Fast and Feasible Deliberative Motion Planner for
Dynamic Environments

Mihail Pivtoraiko and Alonzo Kelly

Abstract— We present an approach to the problem of differ-
entially constrained mobile robot motion planning in arbitrary
time-varying cost fields. We construct a special search space
which is ideally suited to the requirements of dynamic environ-
ments including a) feasible motion plans that satisfy differential
constraints, b) efficient plan repair at high update rates, and
¢) deliberative goal-directed behavior on scales well beyond
the effective range of perception sensors. The search space
contains edges which adapt to the state sampling resolution yet
aquire states exactly in order to permit the use of the dynamic
programming principle without introducing infeasibility. It is a
symmetric lattice based on a repeating unit of controls which
permits off-line computation of the planner heuristic, motion
simulation, and the swept volumes associated with each motion.
For added planning efficiency, the search space features fine
resolution near the vehicle and reduced resolution far away.
Furthermore, its topology is updated in real-time as the vehicle
moves in such a way that the underlying motion planner
processes changing topology as an equivalent change in the
dynamic environment. The planner was originally developed
to cope with the reduced computation available on the Mars
rovers. Experimental results with research prototype rovers
demonstrate that the planner allows us to exploit the entire
envelope of vehicle maneuverability in rough terrain, while
featuring real-time performance.

I. INTRODUCTION

Capable motion planners are important for enabling field
robots to perform reliably, efficiently and intelligently. De-
spite decades of significant research effort, today the ma-
jority of field robots still exhibit various failure modes
due to motion planning deficiencies. These failure modes
range from computational inefficiencies to frequent resort
to operator involvement when the autonomous system takes
unnecessary risks or fails to make adequate progress. Based
on our field robotics experience, we have developed a motion
planning method that addresses many drawbacks of leading
approaches. It is a deterministic, sampling-based method. It
features a sampling of robot state space that lends itself
well to utilizing standard graph search techniques, while
enabling an array of high-performance planning capabilities.
The proposed motion planning method was implemented and
successfully validated in field experiments at the California
Institute of Technology, Jet Propulsion Laboratory (JPL;
Figure 1).

While the planner was originally developed for the Mars
rovers, it is equally relevant to dynamic environments. In

This research was conducted at the Robotics Institute of Carnegie Mellon
University, sponsored by NASA/JPL as part of the Mars Technology
Program.

The authors are with the Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA 15213, USA. {mihail , alonzo}@ cs.cmu.edu

fact, a variant of this planner was used in CMU’s winning
entry in the DARPA Urban Challenge [1]. Motion planners
intended for use in dynamic environments must be:

o Fast, in order to replan on-the-move when changes in
the environment are detected,

o Feasible (meaning satisfying differential constraints) at
least in the near field, so that the predicted path to avoid
dynamic obstacles is the one actually executed by the
vehicle,

« Deliberative, so that effective goal-directed behavior can
be maintained despite the path perturbations caused by
reacting to changes in the environment such as the
motions of dynamic obstacles and the appearance and
disappearance of local minima.

In order to satisfy the differential constraints, we propose
to encode them in the search space. This allows to shift the
constraint satisfaction to the search space design process,
which can be accomplished a priori and off-line. In partic-
ular, we enforce that the edges of the graph that represents
the planning problem represent the feasible motions that can
be directly executed by the robot. In this manner, the on-line
planner can utilize unconstrained, standard search algorithm
to find a solution to the motion planning problem, a path in
the representation graph.

For most systems featuring differential constraints, rela-
tively high dimensionality of the state space may be required.
Deterministic search in this setting can be computationally
costly. Planning in complex outdoor environmens can be
especially computationally expensive due to any combination
of scale, dynamics, and dense obstacles.

Fig. 1. FIDO rover navigates autonomously using the proposed motion
planner among dense obstacles in the Mars Yard at the California Institute
of Technology, Jet Propulsion Laboratory. The planner manages frequent
updates of the limited perception system by replanning continuously at
approximately 10Hz. Computed planner motions are smooth in curvature
and executable by the robot verbatim.

This paper proposes a two-fold solution to this difficulty.
First, the search space is designed to be compatible with
replanning algorithms [2], [3] that can repair the motion
plan efficiently when the representation of the environment
changes. This is particularly important in robotics applica-
tions in partially known or dynamic environments, where
changes in environment information are frequent. The robot
must be able to recompute its motion plan quickly. The
second manner of alleviating computational complexity of
planning is through modification of the fidelity of represen-
tation of the motion planning problem. The proposed search
space consists of one or more arbitrary regions of different
fidelities. Lower fidelity of representation results in faster
search, but higher fidelity results in better quality solutions.
The approach is closely related to multi-resolution planning
[4], but we use the term graduated fidelity to emphasize that
the quality of representation is expressed not only as the
resolution of state discretization, but also as the connectivity
of edges between the vertices in the state lattice. Each region
of the search space can be assigned a fidelity arbitrarily, yet
practically this choice is guided by the region’s relevance for
the planning problem and the availability of the environment
information. In particular, it is often beneficial to utilize a
high fidelity of representation in the immediate vicinity of
the moving robot. Our method meets that need by allowing
the regions of different fidelity to move or change shape
arbitrarily.

The contribution of this work is a representation of motion
planning problems under differential constraints that has a
number of important advantages:

« Satisfaction of differential constraints is accomplished

off-line, to allow fast on-line perfomance,

o Compatibility with standard replanning algorithms al-
lows quick robot reaction to changing environment
information,

« Fast planning is enabled through managing the fidelity
of representation.

Our concentration on achieving a fast deterministic
constraint-compliant planner was originally motivated by the
spartan processing available on the Mars rovers. However,
our results are equally applicable to terrestrial problems
where high planner update rates can be used to respond
effectively to changes in dynamic environments as they are
predicted or discovered by perception.

In the next section, we relate the proposed approach
to prior work. In the following three sections, we further
describe each of its principal benefits, as listed above. We
will conclude this presentation with experimental results.

II. PRIOR WORK

A planner based on A* search in the state lattice was
successfully utilized to guide a car-like robot in challenging
natural environments [5]. The graduated fidelity extension
to the state lattice is related to the general area of multi-
resolution planning: [6], [7], [8] and others. One difference
our method has with most multi-resolution predecessors
is that we allow regions of different resolution to move

over time, while the search space remains compatible with
systematic search. The idea of dividing the search space into
regions is related to [9], but our method allows replanning
in this search space.

Satisfaction of differential constraints also has received
a considerable amount of attention in motion planning
research. Powerful probabilistic techniques have been de-
veloped [10] [11], however our method is deterministic
and under appropriate conditions can offer a number of
guarantees provided by standard search algorithms, including
optimality and resolution-completeness. A number of other
approaches utilize discretization in control space to manage
the complexity of the planning problem [12]. However, there
are important advantages to using discretization in the state
space instead. In particular, it simplifies reducing dispersion
of sampling, in turn allowing a more uniform distribution of
samples in the state space [4]. This is beneficial to exploring
the state space more efficiently, as the search attempts to find
a path from initial to final state. Unfortunately, reducing state
space dispersion through control space sampling is difficult.
It was shown in [16] that through careful discretization in
control space, it is possible to force the resulting reachability
graph of a large class of nonholonomic systems to be a
lattice, however this is usually difficult to achieve. By using
a boundary value problem solver [14], we are able to choose
a convenient discretization in the state space, one that makes
the search more efficient, while maintaining the satisfaction
of differential constraints.

ITII. FEASIBLE MOTIONS

Discrete representation of robot state is a well-established
method of reducing the computational complexity of motion
planning. This reduction comes at the expense of sacrificing
feasibility and optimality, the notions denoting the planner’s
capacity to compute a motion that satisfies given constraints,
and to minimize the cost of the motion, respectively. In
computing motions, we seek to satisfy two types of con-
straints: features of the environment that limit the robot’s
motion (obstacles) and the limitation of the robot’s mobility
due to the constrained dynamics of its motion (differential
constraints). Motions that satisfy both types of constraints
will be referred to as feasible motions.

The proposed method is based on a particular discretiza-
tion of robot state space, the state lattice. It encodes a graph,
whose vertices are a discretized set of all reachable states of
the system, and whose edges are feasible motions, controls,
which connect these states exactly. The motions encoded in
the edges of the state lattice form a repeating unit that can
be copied to every vertex, while preserving the property that
each edge joins neighboring vertices exactly. This property of
the search space will be denoted regularity. The canonical
set of repeating edges will be called the control set. The
number of edges in the control set is exactly the branching
factor, out-degree, of each vertex in the reachability graph.

A. Sampling State and Motions

Beneficial state sampling policies include regular lattice
sampling, where a larger volume of the state space is covered
with fewer samples, while minimizing the dispersion or
discrepancy [4]. It is natural to extend the concept of regular
sampling from individual values of state to sequences of
states (i.e. paths). As for state space, the function continuum
of feasible motions can also be sampled to make compu-
tation tractable. The effective lattice state space sampling,
developed in this work, induces a related effective sampling
of motions.

Suppose discrete states are arranged in a regular pattern.
Besides sampling efficiency benefits, an important advantage
of regular sampling of state space is (quantized) translational
invariance. Any motion which joins two given states will
also join all other pairs of identically arranged states. By
extension, the same set of controls emanating from a given
state can be applied at every other instance of the repeat-
ing unit. Therefore, in this regular lattice arrangement, the
information encoding the connectivity of the search space
(ignoring obstacles) can be pre-computed, and it can be
stored compactly in terms of a canonical set of repeated
primitive motions, the control set. Two properties of lattice
search spaces that are necessary conditions for satisfying
differential constraints are:

1) Enforcing continuity of relevant robot state variables
across the vertices,

2) Ensuring that the edges between the vertices of the
search space represent feasible motions.

The first condition can be satisfied by adding the relevant
dimensions to the search space, in order to represent the
continuity of state variables explicitly. For example, if a
heading dimension is added to the a 2D (x,y) state space,
then (x,y, North) and (x,y, Fast) become distinct states.
In order to satisfy the second condition, we require a method
of discretizing the robot control space to force its reachability
tree to be a regular lattice in state space. We identify two
methods of achieving this:

e Forward — for certain systems, there are methods of
sampling the control space that result in a state lattice
(161, [15],

e Inverse — a desired state sampling can be chosen first,
and boundary value problem solvers can be used to find
the feasible motions (steering functions) that drive the
system from one state value to another, e.g. [14], [17].

We prefer the inverse approach because it permits the
choice of state discretization to be driven by the application —
including the vehicle and the environment. Smaller state
spacing is desired for denser obstacles or smaller vehicles.
Note that, in the state lattice, if state separations are small
relative to the distance required to change vehicle heading
by the distance to the next heading sample, the edges in such
a structure can span many state separations.

Fortunately, the work of constructing the state lattice can
be performed off-line, without affecting planner runtime.
Once it is constructed and represented as a directed graph

(compactly specified with a control set), the state lattice
can be searched with standard algorithms. An example of
a simplified state lattice is shown in Figure 2.

Fig. 2. An Example State Lattice. A repeated and regular pattern of vertices
and edges comprises the state lattice. The inset shows the control set, the
motions leading to some nearby neighbors of a vertex. The overall motion
plan (thick black curve) is simply a sequence of such edges. Reverse motions
were omitted for clarity.

Algorithm 1 is a simple inverse method for generating
a control set. Referred to as the Shortest Edges algorithm,
it may serve as a departing point to evaluate our proposed
approach to search space design. To better illustrate the
algorithm, in this section we assume a 4D state lattice that
consists of 2D translation, heading and curvature. Suppose
that © and K are user-defined subsets of discrete values
of heading and curvature in the state lattice, respectively. By
exploiting rotational symmetries in the state lattice, these sets
can be desired strict subsets of all possible discrete values
of these states variables. The outer for-loop selects the per-
mutations of discrete values of initial and final heading and
curvature. The inner for-loop cycles through all discrete value
pairs of and y, such that the maximum norm! L., between
the origin O and (xy, ys) grows from 1 to infinity. For each
value of L, if the trajectory generator finds a solution to the
boundary value problem, a feasible trajectory u;, we add it to
the control set. At this point we break from the inner for-loop
and proceed with another choice of terminal heading and
curvature values. The algorithm terminates when a trajectory
is generated for every permutation of heading and curvature
values.

'L oo norm of a vector x = [x1, %2, ..., Tp] is max; |z;|

Input: State discretization in the state lattice: position,
discrete values of heading (©) and curvature (K)
Output: A control set,
Ew = @;
foreach 0;,0; € © and k;,x; € K do
foreach x5, ys s.t. Loo(O, [z, yf]) =[1...00) do
u; = trajectory([0, 0, 6;, ki, [xf,ys,0F, Kf]);
if u; # 0 then
Ey — u;
break;
end
end
end
Algorithm 1: A simple method of generating a control set.

B. Heuristic Cost Estimate

Heuristic estimates of the remaining cost in a partial plan
are well-known to have the potential to focus the search
enough to eliminate unnecessary computation while preserv-
ing the quality of the solution. The Euclidean distance metric
is among the simplest options for a heuristic estimate of path
length in the state lattice. This function is computationally
efficient, and it satisfies the admissibility requirement of
A* [18]. However, for differentially constrained planning,
it is not a well-informed heuristic and, in the case of short
paths, it can vastly underestimate the true path length, result-
ing in inefficient search. A heuristic for a vehicle with limited
turning radius moving in the plane could be derived from
the methods of Reeds and Shepp [19]. However, the Reeds-
Shepp paths are discontinuous in curvature (i.e. infeasible
to execute without stopping), and they do not account for
discretization, so even these paths are underestimates. Given
ample off-line computational resources, a straight-forward
and effective way to predict path lengths is to pre-compute
and store the actual cost heuristics that a planner will need,
using the planner itself. Such a Heuristic Look-Up Table
(HLUT) can be implemented as a database of real-valued
query costs. Under this approach, the computation of the
heuristic becomes a simple table dereference [20], [21].

IV. REACTIVE REPLANNING

The state lattice search space presented above is compat-
ible with most dynamic programming algorithms. In order
to achieve efficient implementation of efficient replanning
algorithms (variants of D*), a number of implementation
details are presented in this section.

A. Computing Edge Costs

The regularity of the state lattice allows an efficient opti-
mization in evaluation of the cost of graph edges during plan-
ning with continuous cost maps, which is roughly equivalent
in computational terms to pre-computing C' space obstacles.
Recall that, in continuous cost field environment models, the
cost of a configuration is computed as a cost weighted swept
volume (i.e. area in 2D workspace cost fields). That is, the
sum of the workspace cell costs occupied by the vehicle
volume. We denote the set of map cells occupied by the
vehicle volume during execution of a particular motion as the

swath of this motion. Since lattice edges repeat regularly, so
do their associated swaths. Thus, it is possible to pre-compute
the swaths for all elements of the control set. When costs
change in the workspace cost map, the only computation
required to update the cost of an edge (motion) is to add the
costs of the cells in the swaths.

The top of Figure 3 depicts a motion of a tractor-trailer
vehicle, along with the swath of this motion. In order to
evaluate the cost of a motion, the costs of map cells in the
swath (reproduced on the bottom of Figure 3) are simply
summed up — an operation typically much more efficient than
simulating the motion of the system. The simpler alternative
of low-pass filtering the workspace cost map by a circular
vehicle approximation will be significantly less accurate for
systems with elongated shape. The calculation proceeds off-
line for a state lattice and we care to satisfy differential
constraints, so we use the correct vehicle shape and highly
accurate simulation.

) 4

Fig. 3. An example of a pre-computed swath of a path for a tractor-trailer
vehicle. Bottom: the swath allows computing the cost of a motion w.r.t. a
cost map, without explicitly considering the motion itself (top).

B. Processing Edge Cost Updates in Replanning

D* variants were originally applied to grids [2], [3]. The
earliest work on D* used the same resolution for both the
cost map and the search space and implicit “edges” which
connected states only to their nearest 8 neighbors. In this
case, the mapping from a modified map cell to the affected
search space edges and vertices is trivial. For a state lattice
whose edges may span several map cells, the above historical
simplifications of these issues are no longer feasible.

Suppose the replanner uses a priority queue to ensure
optimality of the solution. For every change in the cost of the
directed edge from the vertex x; to x;, ¢(x;, ¢;), a replanning
algorithm requires recomputing the cost of x; and potentially
inserting it into the priority queue. Assuming a map cell
m;; € N? changes cost, the planner needs to know the set
of vertices V. that potentially need to be re-inserted into the
priority queue with new priority. Thus, the planner requires
a mapping Y : N2 — V.

To develop this mapping, we use the concept of swath,
introduced in Section IV-A. More formally, we consider the

swath a set C; C N2 of cost map cells that are occupied
by the robot as it executes a motion. The cost of an edge
that represents this motion is directly dependent on the costs
of map cells in Cs. Recall that once we pre-compute the
control set of a regular lattice, it is possible to pre-compute
the swaths of the edges in it.

Since the mapping between edges and their terminal
vertices is trivial, it is easier first to develop the mapping
Y’ : N2 — E,, where E, is the set of edges that are affected
by m;; (i.e. the set of edges whose swaths pass through the
cell). Determining Y’ may still appear as a formidable task,
given the high density of edges in the multi-dimensional state
lattice. However, we again exploit the regularity of the lattice
to simplify the problem. If we have Y : O — E,., where
O is the map origin, then Y’ = Y + n,Vn € N2, In other
words, the set of edges, affected by m;; = O is identical
for any other cell, up to the translation coordinates. Further,
recall that the swath Cs of each edge in E. is known. In
principle, E. contains all edges u,, such that m;; belongs
to Cs of u.. Hence, the mapping Y is exactly the set
of edges, whose swaths pass through the 2D origin. The
Figure 4 illustrates this idea. Like the control set and path
swaths, the resulting set of edges can be pre-computed due
to the regularity of the state lattice. An example of the V.
for the implementation described in Section VI is shown in
the Figure 5.

7 ! N HEr
A] NJ 1 \\%J
mi !)
WP | !
\V | "]
' |
LJ 0

Fig. 4. The first several steps of pre-computing the list of graph vertices
that are affected by a change in cost of a map cell. In a), a single element
of a control set is chosen for this example. It emanates from the origin of
the state lattice, thick square, and connects it to another graph vertex, thick
circle. Grey cells are the swath of this motion. Suppose a map cell, located at
the origin of the state lattice (thick square), changes cost. We attempt to find
all translational versions of the chosen motion, whose swaths are affected by
the changed map cell. In the subfigures b) — e), we iterate through several
such translational versions of the motion. The resulting (edge end-point)
vertices that are considered for insertion to the priority queue are shown in
subfigure f). Typically, many more such vertices are processed for each edge
(as suggested by ellipsis in subfigure f). The process repeats for all edges
in the control set. Pre-computation allows eliminating any redundancy by
generating a unique list of such vertices.

10 T T *

* ok * * % ¥

8 . ot

RS ¥ * x * EE ¥ * o *

6 *
* ¥ * oK K ¥ ok kK *

s e e e e o ek S y
* kK * oK K K ¥ ok K K * %

2r 1

* * * % % * EE * %
> 0 + 8
* * * % % x EE *

2 * * .
¥ ok * * ok K % ¥k ok K K E % ¥

4 oo oK oo ek e
* ok K ¥k ok ¥ ok k¥ ¥ ok ¥

s * * o * .

RS * % % % ¥ ok ok * * ok K

8l . - 1

* ok * * ox %
i

Fig. 5. A 2D projection of an example of V., the set of lattice states that
are to be re-considered for every updated map cell. The units in the plot are
state lattice cells. For the purposes of exposition, here the size of map cells
is set to be equal to the size of state lattice (z,y) cells. For each map cell,
m;j, that changes cost, we place the set of vertices above in this Figure
onto m;; (i.e. the origin of the set of vertices, denoted with coordinates
(0,0), is identified with m;;). Next, we iterate through the depicted list
of the vertices and place each one on the priority queue, if it was indeed
affected by the cost change of m;;.

V. FAST OPERATION

By virtue of the state lattice’s general representation as
a directed graph, it can be naturally extended with multi-
resolution enhancements. Significant planning runtime im-
provement was achieved in the literature via a judicious use
of the quality of representation of the planning problem,
e.g. [22], [7], [8] among others. In field robotics, it is fre-
quently beneficial to utilize a high fidelity of representation in
the immediate vicinity of the robot (perhaps within its sensor
range), and reduce the fidelity in the areas that are either
less known or less relevant for the planning problem. Lower
fidelity of representation is designed to increase search speed,
while higher fidelity provides better quality solutions. Since
grids have traditionally been utilized in replanning, the notion
of varying the quality of problem representation has been
identified with varying the resolution of the grid. However,
our method varies the discretization of both the state and
motions. We refer to managing the fidelity of state lattice
representation as graduated fidelity.

In designing the connectivity of search space regions of
different fidelities, care must be taken to ensure that all
regions consist of motions that are feasible with respect
to the robot’s mobility model. If this rule is violated,
mission failures become possible due to the differences in
the representation of vehicle mobility. Figure 6 illustrates
this situation using a simple example. Suppose a search
space is used in which a high fidelity region of finite size
surrounds and moves with the vehicle, and a disjoint lower
fidelity grid is used beyond that. Suppose the A* algorithm
is used to plan paths in this hybrid graph. A car-like robot
attempts to travel to a goal on the other side of a collection
of obstacles that forms a narrow corridor. As long as the
low-fidelity region includes the corridor (black line), the
planner will find a solution in the graph. However, the 90

degree turn in the path is actually infeasible, since the car-
like robot cannot turn in place. As the vehicle moves, the
high fidelity region will eventually include the turn in the
corridor and the planner will then fail to find a solution. The
only viable alternative will be to back up, thereby moving
the corridor to the low fidelity region once again. Since the
original state of the scenario has now been achieved, it is
easy to see that this behavior will repeat forever. In order
to avoid such difficulties, it is necessary to ascertain that all
levels of fidelity include feasible motions. In particular, the
connectivity of low fidelity regions must be a subset of that
of the higher fidelity regions.

Fig. 6. A simple example of a motion planning problem, where a car-like

robot that attempts to follow the infeasible path (black line) experiences a
failure.

Goal

To implement graduated fidelity planning, the above de-
sign requires only a minor modification. Once the state lattice
graph is separated into subgraphs of different fidelities as
desired, each subgraph uses its own control set to achieve
the chosen fidelity. Each control set defines the successors
of a vertex being expanded during search. Care must be
taken to design the control sets such that they adequately
span the boundaries between the subgraphs. Note that control
set design is the sole procedure needed to enable graduated
fidelity. Replanning algorithms require no changes and will
achieve the desired effects automatically.

It can be useful to enable a high fidelity subgraph to
move along with the mobile robot as described in the
example above. As shown in [23], such flexibility can be
accomplished by undoing the effects of previous expansions
of the vertices on the perimeter of the moving subgraph. Ac-
complishing this once again requires no change to the actual
replanning algorithm. The change of graph connectivity that
occurs between replans is presented to the planning algorithm
as a change in cost of the affected graph vertices. Such
topology based cost changes appear to replanning algorithms
to be identical in nature to perception based cost changes.
If the vertex expansion step is considered to be part of an
external search space module, the planner actually cannot
tell that the graph topology is changing.

More generally, it is straight-forward to extend the concept
of graduated fidelity to allow multiple subgraphs of different
fidelity to move or change shape between replans. Such
flexibility results in a dynamic search space, which comple-
ments dynamic replanning algorithms to improve planning
efficiency. Thus, the graduated fidelity extension of state
lattice planning is conceptually simple and straight-forward
to implement, and it can be designed to result in significant
savings in runtime and memory usage in replanning.

VI. EXPERIMENTAL RESULTS

A differentially constrained motion planner, lattice plan-
ner, was implemented based on the state lattice and tested
in a variety of scenarios, including in simulation and on real
robots. The planner was ported to the VxWorks™hard real-
time operating system that controls the JPL rover FIDO that
was used in field experients. Figure 7 shows the results of a
typical experiment with the FIDO running the lattice planner
on-board to navigate autonomously amid dense rocks. In this
experiment, the rover was given a command to drive to a goal
15 meters directly in front of it, as shown by the black line
in the top of the Figure. This motion was infeasible due to
large rock formations. However, the rover, under guidance of
the lattice planner, negotiated this maze-like and previously
unknown environment, and found a feasible path (white dots)
to accomplish its mission, despite a very limited perception
horizon of 3 meters and +£40° field of view.

We have not had a chance to optimize memory usage of
our planner implementation; nevertheless, the peak memory
usage of the lattice planner over all our experiments with
the FIDO rover was less than 100MB. The bottom part
of Figure 7 shows the semilog plot of the on-board lattice
planner runtime per replan cycle, averaging at approximately
10Hz. This plot serves well to illustrate two points regarding
typical planner runtime on-board FIDO: the computation
time per replanning operation can vary greatly (depending
on the difficulty of the problem at hand), and the replanning
runtime was frequently lower than the time-resolution of the
rover’s operating system (5ms), which is observed via the
bottom-limited segments of the plot.

Rover mobility was characterized by a minimum turning
radius of 0.5m and a capacity of point turns, which had a
high cost due to the time and energy required for reorienting
wheels. Both cost map cells and (x,y)-cells of the state
lattice were square with 20cm side length; both types of
cells coincided in position. The rover used a single 1.6GHz
CPU and 512MB of RAM, shared among all processes of
the rover, including state estimation, stereo vision perception
and communication systems.

The lattice planner utilized two fidelity regions. High
fidelity region was square 21x21 mapcells (L.-radius of 2
meters), centered around the rover. It utilized a lattice control
set with average outdegree 12. Its state space consisted of
2D position and heading (z,y,0). It was generated using
Algorithm 1. A trajectory generator in [17] was used to
generate the motions between the given values of robot state.
Motions were parameterized as cubic polynomial curvature,
K, functions of path length s, k(s). Low fidelity was repre-
sented as eight-connected grid.

In this experiment, the rover traversed approximately 30
meters and achieved the goal successfully (only the first
two-thirds of the rover path are shown in the photograph
due to the limited field of view of the external camera). No
path tracking was used, and the rover executed verbatim the
smooth and feasible motion computed by the lattice planner.

L

o

10°

]
= |
—]
. =
——————
-<E==—

L]
I————

W

10° L L i L .
0 10 20 30 40 50 60 70 80

Fig. 7. A field experiment in the JPL Mars Yard. Top: the FIDO rover
was commanded to go straight 15 meters (black line). The rover navigated
autonomously among previously unknown maze-like obstacles, while run-
ning the graduated fidelity lattice planner on-board. White dotted line is the
path traversed by FIDO. The rover encountered multiple difficult planning
scenarios due to the very limited perception. It traveled approximately 30
meters in order to achieve its goal. Bottom: throughout numerous field
experiments, lattice planner on-board FIDO averaged replanning frequency
of approximately 10Hz.

VII. CONCLUSIONS AND FUTURE WORKS

In this paper we described an effective approach to plan-
ning robot motions that satisfy differential constraints. In
addition to leveraging dynamic replanning algorithms, this
approach enables dynamic and deliberate changes in search
space connectivity to boost efficiency. Standard replanning
algorithms can be utilized, while the proposed search space
design allows both the automatic satisfaction of differential
constraints and the adjustment of the search space between
replans. The method was successfully demonstrated in sim-
ulation and on real robots. Future work includes a further
investigation into the state and motion space sampling to
further improve planning efficiency.

REFERENCES

[1] D. Ferguson, T. Howard, and M. Likhachev, “Motion planning in
urban environments: Part II,” in Proc. of the IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, Nice, France, September 2008, pp.
1070-1076.

[2] A. Stentz, “The focussed D* algorithm for real-time replanning,” in
Proceedings of the Fourteenth International Joint Conf. on Artificial
Intelligence, August 1995.

[3] S. Koenig and M. Likhachev, “D* Lite,” in Proceedings of the AAAI
Conference of Artificial Intelligence (AAAI), 2002.

[4]
[5

—

[6]

[7]

[8]

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

(18]

[19]

[20]

(21]

(22]

(23]

S. M. LaValle, Planning Algorithms.
2006.

M. Pivtoraiko and A. Kelly, “Constrained motion planning in discrete
state spaces,” in Field and Service Robotics, vol. 25. Berlin /
Heidelberg: Springer, July 2005, pp. 269-280.

R. Bohlin, “Path planning in practice; lazy evaluation on a multi-
resolution grid,” in Proc. of the IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, 2001.

D. Ferguson and A. Stentz, “Multi-resolution Field D*,” in Proc.
International Conference on Intelligent Autonomous Systems (IAS),
2006.

D. Pai and L.-M. Reissell, “Multiresolution rough terrain motion
planning,” IEEE Transactions on Robotics and Automation, vol. 14,
no. 1, pp. 19-33, 1998.

R. Szczerba, D. Chen, and J. Uhran, “Planning shortest paths among
2D and 3D weighted regions using framed-subspaces,” International
Journal of Robotics Research, vol. 17, no. 5, pp. 531-546, 1998.

D. Hsu, R. Kindel, and J.-C. L. S. Rock, “Randomized kinodynamic
motion planning with moving obstacles,” International Journal of
Robotics Research, vol. 21, no. 3, pp. 233-255, 2002.

S. M. LaValle and J. J. Kuffner, “Rapidly-exploring random trees:
Progress and prospects,” Algorithmic and Computational Robotics:
New Directions, pp. 293-308, 2001.

J. Barraquand and J.-C. Latombe, “On nonholonomic mobile robots
and optimal maneuvering,” in Proc. of the IEEE International Sympo-
sium on Intelligent Control, 1989.

S. Pancanti, L. Pallottino, and A. Bicchi, “Motion planning through
symbols and lattices,” in Proc. of the Int. Conf. on Robotics and
Automation, 2004.

T. Howard and A. Kelly, “Optimal rough terrain trajectory genera-
tion for wheeled mobile robots,” International Journal of Robotics
Research, vol. 26, no. 2, pp. 141-166, 2007.

E. Frazzoli, M. Dahleh, and E. Feron, “Real-time motion planning
for agile autonomous vehicles,” in Proc. of the American Control
Conference, 2001.

A. Bicchi, A. Marigo, and B. Piccoli, “On the reachability of quantized
control systems,” IEEE Transactions on Automatic Control, vol. 47,
no. 4, pp. 546-563, 2002.

A. Kelly and B. Nagy, “Reactive nonholonomic trajectory generation
via parametric optimal control,” International Journal of Robotics
Research, vol. 22, no. 7/8, pp. 583-601, 2002.

J. Pearl, Heuristics: intelligent search strategies for computer problem
solving. Boston, MA: Addison-Wesley Longman Publishing Co.,
1984.

J. A. Reeds and L. A. Shepp, “Optimal paths for a car that goes both
forwards and backwards,” Pacific Journal of Mathematics, vol. 145,
no. 2, pp. 367-393, 1990.

M. Pivtoraiko, R. A. Knepper, and A. Kelly, “Optimal, smooth, non-
holonomic mobile robot motion planning in state lattices,” Robotics
Institute, Carnegie Mellon University, Pittsburgh, PA, Tech. Rep.
CMU-RI-TR-07-15, May 2007.

R. Knepper and A. Kelly, “High performance state lattice planning us-
ing heuristic look-up tables,” in Proceedings of the IEEE International
Conference on Intelligent Robots and Systems, 2006.

R. Bohlin, “Path planning in practice; lazy evaluation on a multi-
resolution grid,” Proc. of the IEEE/RSJ International Conference on
Intelligent Robots & Systems, 2001.

M. Pivtoraiko and A. Kelly, “Differentially constrained motion re-
planning using state lattices with graduated fidelity,” in Proc. of the
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2008.

Cambridge University Press,

