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Abstract

In this paper, we propose a data driven approach to first-
person vision. We propose a novel image matching algo-
rithm, named Re-Search, that is designed to cope with self-
repetitive structures and confusing patterns in the indoor
environment. This algorithm uses state-of-art image search
techniques, and it matches a query image with a two-pass
strategy. In the first pass, a conventional image search al-
gorithm is used to search for a small number of images that
are most similar to the query image. In the second pass,
the retrieval results from the first step are used to discover
features that are more distinctive in the local context. We
demonstrate and evaluate the Re-Search algorithm in the
context of indoor localization, with the illustration of poten-
tial applications in object pop-out and data-driven zoom-in.

1. Introduction

Unlike traditional vision systems based on fixed cam-
eras that observe people from the outside, first-person vi-
sion systems, in which a camera observes the environment
from each user’s point of view, are able to work with data
that relates directly to the user’s interests and intentions.

In this paper, we focus on one mode of usage of first-
person systems in which information is extracted by com-
paring the image viewed by the system with a large col-
lection of pre-recorded images. A standard example is a
localization scenario in which the most similar images to
the currently observed image are retrieved from the pre-
recorded collection and the associated recorded positions
are reported to the user.

Fig. 1 shows an example: given an input image of the
environment seen by the user (Fig. 1(a)), we can match it to
a large database of pre-captured images that are annotated
with locations (Fig. 1(b)) and find these ones that capture
the same scene and predict where the user is (Fig. 1(c)).

The key building block in this, and other similar applica-
tions, is image matching, i.e., the ability to define a similar-

Figure 1. Example application: image search for indoor localiza-
tion. (a) the input image, capturing environment seen by a user; (b)
a large number of images pre-captured in the same environment,
with each dot corresponds to a picture; (c) the location of the user
is determined by finding images that are matched with the input
image.

ity metric between images and to retrieve the most similar
images from a large collection based on this metric. Al-
though there is a substantial amount of prior work in image
retrieval and search, attempting to find same buildings [20]
or objects [19], it tends to focus on outdoor environments
with distinctive structure and unique landmarks.

Instead, in this paper, we explore the image matching
problem in the context of typical indoor environments. Un-
like outdoor environments, manmade indoor environments
are usually full of self-repetitive structures and confusing
patterns (Fig. 2), which make them extremely challenging
for image matching. In Fig. 2, for example, many of the
images look similar at first but, upon closer inspection, one
can notice subtle details that distinguish each image from
the others.

By analogy with this discovery process, in this paper,
we approach this image matching problem by following a
two-pass strategy, named Re-Search. In the first pass we
would like to efficiently retrieve a number of images that
are most similar to a query image, one can use state-of-art
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Figure 2. Indoor environment is full of self-repetitive structure and
confusing patterns, a particular case is that all doors look similar.

image search algorithms to accomplish this. The rationale is
that, for a large database, this step can very efficiently filter
out a large number of images that are obviously unrelated
to the query image. And in return, it gives a small number
(e.g. 50) of candidates that appear to be the most similar
to and therefore easily confused with the query image. We
use these candidates as a context to help us discover more
subtle details of the images. These details were overlooked
in the first pass, because on a global scale they are not as
distinctive. For example in Fig. 2, all the features from
the door handles and nameplates are very distinctive in dis-
tinguishing door image from non-door images, while some
other features, such as the posters on the doors are the ones
that eventually distinguish one door from the others.

There are many ways one can implement this Re-Search
approach, in particular, in Section 2 we discuss our imple-
mentation following the TF-IDF scheme originated from
textual retrieval community [1, 14] and was introduced to
image search in [24]. Section 3 reviews related works in
the image search domain. We show an example application
of image search for localization in Section 4, which also
demonstrate the effectiveness of our Re-Search approach.
We conclude and give further discussion of our approach
and future works in Section 5.

2. Re-Search

In our approach, we adopt a Bag-of-Words model. We
assume that standard visual features are extracted, and de-
fer the details to Section 4, where we discuss specific appli-
cation. First, a set of visual words is learned by clustering
features extracted from the database, with each cluster cen-
ter corresponding to a visual word. Each feature is assigned
a visual word ID, corresponding to the closest cluster cen-
ter under Ecliduean distance. An image can therefore be
represented by a set of visual words. This step is normally
referred to as vector quantization.

There are various ways to measure the similarity of two
images, given the discrete visual words representation. One
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Figure 3. Re-Search process diagram. The first pass makes use
of state-of-art image search algorithms to find a small number of
images from the whole database, which are the most similar to the
query image [19]. In a second pass, a new idf term is learned
using (3) from this set of images.

straightforward way is to measure the distance of normal-
ized visual word histograms, which gives more weight to
words that appear more frequently in that document. How-
ever, like in text retrieval, where some words are seen in
most documents, e.g. “the”, “a”, efc., this is also commonly
observed in visual words representation [24]. Therefore, it
is more advantageous to down-weight less distinctive words
that appear frequently in most images, and up-weight words
that only appear in very few images. This combined scheme
is referred to as Term Frequency-Inverse Document Fre-
quency (TF-IDF) [1, 14, 24]. More formally, given a word
(term) ¢ in document d, its TF-IDF weight is given by:

tf-idft,qa = tft,a ¥ idfs. (D
t ft,q is defined as:

tfta=——""0), 2

where n 4 and n; 4 are the number of occurrences of the
words ¢ and [ in document d, respectively.
idfy is calculated based on a global statistics over all doc-
uments:
2o1,d "M



Under this definition, we now treat images and their TF-
IDF vector representations equivalently. The similarity be-
tween a query image ¢ and an image d_;- in the database can
be calculated using the cosine similarity measure [1]:

“)

However, this similarity measure retrieves only approx-
imately similar images. It is essentially because this simi-
larity measure uses statistical information that only reflects
global properties of the database. More specifically, the IDF
measure in (3) essentially measures scarceness of a feature
with respect to the whole database. However, features that
are statistically rare with respect to the whole database, can
be overly abundant when looking at a smaller subset (Fig.
2). In order to distinguish these very similar instances, one
has to depend on more subtle details in the local neighbor-
hood context.

In this paper, we propose a two-pass approach, named
Re-Search, that combines both global and local visual word
statistics. As shown in Fig. 3, the first pass makes use of
state-of-art image search algorithms to find a small num-
ber of images from the whole database, which are the most
similar to the query image. This set of images is used in the
second pass as the new training database. A new idf term
is learned using (3) from this small set of images, instead
of from the whole database. This way, we gather statistics
of visual words distribution in the local neighborhood and
use that to discover features that are more distinctive among
these similar images.

Fig. 4 shows an example of how effective this approach
is in finding exactly matched objects in this highly confus-
ing environment. Comparing the weights of features in this
example, in the first round of image retrieval, those features
that are effective in distinguishing doors from other objects
are given high weights in idf vector. While in the Re-Search
step, we have all door related images retrieved, and there-
fore higher weights are given to other features that are rarer
locally and therefore more effective in distinguishing one
door from the other doors.

3. Survey of related image search techniques

Recent years have seen huge progress in image search.
While the dataset size has been increased from a few thou-
sand [24] to millions [7, 9, 19, 21], the use of advanced
data structures and indexing algorithms reduces the com-
putational complexity by up to 1000 times, making it fast
enough for interactive use [4, 19]. In this section we survey
recent advance in image search algorithms that are closely
related to our work.

Original IDF weights New IDF weights
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Figure 4. An example of the IDF weights and the retrieval results
in the initial search and the Re-Search steps. (a) A query image;
(b) The original IDF weighting used in the initial search step, the
brighter the ellipses are, the higher the weights are; (c) the new
IDF weighting used in our Re-Search step, the brighter the ellipses
are, the higher the weights are; (d) the initial retrieval and ranking;
(e) the new retrieval and ranking after the Re-Search step.

3.1. Feature extraction

In the image matching task, given a query image, we
want to find images captured at the same location (ex-
act matching) or similar environment (similarity matching).
Since the viewpoints and scales of the database images and
the input query images are often different, it is not likely
that any pixel-wise similarity functions can give us reason-
able similarity measures. Instead, it is possible to find parts
of an image that are both distinctive and robust across dif-
ferent view points, scales. Image information inside these
regions is a good approximation of the overall appearance
of the objects and scenes [16, 17, 18]. Measuring the vi-
sual similarity of these regions usually approximates how
similar these images are.



Many approaches have been devoted to detecting this
type of regions, an incomplete list of these region detec-
tors and their representative applications includes Differ-
ence of Gaussians(DoG) [13], Harris-Affine(HARAFF) re-
gions [6, 16, 24, 25, 26], Hessian-Affine(HESAFF) regions
[3, 9, 10, 16, 20, 21, 22], Maximal Stable Extremal Re-
gions(MSER) [15, 19, 24, 25, 26, 29]. For more details, the
readers are referred to an extensive comparison of region
detectors conducted in [18].

Regardless of the specific region been used, one can rep-
resent each region using Scale Invariant Feature Transfor-
mation(SIFT) [13], which transforms an image region into
a 128 dimensional feature vector.

3.2. Image search algorithms

For a relatively small database, which consists of thou-
sands of images, a few thousand visual words will proba-
bly be enough [24]. However when the size of database
increases, this becomes soon inadequate. First, the more
images are stored in the database the more variance there
is in the visual appearance. As a result, more visual words
are needed to faithfully represent this dynamic range of vi-
sual variance. Consequently, this becomes intractably high
dimensional for vector quantization (e.g., comparing a fea-
ture vector with millions of visual word clusters).

Various sophisticated data structures have been intro-
duced. Recently multi-level vocabulary trees [19] have been
proposed for image retrieval in large database. Compared
to linear scan, it has log(n) computational complexity in
vector quantization. The ability to handle large number of
visual words then boosts image matching quality.

Along this line, it was shown in [20] that using the Ap-
proximate K-Means (AKM) algorithm instead of the Hier-
archical K-Means (HKM) algorithm [19] enabled the use of
a large number of visual words and made the vector quanti-
zation more robust. This quantization issue was further ad-
dressed in [21], where a soft assignment strategy was pro-
posed to map each visual feature to multiple visual words
instead of committing to just one. A novel Hamming code
embedding strategy and a combination of coarse/fine fea-
ture distances were proposed in [9] as a way to compensate
quantization noise.

It was discovered in [10] that by iteratively adjusting the
asymmetrical neighborhood structure one could enhance
neighborhood symmetry property and therefore could gen-
erate a distance measure that was more suitable for similar
image search. The min-Hash function was proposed in [4],
it provided a way to efficiently search through large scale
database, and required only a small amount of data to be
stored.

However, none of the work to our knowledge has ad-
dressed the issue of combining both global and local statis-
tics in finding exact match of images. A similar line of re-
search follows metric optimization and per-example based

local distance function learning, such as [5]. However, their
approaches were primarily designed for classification tasks.

In the text retrieval domain, our work is closely related
to the relevance feedback and query expansion approaches
[2, 8, 11,23, 30]. In these approaches, it was assumed that
one can determine the relevance between query and retrieval
results, either as explicitly as from a user’s input, or as im-
plicitly as defining relevant retrieval to be the top ranked
results. This relevance feedback information was used to
generate a new query that fitted better with the searcher’s
intention. While in our case, we do not assume any such
feedback, except that we assume that the dataset is com-
posed of confusing image samples and that the goal is to
find exact matches.

4. Example application: image search for in-
door localization

Here we show how the image matching algorithm is eval-
uated in the localization scenario. We use a database of im-
ages that have been pre-annotated with locations. Given
a single image, our image matching algorithm searches
through the database and finds the images in the database
that capture the same scene. Using the pre-annotated lo-
cation information, we can estimate the location where the
input image was taken.

For feature extraction, we used the Harris-Affine
(HARAFF) region detector [16], combined with SIFT de-
scriptor [13]. On average, we detected about 500 to 1000
HARAFF regions per image, which had a resolution of
640 x 427 pixels. For efficient indexing and searching, we
learned a vocabulary tree from the database, with a fan-out
factor of 4 and depth of 10. In the initial search step, our
weighting scheme follows the TF-IDF definition. Though
information from multiple levels of the tree could be sum-
marized together to get a more balanced measure, in our
implementation, we only use the weights from the leaf level
[19]. In the Re-Search step, we learn new idf weights based
on the top 50 retrievals.

We also find that there are several ways to improve the
robustness of the Re-Search algorithm. First, using log idf
space is helpful in improving robustness [19, 28]. Also it is
useful to compute the new idf term as a linear combination
of the idf;ocql, estimated from the local neighborhood and
the idfgiopar Which is estimated from the whole database
and have been used in the initial search, i.e.,

de/ =a- idfglobal + (1 - OL) : 7:dflocala (5)

where idf’ is the new idf weight used in Re-Search, we set
o = 0.05 in all the experiments. This is useful to prevent a
degenerate case of the Re-Search algorithm, i.e. when most
of the retrieved images are captured from the same location,
noise could be amplified by the idf measure and, as a result,
the irrelevant images could be selected as the top ranked
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Figure 5. Some examples of the “clean set” (images with rich and distinctive visual structures) and the “confusing set” (images that capture
more detailed part of the scene, or scenes with objects that could easily be found somewhere else, such as doors).
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Figure 6. Quantitative analysis of the localization performance after the initial image search step and the Re-Search step. (a) the Precision-
Recall curve on the “clean set”. (b) the Precision-Recall curve on the “confusing set”.
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Figure 7. The effect of changing the subset size on the Re-Search
performance. For clarity, the scale is enlarged compared to Fig. 6.

results (Fig. 8). Another way to handle this is damping the
idf calculation by removing visual words that have less than
a minimum number of occurrences [ 1].

We evaluate performance of the localization algorithm
under a precision-recall formulation. For an input image,
8 of the most similar pre-captured images are retrieved. A
potential localization is suggested if there are a cluster of

(b) Re-Search result
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Figure 8. An example illustrating the robustness of the Re-Search
algorithm. In both (a) and (b), image 1 is the query. In the initial
result (a), most of the retrieved images capture the same scene as
the query, except image 8. In (b), the Re-Search result is worse,
without using the prior information as shown in equation (5), i.e.
more irrelevant images (image 6 and 7) are retrieved and the out-
lier (image 8 in (a)) is now given a higher rank, i.e. from 8 to 6.
[Best viewed in color.]

pre-recorded images, denoted R, captured less than 3 me-
ters away from each other among the retrieved images. If
there are more than one cluster, the larger and higher ranked
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Figure 9. Some qualitative analysis of the image matching results after the initial image search step and the proposed Re-Search step.

set is picked. The size of set R is denoted |R|. By ad-
justing a threshold, denoted |R |7, on the minimum size of
‘R, one can change the confidence of each localization pre-
diction. Higher |R|r gives more confident prediction, and
results in higher precision. On the contrary, lower |R|r re-
sults in less confident decision, but it gives higher recall.
If the threshold |R|p == 1, then the location of the top
ranked image is used for prediction. If no set satisfies this
minimum requirement, then localization fails. A false neg-
ative is detected for any query image that has a matching
location in the database. For cases that satisfy the minimum
requirement, false positives are detected as those where the
minimum location distances between the query image and
the images in R are more than 3 meters.

Our database consists of around 8.8 thousand images
(each associated with a location label). We built an au-
tomated data collection rig to capture these images, users
who were familiar with this environment helped to build the
ground truth image-location correspondences (Fig. 1(b)).

For the testing set, we captured one set of images with
rich and distinctive visual structures, we call this set the
“clean set”. It acts as a control set, and measures how our
system performs under normal condition. Also, we cap-
tured a much more challenging set of images that captured
more detailed part of the scene, or scenes with objects that
could easily be found somewhere else, such as doors. We
call this set the “confusing set”. This set represents the sce-
narios when the user is close up to some specific objects in
the scene. Both of these sets are composed of 80 images, ex-
amples of them are shown in Fig. 5. We exclude cases that
are not possible to distinguish without higher level knowl-
edge, such as doors with only nameplates, which are non-
distinguishable without character recognition.

Fig. 6(a) and 6(b) show the Precision-Recall curves of
initial search and after using our Re-Search method on both
of the testing sets. On the “clean set”, both the initial search
and Re-Search achieve almost perfect performance, with
close to 1% gain using our approach. This demonstrates the



practical usefulness of our system in indoor localization.

What is of more interest is to test the robustness of the
system in handling the “confusing” situation, because this is
the scenario in which a user will rely on the system the most.
We can see that compared to the performance in the “clean
set”, initial search performance degrades severely, while af-
ter using Re-Search algorithm we still achieved about 85%
precision at 80% recall, with a maximum of about 15% gain
in precision compared to initial search result.

The size of the subset used in the Re-Search step is also
an important factor. Too small a subset may exclude many
actual relevant images. It is not a good idea to use an overly
large subset either. The extreme case would be using the
whole database for Re-Search, in which case no improve-
ment can be made because the idf will be unchanged. Fig.
7 shows the change of performance through varying the Re-
Search subset size. It suggests that the performance reaches
a relatively stable level as soon as we use more than 50 top
ranked results from the initial search. In our experiment,
we found that a subset with size 50 seems to be a good bal-
ance of computational performance (3 ~ 4 seconds using
unoptimized Matlab implementation) and matching quality.

Fig. 9 shows more qualitative comparisons. Our ap-
proach retrieves more relevant images and also gives better
ranking results.

5. Discussions and conclusions

In this paper, we developed a novel way of capturing the
visual information in an indoor environment, from the first-
person’s viewpoint. By taking a large number of images, it
covers almost every corner of the environment of people’s
daily life.

We proposed a novel image matching algorithm, named
Re-Search, which emphasizes robustness for confusing self-
repetitive patterns of indoor environment. We demonstrated
its effectiveness through an indoor localization application.

There are some limitations that we would like to address
in the future. First, in our image matching algorithm we are
using the standard salient feature detector (HARAFF). It is
effective in detecting features that are salient and repetitive
across views. However, in the indoor environment, many
parts of the environment are textureless. This could be very
useful information, but is normally discarded. Some dense
feature [12] or MSER type features would probably be help-
ful if combined with the corner type features.

It is interesting to compare our approach with other al-
gorithms that use explicit geometrical epipolar constraints,
in respect to space/time complexity, and reranking quality.
We would like to optimize the online Re-Search algorithm
further for realtime performance. Also, some of the param-
eters are selected and fixed empirically in our algorithm. It
is interesting to learn statistical models that can adapt these
parameters to the quality of the initial results automatically.

Original
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Figure 10. Potential applications that benefit from robust image
matching. (a) background subtraction and object pop-out by
matching the input image with large number of images captured
beforehand. (b) the user selects part of the image (in red rectan-
gle) that she wants to see more clearly; (c) our program generates a
magnified view using the image that is matched to the input image,
but with a much more closed-up view of the selected region.

For the localization application, we rely right now on
users’ label to generate correspondence between database
images and points on the floor plan. It will be necessary
to explore ways to generate this ground truth automatically,
such as by using the structure from motion techniques to
recover the relative locations of the cameras [27].

Beyond localization, reliable image matching techniques
pave the way for numerous other applications. Fig. 10
demonstrates some potential applications and our work in
progress, including background subtraction (Fig. 10(a)),
and data-driven zoom-in view generation (Fig.10(b), 10(c)).
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