Posterior Data). The posterior
data di at stage i > 0 comprises
• the prior data d0 = 〈x0, zx0〉 available at stage 0, and
• a complete history of observations x1, zx1 , . . . ,xi, zxi

induced by k observations per stage over stages 1 to i.
Let x0:i and zx0:i denote vectors comprising the loca-
tion and measurement components of the data di (i.e.,
concatenations of x0,x1, . . . ,xi and zx0 , zx1 , . . . , zxi),
respectively. Let x0:i denote the vector comprising lo-
cations of domain X not observed in di, and zx0:i be
the vector comprising the corresponding measurements.
Let Zxi , Zxi , Zx0:i , Zx0:i be the random counterparts
of zxi , zxi , zx0:i , zx0:i respectively.

Definition 2.2 (Characterizing Adaptivity).
Suppose prior data d0 are available and n new locations
are to be explored. Then, an exploration strategy is
• adaptive if its policy to select each vector xi+1 of k

new locations depends only on the previously sampled
data di for i = 0, . . . , n/k − 1. This strategy thus
selects k observations per stage over n/k stages. When
k = 1, this strategy is strictly adaptive. Increasing k
makes it less adaptive;
• non-adaptive if its policy to select each new loca-

tion xi+1 for i = 0, . . . , n − 1 is independent of the
measurements zx1 , . . . , zxn . As a result, all n new lo-
cations x1, . . . , xn can be selected prior to exploration.
That is, this strategy selects all n observations in a
single stage.

Objective Function. The exploration objective is to
select observation paths that minimize the uncertainty
of mapping a hotspot field. To achieve this, we use the
entropy criterion to measure map uncertainty. Given
the posterior data dn, the posterior map entropy of do-
main X can be represented by the posterior entropy of
the unobserved locations x0:n:

H[Zx0:n |dn]
4
=−

∫
f(zx0:n |dn) log f(zx0:n |dn) dzx0:n . (1)



Value Function. If only the prior data d0 are avail-
able, an exploration strategy has to produce a policy for
selecting observation paths that minimize the expected
posterior map entropy instead. This policy must then
collect the optimal observations x1, zx1 , . . . ,xn, zxn dur-
ing exploration to form posterior data dn. The value
under an exploration policy π is defined to be the ex-
pected posterior map entropy (i.e., expectation of (1))
when starting in d0 and following π thereafter:
V π0 (d0)

4
= E{H[Zx0:n |dn]|d0, π}

=
∫
f(zx1:n |d0, π) H[Zx0:n |dn] dzx1:n .

(2)

The strategy of [8] has optimized a closely related mu-
tual information criterion that measures the expected
entropy reduction of unobserved locations x0:n by ob-
serving x1:n (i.e., H[Zx0:n |d0]−E{H[Zx0:n |dn]|d0}). This
is deficient for the exploration objective because mutual
information may be maximized by a choice of x1:n in-
ducing a very large prior entropy H[Zx0:n |d0] but not
necessarily the smallest expected posterior map entropy
E{H[Zx0:n |dn]|d0}. In the next two subsections, we will
describe how the adaptive and non-adaptive exploration
policies can be derived to minimize the expected poste-
rior map entropy (2).

Adaptive Exploration. The adaptive policy π for
directing a team of k robots is structured to collect
k observations per stage over a n-stage planning hori-
zon. So, each robot observes 1 location per stage and is
constrained to explore at most n new locations over n
stages. Formally, π

4
= 〈π0(d0), . . . , πn−1(dn−1)〉 where

πi : di → ai maps data di to a vector of robots’ ac-
tions ai ∈ A(xi) at stage i, and A(xi) is the joint ac-
tion space of the robots given their current locations xi.
We assume the transition function τ : xi × ai → xi+1

deterministically moves the robots to their next loca-
tions xi+1 at stage i + 1. Combining πi and τ gives
xi+1 ← τ(xi, πi(di)). We can observe from this assign-
ment that the sequential (i.e., stagewise) selection of k
new locations xi+1 to be included in the observation
paths depends only on the previously sampled data di
along the paths for stage i = 0, . . . , n−1. Hence, policy
π is adaptive (Def. 2.2).

Solving the adaptive exploration problem iMAXP(1)
means choosing π to minimize V π0 (d0) (2), which we call
the optimal adaptive policy π1 (i.e., V π

1

0 (d0) = minπ V π0 (d0)).
Plugging π1 into (2) gives the n-stage dynamic program-
ming equations:

V π
1

i (di) =
∫
f(zxi+1 |di, π1

i ) V π
1

i+1(di+1) dzxi+1

=
∫
f(zτ(xi,π1

i (di))|di) V
π1

i+1(di+1) dzτ(xi,π1
i (di))

= min
ai∈A(xi)

∫
f(zτ(xi,ai)|di) V

π1

i+1(di+1) dzτ(xi,ai)

V π
1

n (dn) = H[Zx0:n |dn] (3)

for stage i = 0, . . . , n − 1. The second equality fol-
lows from xi+1 ← τ(xi, π1

i (di)) above. Policy π1 =
〈π1

0(d0), . . . , π1
n−1(dn−1)〉 can be determined in a stage-

wise manner by
π1
i (di) = arg min

ai∈A(xi)

∫
f(zτ(xi,ai)|di) V

π1

i+1(di+1) dzτ(xi,ai) .

Note that the optimal action π1
0(d0) at stage 0 can be de-

termined prior to exploration using prior data d0. How-
ever, each action rule π1

i (di) at stage i = 1, . . . , n − 1
defines the optimal action to take in response to di, part
of which (i.e., x1, zx1 , . . . ,xi, zxi) are only observed dur-
ing exploration.

Non-Adaptive Exploration. The non-adaptive pol-
icy π is structured to collect, in 1 stage, n observations
per robot with a team of k robots. So, each robot is also
constrained to explore at most n new locations, but they
have to do this within 1 stage. Formally, π

4
= π0(d0)

where π0 : d0 → a0:n−1 maps prior data d0 to a vector
a0:n−1 of action components concatenating a sequence
of robots’ actions a0, . . . ,an−1. Combining π0 and τ
gives x1:n ← τ(x0:n−1, π0(d0)). We can observe from
this assignment that the selection of k×n new locations
x1, . . . ,xn to form the observation paths are indepen-
dent of the measurements zx1 , . . . , zxn obtained along
the paths during exploration. Hence, policy π is non-
adaptive (Def. 2.2) and all new locations can be selected
in a single stage prior to exploration.

Solving the non-adaptive exploration problem iMAXP(n)
involves choosing π to minimize V π0 (d0) (2), which we
call the optimal non-adaptive policy πn (i.e., V π

n

0 (d0) =
minπ V π0 (d0)). Plugging πn into (2) gives the 1-stage
equation:
V π

n

0 (d0) =
∫
f(zx1:n |d0, π

n
0 ) H[Zx0:n |dn] dzx1:n

=
∫
f(zτ(x0:n−1,πn0 (d0))|d0) H[Zx0:n |dn] dzτ(x0:n−1,πn0 (d0))

= min
a0:n−1

∫
f(zτ(x0:n−1,a0:n−1)|d0) H[Zx0:n |dn] dzτ(x0:n−1,a0:n−1).

(4)
The second equality follows from x1:n ← τ(x0:n−1, π

n
0 (d0))

above. Policy πn = πn0 (d0) can therefore be determined
in a single stage by πn0 (d0) =

arg min
a0:n−1

∫
f(zτ(x0:n−1,a0:n−1)|d0) H[Zx0:n |dn] dzτ(x0:n−1,a0:n−1) .

Note that the optimal sequence of robots’ actions πn0 (d0)
(i.e., optimal observation paths) can be determined prior
to exploration since the prior data d0 are available.

3. REWARD-MAXIMIZING DUAL FORMU-
LATIONS

In this section, we transform the cost-minimizing iMAXP(1)
(3) and iMAXP(n) (4) into reward-maximizing prob-
lems and show their equivalence. The reward-maximizing



iMAXP(n) turns out to be the well-known maximum
entropy sampling (MES) problem [7]:

Uπ
n

0 (d0) = max
a0:n−1

H[Zτ(x0:n−1,a0:n−1)|d0] , (5)

which is a 1-stage problem of selecting k × n new lo-
cations x1, . . . ,xn with maximum entropy to form the
observation paths. This dual ensues from the equiv-
alence result V π

n

0 (d0) = H[Zx0 |d0] − Uπn0 (d0) relating
cost-minimizing and reward-maximizing iMAXP(n)’s in
the non-adaptive exploration setting, which follows from
the entropy chain rule. This result says the original ob-
jective of minimizing expected posterior map entropy is
equivalent to that of discharging, from prior map en-
tropy, the largest entropy into the selected paths. So,
their optimal non-adaptive policies coincide.

Our reward-maximizing iMAXP(1) is a novel adap-
tive variant of MES. Unlike the cost-minimizing iMAXP(1),
it can be subject to convex analysis, which allows monotone-
bounding approximations to be developed (§5). It com-
prises the following n-stage dynamic programming equa-
tions:
Uπ

1

i (di) = max
ai∈A(xi)

H[Zτ(xi,ai)|di] +∫
f(zτ(xi,ai)|di) U

π1

i+1(di+1) dzτ(xi,ai)

Uπ
1

t (dt) = max
at∈A(xt)

H[Zτ(xt,at)|dt]
(6)

for stage i = 0, . . . , t−1 where t = n−1. Each stagewise
reward reflects the entropy of k new locations xi+1 to
be potentially selected into the paths. By maximizing
the sum of expected rewards over n stages in (6), the
reward-maximizing iMAXP(1) absorbs the largest ex-
pected entropy into the selected paths. In the adaptive
exploration setting, the cost-minimizing and reward-
maximizing iMAXP(1)’s are also equivalent (i.e., their
optimal adaptive policies coincide):

Theorem 3.1. V π
1

i (di) = H[Zx0:i |di] − Uπ
1

i (di) for
stage i = 0, . . . , n− 1.

In cost-minimizing iMAXP(1), the time complexity
of evaluating the cost (i.e., posterior map entropy (1))
depends on the domain size |X | for the environment
models in §4. By transforming into the dual, the time
complexity of evaluating each stagewise reward becomes
independent of |X | because it reflects only the uncer-
tainty of the new locations to be potentially selected
for observation. As a result, the runtime of the pro-
posed approximation algorithm in §5 does not depend
on the map resolution, which is clearly advantageous
in large-scale, high-resolution exploration and mapping.
In contrast, the reward-maximizing MAXP(1) [3] utiliz-
ing the mean-squared error criterion does not share this
computational advantage, as the time needed to evalu-
ate each stagewise reward still depends on |X |. We will
discuss this computational advantage further in §5.

4. LEARNING THE HOTSPOT FIELD MAP
Traditionally, a hotspot is defined as a location where

its measurement exceeds a pre-defined extreme. But,
hotspot locations do not usually occur in isolation but
in clusters. So, it is useful to characterize hotspots with
spatial properties. Accordingly, we define a hotspot
field to vary as a realization of a random field {Yx >
0}x∈X with a positively skewed sampling distribution
(e.g., Fig. 1b).
Gaussian Process. A widely-used random field to
model environmental phenomena is the GP [4, 8]. The
stationary covariance structure of GP is very sensitive to
strong positive skewness of field measurements and can
thus be destabilized by a few extreme ones [9]. So, if GP
is used to model a hotspot field directly, it may not map
well. To remedy this, a standard statistical practice is to
take the log of the measurements (i.e., Zx = log Yx) to
remove skewness and extremity, and use GP to map the
log-measurements. The entropy criterion (1) is therefore
optimized in the transformed log-scale.

We will apply iMAXP(1) to sampling GP and de-
termine if π1 exhibits adaptive and hotspot sampling
properties. Let {Zx}x∈X denote a GP, i.e., the joint
distribution over any finite subset of {Zx}x∈X is Gaus-
sian [6]. The GP can be completely specified by its

mean µZx
4
= E[Zx] and covariance σZxZu

4
= cov[Zx, Zu]

for x, u ∈ X . We adopt a common assumption that
the GP is second-order stationary, i.e., it has a constant
mean and a stationary covariance structure (i.e., σZxZu
is a function of x − u for all x, u ∈ X ). In this paper,
we assume that the mean and covariance structure of zx
are known. Given dn, the distribution of Zx is Gaussian
with posterior mean and covariance

µZx|dn = µZx + Σxx0:nΣ−1
x0:nx0:n

{zx0:n − µZx0:n
}> (7)

σZxZu|dn = σZxZu − Σxx0:nΣ−1
x0:nx0:n

Σx0:nu (8)

where, for the location components v, w of x0:n, µZx0:n

is a row vector with mean components µZv , Σxx0:n is a
row vector with covariance components σZxZv , Σx0:nu is
a column vector with covariance components σZvZu , and
Σx0:nx0:n is a covariance matrix with components σZvZw .
An important property of σZxZu|dn is its independence
of zx1:n .

Policy π1 can be reduced to be non-adaptive: observe
that each stagewise reward is independent of the mea-
surements

H[Zτ(xi,ai)|di] = log
√

(2πe)k |ΣZτ(xi,ai)|di | (9)

where ΣZτ(xi,ai)|di is a covariance matrix with compo-
nents σZxZu|di , x, u of τ(xi,ai), that are independent
of zx1:n . As a result, it follows from (6) that Uπ

1

i (di)
and π1

i (di) are independent of zx1:n for i = 0, . . . , n −



1. The expectations in iMAXP(1) (6) can then be
integrated out. As a result, iMAXP(1) for sampling
GP can be reduced to a 1-stage deterministic prob-
lem Uπ

1

0 (d0) =
∑n−1
i=0 max

ai
H[Zτ(xi,ai)|di] = max

a0,...,an−1∑n−1
i=0 H[Zτ(xi,ai)|di] = max

a0:n−1
H[Zτ(x0:n−1,a0:n−1)|d0] =

Uπ
n

0 (d0). This indicates the induced optimal values
from solving iMAXP(1) and iMAXP(n) are equal. So,
π1 offers no performance advantage over πn.

Based on the above analysis, the following sufficient
conditions, when met, guarantee that adaptivity has no
benefit under an assumed environmental model:

Theorem 4.1. If H[Zτ(xi,ai)|di] is independent of zx1:n

for stage i = 0, . . . , n− 1, iMAXP(1) and π1 can be re-
duced to be single-staged and non-adaptive, respectively.

For example, Theorem 4.1 also holds for the simple case
of an occupancy grid map modeling an obstacle-ridden
environment, which typically assumes zx for x ∈ X to be
independent. As a result, H[Zτ(xi,ai)|di] can be reduced
to a sum of prior entropies over the unobserved locations
τ(xi,ai), which are independent of zx1:n .

Policy π1 performs wide-area coverage only: to max-
imize stagewise rewards (9), π1 selects new locations
with large posterior variance for observation. If we as-
sume isotropic covariance structure (i.e., the covariance
σZxZu decreases monotonically with ||x − u||) [6], the
posterior data di provide the least amount of informa-
tion on unobserved locations that are far away from all
observed locations. As a result, the posterior variance
of unobserved locations in sparsely sampled regions are
still largely unreduced by the posterior data di from the
observed locations. Hence, by exploring the sparsely
sampled areas, a large expected entropy can be absorbed
into the selected observation paths. But, the field of
original measurements may not be mapped well be-
cause the under-sampled hotspots with extreme, highly-
varying measurements contribute considerably to map
entropy in the original scale, as discussed below.

Log-Gaussian Process. We will use another non-
parametric probabilistic model called a `GP to map the
original, rather than the log-, measurements directly,
and hence optimize the entropy criterion (1) in the orig-
inal scale. Let {Yx}x∈X denote a `GP: if Zx = log Yx,
{Zx}x∈X is a GP. A `GP can model a field with hotspots
that exhibit much higher spatial variability than the rest
of the field: Fig. 1 compares realizations of `GP and GP;
the GP realization results from taking the log of the `GP
measurements. This does not just dampen the extreme
measurements, but also dampens and amplifies the dif-
ference between extreme and small measurements re-
spectively, thus removing the positive skew. Compared
to the GP realization, the `GP one thus exhibits higher
spatial variability within hotspots but lower variability
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Figure 1: Hotspot field simulation: (a-b) `GP
and (c-d) GP.

in the rest of the field. This intuitively explains why
wide-area coverage suffices for GP but hotspot sampling
is further needed for `GP.

Policy π1 is adaptive: observe that each stagewise re-
ward depends on the previously sampled data di:

H[Yτ(xi,ai)|di] = log
√

(2πe)k|ΣZτ(xi,ai)|di |+µZτ(xi,ai)|di1
>

(10)
where µZτ(xi,ai)|di is a mean vector with components
µZx|di for x of τ(xi,ai). Since µZx|di depends on di
by (7), H[Yτ(xi,ai)|di] depends on di. Consequently, it
follows from (6) that Uπ

1

i (di) and π1
i (di) depend on di

for i = 0, . . . , n− 1. Hence, π1 is adaptive.
Policy π1 performs both hotspot sampling and wide-

area coverage: to maximize stagewise rewards (10), π1

selects new locations with large Gaussian posterior vari-
ance and mean for observation. So, it directs explo-
ration towards sparsely sampled areas and hotspots.

5. VALUE-FUNCTION APPROXIMATIONS
Strictly Adaptive Exploration. With a team of
k > 1 robots, π1 collects k > 1 observations per stage,
thus becoming partially adaptive. We will now derive
the optimal strictly adaptive policy (in particular, for
sampling `GP), which, among policies of all adaptiv-
ity, selects paths with the largest expected entropy. By
Def. 2.2, a strictly adaptive policy has to be structured
to collect only 1 observation per stage. To achieve strict
adaptivity, iMAXP(1) (6) can be revised as follows: (1)
The space A(xi) of simultaneous joint actions is reduced
to a constrained set A′(xi) of joint actions that allows
one robot to move to observe a new location and the
other robots stay put. This tradeoff for strict adaptiv-
ity allows A′(xi) to grow linearly, rather than exponen-
tially, with the number of robots; (2) We constrain each
robot to explore a path of at most n new adjacent lo-
cations. The horizon then spans k × n, rather than n,
stages. This reflects the additional time of exploration
incurred by strict adaptivity; (3) If ai ∈ A′(xi), the as-
signment xi+1 ← τ(xi,ai) moves one chosen robot to a
new location xi+1 while the other unselected robots stay
put at their current locations. Then, only one compo-
nent of xi is changed to xi+1 to form xi+1; the other



components of xi+1 are unchanged from xi. Hence,
there is only one unobserved component Yxi+1 in Yxi+1 ;
the other components of Yxi+1 are already observed in
the previous stages and can be found in di. As a result,
the probability distribution of Yxi+1 can be simplified
to a univariate Yxi+1 .

These revisions of iMAXP(1) yield the strictly adap-
tive exploration problem called iMAXP( 1

k ):

Ui(di) = max
ai∈A′(xi)

H[Yxi+1 |di] +∫
f(yxi+1 |di) Ui+1(di+1) dyxi+1

= max
ai∈A′(xi)

H[Yxi+1 |di] + E[Ui+1(di, xi+1, Yxi+1)|di]

Ut(dt) = max
at∈A′(xt)

H[Yxt+1 |dt]

(11)
for stage i = 0, . . . , t − 1 where t = kn − 1. Without
ambiguity, we omit the superscript π

1
k (i.e., the optimal

strictly adaptive policy) from the optimal value func-
tions above.

Since Yxi+1 is continuous, it entails infinite state tran-
sitions. So, unless the expectation E[Ui+1(di, xi+1, Yxi+1)|di]
can be evaluated in closed form, iMAXP( 1

k ) cannot
be solved exactly and needs to be approximated. For
ease of exposition, we will revert to using Zxi+1 (i.e.,
= log Yxi+1) for `GP in the rest of this paper.

Approximately Optimal Exploration. To approx-
imate iMAXP( 1

k ), we employ the proposed method in
[3] of first approximating the expectation from below
using generalized Jensen bound. To do this, we need
the following convexity result for iMAXP( 1

k ) (11):

Lemma 5.1. Ui(di) is convex in zx0:i for i = 0, . . . , t.

Let the support of Zxi+1 given di be partitioned into ν
disjoint intervals Z [j]

xi+1 for j = 1, . . . , ν. Then,
ν∑
j=1

p[j]
xi+1

Ui+1(di, xi+1, z
[j]
xi+1

) ≤ E[Ui+1(di, xi+1, Zxi+1)|di]

(12)
where

p[j]
xi+1

4
= P (zxi+1 ∈ Z [j]

xi+1
|di), z[j]

xi+1

4
= E[Zxi+1 |di,Z [j]

xi+1
] .

By increasing ν to refine the partition, the bound can
be improved. The approximate problem iMAXP( 1

k ) is
constructed by replacing the expectation in iMAXP( 1

k )
with the lower Jensen bound (12) to yield the opti-
mal value functions Uνi (di) for i = 0, . . . , t and optimal
policy π

1
k . The previous results of [3] guarantee that

Uν0(d0) is a pessimistic estimate of largest expected en-
tropy achieved by π

1
k , and π

1
k can achieve an expected

entropy not worse than Uν0(d0).

Real-Time Dynamic Programming. For our bound-
ing approximation scheme, the state size grows exponen-

tially with the number of stages. This is due to the na-
ture of dynamic programming problems (e.g., iMAXP( 1

k )),
which takes into account all possible states. To alleviate
this computational difficulty, we modify the anytime al-
gorithm URTDP in [3] based on iMAXP( 1

k ), which can
guarantee its policy performance in real time. It sim-
ulates greedy exploration paths through a large state
space, resulting in desirable properties of focused search
and good anytime behavior. The greedy exploration
is guided by computationally efficient, informed initial
heuristic bounds independent of state size.

URTDP(d0, t):
while U0(d0)− U0(d0) > α do

SIMULATED-PATH(d0, t)

SIMULATED-PATH(d0, t):
1: i← 0
2: while i < t do
3: a∗i ← arg maxai Qi(ai, di)
4: ∀j, Ξj ← p

[j]
x∗i+1
{U i+1(di, x∗i+1, z

[j]
x∗i+1

) −

U i+1(di, x∗i+1, z
[j]
x∗i+1

)}

5: z ← sample from distribution at points z[j]
x∗i+1

of
probability Ξj/

∑
k Ξk

6: di+1 ← di, x
∗
i+1, z

7: i← i+ 1
8: U i(di)← maxai H[Yxi+1 |di], U i(di)← U i(di)
9: while i > 0 do

10: i← i− 1
11: U i(di) ← maxai Qi(ai, di)
12: U i(di) ← maxai Qi(ai, di)

Algorithm 1: URTDP (α is user-specified bound).

In URTDP (Algorithm 1), each simulated path in-
volves an alternating selection of actions and their cor-
responding outcomes till the last stage. Each action is
selected based on the upper bound (line 3). For each
encountered state, the algorithm maintains both lower
and upper bounds, which are used to derive the uncer-
tainty of its corresponding optimal value function. It
exploits them to guide future searches in an informed
manner; it explores the next state/outcome with the
greatest amount of uncertainty (lines 4-5). Then, the
algorithm backtracks up the path to update the upper
heuristic bounds using maxai Qi(ai, di) (line 11) where

Qi(ai, di)
4
= H[Yxi+1 |di] +

ν∑
j=1

p[j]
xi+1

U i+1(di, xi+1, z
[j]
xi+1

)

and the lower bounds via maxai Qi(ai, di) (line 12) where

Q
i
(ai, di)

4
= H[Yxi+1 |di]+

ν∑
j=1

p[j]
xi+1

U i+1(di, xi+1, z
[j]
xi+1

) .
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Figure 2: (a) chl-a field with prediction error
maps for (b) strictly adaptive π1/k and (c) non-
adaptive πn: 20 units (white circles) are ran-
domly selected as prior data. The robots start
at locations marked by ‘×’s. The black and gray
robot paths are produced by π1/k and πn respec-
tively. (d-f) K field with error maps for π1/k and
πn.

When an exploration policy is requested, we provide the
greedy policy induced by the lower bound. The policy
performance has a similar guarantee to that of π

1
k .

We will show that the time complexity of SIMULATED-
PATH(d0, t) is independent of map resolution but the
same procedure in [3] is not. It is also less sensitive to
increasing robot team size. Assuming no prior data and
|A′(xi)| = ∆, the time needed to evaluate the stagewise
rewards H[Yxi+1 |di] for all ∆ new locations xi+1 (i.e.,
using Cholesky factorization) is O(t3 + ∆t2), which is
independent of |X | and results in O(t(t3 + ∆(t2 + ν)))
time to run SIMULATED-PATH(d0, t). In contrast, the
time needed to evaluate the stagewise rewards in [3] is
O(t3 + ∆(t2 + |X |t) + |X |t2), which depends on |X | and
entails O(t(t3 + ∆(t2 + |X |t + ν) + |X |t2)) time to run
the same procedure. When the joint action set size ∆
increases with larger robot team size, the time to run
the procedure in [3] increases faster than that of ours
due to the gradient factor |X |t involving large domain
size. In §6, we will report the time taken to run this
procedure empirically.

6. EXPERIMENTS AND DISCUSSION
This section evaluates, empirically, approximately op-

timal strictly adaptive policy π
1
k on 2 real-world datasets

exhibiting positive skew: (a) June 2006 plankton den-
sity data (Fig. 2a) of Chesapeake Bay bounded within
lat. 38.481 − 38.591N and lon. 76.487 − 76.335W, and
(b) potassium distribution data (Fig. 2d) of Broom’s
Barn farm spanning 520m by 440m. Each region is dis-
cretized into a 14 × 12 grid of sampling units. Each

unit x is, respectively, associated with (a) plankton den-
sity yx (chl-a) in mg m−3, and (b) potassium level yx
(K) in mg l−1. Each region comprises, respectively, (a)
|X | = 148 and (b) |X | = 156 such units. Using a team
of 2 robots, each robot is tasked to explore 9 adjacent
units in its path including its starting unit. If only 1
robot is used, it is placed, respectively, in (a) top and
(b) bottom starting unit, and samples all 18 units. Each
robot’s actions are restricted to move to the front, left,
or right unit. We use the data of 20 randomly selected
units to learn the hyperparameters (i.e., mean and co-
variance structure) of GP and `GP through maximum
likelihood estimation [6]. So, prior data d0 comprise the
randomly selected and robot starting units.

The performance of π
1
k is compared to the policies

produced by state-of-the-art exploration strategies, namely,
the greedy and optimal non-adaptive policies. The greedy
strategies are applied to sampling GP and `GP; a greedy
policy repeatedly chooses a reward-maximizing action
(i.e., by repeatedly solving iMAXP( 1

k ) with t = 0 in
(11)) to form the paths. The optimal non-adaptive pol-
icy πn for GP is produced by solving iMAXP(n) (5).
Although iMAXP( 1

k ) and iMAXP(n) can be solved ex-
actly, their state size grows exponentially with the num-
ber of stages. To alleviate this computational difficulty,
we use anytime heuristic search algorithms URTDP (Al-
gorithm 1) and Learning Real-Time A∗ [2] to, respec-
tively, solve iMAXP( 1

k ) and iMAXP(n) approximately.
Two performance metrics are used to evaluate the

above policies: (a) Posterior map entropy (ENT) H[Yx0:t |dt]
of the unobserved locations x0:t is measured in the origi-
nal scale where t = 16 (17) for the case of 2 (1) robots. A
smaller ENT implies lower map uncertainty; (b) Mean-
squared relative error (ERR) |X |−1

∑
x∈X {(yx−µYx|dt)/µ̄}2

measures the posterior map error by using the best un-
biased predictor µYx|dt (i.e., `GP posterior mean) [3] of
the measurement yx to predict the hotspot field where
µ̄ = |X |−1

∑
x∈X yx. Although this criterion is not the

one being optimized, it allows the use of ground truth
measurements to evaluate if the field is being mapped
accurately. A smaller ERR implies lower map error.

Table 1 shows the results of various policies with dif-
ferent assumed models and robot team sizes for chl-a
and K fields. For iMAXP( 1

k ) and iMAXP(n), the re-
sults are obtained using the policies provided by the any-
time algorithms after running 120000 simulated paths.

Plankton density data. The results show policies for
`GP achieve lower ENT and ERR than that of GP. The
strictly adaptive π

1
k achieves lowest ENT and ERR as

compared to non-adaptive and greedy policies. From
Fig. 2a, π

1
k moves the robots to sample the hotspots

showing higher spatial variability whereas πn moves them
to sparsely sampled areas. Figs. 2b and 2c show, re-



spectively, the prediction error maps resulting from π
1
k

and πn; the prediction error at each location x is mea-
sured using |yx − µYx|dt |/µ̄. Locations with large er-
rors are mostly concentrated in the left region where
the field is highly-varying and contains higher measure-
ments. Compared to π

1
k , πn incurs large errors at more

locations in or close to hotspots, thus resulting in higher
ERR.

We also compare the time needed to run the first
10000 SIMULATED-PATH(d0, t)’s of our URTDP al-
gorithm to that of [3], which are 115s and 10340s re-
spectively for 2 robots (i.e., 90× faster). They, respec-
tively, take 66s and 2835s for 1 robot (i.e., 43× faster).
So, scaling to 2 robots incurs 1.73× and 3.65× more
time for the respective algorithms. Policy π

1
k can al-

ready achieve the performance reported in Table 1 for
2 robots, and ENT of 389.23 and ERR of 0.231 for 1
robot. In contrast, the policy of [3] only improves to
ENT of 377.82 (391.85) and ERR of 0.233 (0.252) for 2
(1) robots, which are slightly worse off.

Potassium distribution data. The results show π
1
k

achieves lowest ENT and ERR. From Fig. 2d, π
1
k again

moves the robots to sample the hotspots showing higher
spatial variability whereas πn moves them to sparsely
sampled areas. Compared to π

1
k , πn incurs large errors

at a greater number of locations in or close to hotspots
as shown in Figs. 2e and 2f, thus resulting in higher
ERR.

To run 10000 SIMULATED-PATH(d0, t)’s, our URTDP
algorithm is 84× (48×) faster than that of [3] for 2 (1)
robots. Scaling to 2 robots incurs 1.93× and 3.37×
more time for the respective algorithms. Policy π

1
k

can already achieve the performance reported in Ta-
ble 1 for 1 and 2 robots. In contrast, the policy of [3]
achieves worse ENT of 67.132 (55.015) for 2 (1) robots.
It achieves worse ERR of 0.032 for 2 robots but better
ERR of 0.025 for 1 robot.

To summarize, the above results show that π
1
k can

learn the highest-quality hotspot field map (i.e., lowest
ENT and ERR) among greedy and non-adaptive strate-
gies. After evaluating whether MAXP vs. iMAXP plan-
ners are time-efficient for real-time deployment, we ob-
serve π

1
k can achieve mapping performance comparable

to the policy of [3] using significantly less time, and the
incurred planning time is also less sensitive to larger
robot team size.

7. CONCLUSION
This paper describes an information-theoretic adap-

tive path planner, iMAXP, for actively exploring a hotspot
field map. Like MAXP, it performs both hotspot sam-
pling and wide-area coverage to minimize map uncer-
tainty (§4). In contrast to MAXP, the time complexity

Table 1: Performance comparison of exploration
policies for (a) chl-a and (b) K fields: 1R (2R)
denotes 1 (2) robots.

(a) chl-a field ENT ERR
Exploration policy Model 1R 2R 1R 2R

Strictly adaptive π1/k `GP 381.37 376.19 0.183 0.232
Greedy `GP 382.97 383.55 0.292 0.258
Non-adaptive πn GP 390.62 399.63 0.415 0.320
Greedy GP 392.35 392.51 0.300 0.336

(b) K field ENT ERR
Exploration policy Model 1R 2R 1R 2R

Strictly adaptive π1/k `GP 47.330 48.287 0.029 0.021
Greedy `GP 61.080 56.181 0.046 0.030
Non-adaptive πn GP 67.084 59.318 0.043 0.036
Greedy GP 58.704 64.186 0.043 0.033

of solving (reward-maximizing) iMAXP approximately
is independent of map resolution, which is clearly ad-
vantageous in large-scale exploration and mapping. It
is also less sensitive to increasing robot team size. For
our future work, we will test the iMAXP-based planner
on the robotic sensor boats in our Telesupervised Adap-
tive Ocean Sensor Fleet (TAOSF) project for mapping
harmful algal blooms.
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