Applied Imitation Learning for Autonomous
Navigation in Complex Natural Terrain

David Silver, J. Andrew Bagnell, Anthony Stentz
Robotics Institute, Carnegie Mellon University

Abstract Rough terrain autonomous navigation continues to pose a challenge to
the robotics community. Robust navigation by a mobile robot depends not only on
the individual performance of perception and planning systems, but on how well
these systems are coupled. When traversing rough terrain, this coupling (in the form
of a cost function) has a large impact on robot performance, necessitating a ro-
bust design. This paper explores the application of Imitation Learning to this task
for the Crusher autonomous navigation platform. Using expert examples of proper
navigation behavior, mappings from both online and offline perceptual data to plan-
ning costs are learned. Challenges in adapting existing techniques to complex online
planning systems are addressed, along with additional practical considerations. The
benefits to autonomous performance of this approach are examined, as well as the
decrease in necessary designer interaction. Experimental results are presented from
autonomous traverses through complex natural terrains.

1 Introduction

The capability of autonomous robotic systems to successfully navigate through un-
structured environments continues to advance. Ever improving high resolution sen-
sors and perception algorithms allow a mobile robot to build a detailed model of
its environment, and advances in planning systems allow for the generation of ever
more complex routes and trajectories towards achieving a navigation goal. However,
as perception and planning systems become more complex, so does the task of cou-
pling these systems. This coupling often takes the form of a Cost Function. Using
data from the perception system as input, the cost function maps to a scalar cost
value, defined over the state space of the planning system (Figure 1). These costs
are then used as the optimization metric by the planning system when determining
the next action or sequence of actions.

2 David Silver, J. Andrew Bagnell, Anthony Stentz

L

Fig. 1 Crusher (Left) is capable of autonomous navigation through complex outdoor terrain. Per-
ceptual data (Top Right) are converted to costs (Bottom Right) for use by the planning system.

In simple or structured environments, cost functions are often easily defined; for
instance, in an indoor environment the cost of traversable freespace should be very
low, and the cost of walls or other obstacles should be high. However, in rough or
unstructured terrain, it is less intuitive how to define cost. A small obstacle should
clearly have larger cost than flat ground, and smaller cost than a large obstacle.
Explicitly defining these tradeoffs encodes the desired behavior of the robot and
is quite challenging; defining a generalizeable function that maps from perceptual
inputs to the proper cost is even more so.

This first step of defining the relative cost of various terrains requires a concrete
definition of what metric a robot’s performance will be measured against. Com-
mon metrics include maximizing safety or probability of success, minimizing dis-
tance traveled or time taken, minimizing net energy loss, minimizing observability
or maximizing sensor coverage. Often, the actual desired robot behavior optimizes
a combination of such metrics; for example, it may be desirable for a robot to ap-
proximately maximize safety but take certain risks to minimize distance traveled.

Previous work has focused on several differing approaches. Attempts to explic-
itly approximate traversability through simulation [3] or proprioception [5] limit the
choice of metrics to maximizing safety; they also require a robot model capable
of directly computing probabilities of mobility failure. Approaches focused on ex-
plicitly combining multiple metrics are limited to optimizing one metric subject to
constraints on others [13, 15]. The most common general solution is to manually
design and hand tune a cost function until the robot achieves the desired behavior.
This can be an incredibly tedious process (as it requires a manual optimization in
a potentially high dimensional space) and often results in systems that suffer from
poor generalization and a lack of robustness to novel scenarios.

This paper explores the application of imitation learning to this challenge, specif-
ically the LEARCH [10] algorithm described in the next section. The application
of this approach to the Crusher autonomous navigation platform [14] (Figure 1) is
reviewed, along with a discussion of practical considerations when applying this
approach.

Applied Imitation Learning for Autonomous Navigation in Complex Natural Terrain 3

Cy = Prior;
fori=1...T do
foreach P, do
foreach x € getBoundingBox (F,) do
F[x] = getPerceptionFeatures (x);
Mx] = Ci_1(F[x]) + Le(x);
P, =planPath (S.,8.,M);
P} = replanExamplePath (P, f,M);
{Uf”,Uf"} = computeVisitationCounts (P, P);
R; = trainBalancedRegressor (F,U;,U_);
Ci=Ci_1x% eMiki;

Fig. 2 The LEARCH algorithm

2 Imitation Learning

Although explicitly defining the relative tradeoffs between different actions is a dif-
ficult task for a domain expert, indicating or demonstrating examples of correct be-
havior is often easier (otherwise, the task itself is not well defined). Therefore, the
imitation learning framework seeks to learn the correct robot behavior from obser-
vation of expert behavior. Many previous applications of this framework to mobile
robots [6, 7] sought to learn to predict what action to perform, based on the action
performed by an expert at a certain state. In this way, action prediction essentially
replaces the lower level motion planning operation on a mobile robot. However, this
approach is inherently myopic and does not scale to longer range planning, as it
requires all necessary information to be encoded in the current robot state.

Therefore, rather than learn a mapping from features of a state to actions, we seek
to learn a mapping from features of a state to costs, such that the planning system
will produce the correct behavior when provided with said costs. This approach has
its roots in the concept of Inverse Optimal Control, and has recently been developed
for use in robotic systems [1, 8]. By learning a cost function to reproduce expert
behavior, the need for explictly defining a metric or weighting between metrics is
eliminated; the new metric is matching human performance, and it is left up to
the human expert to define (through behavior) how to balance various options and
considerations.

It is important to note that this approach learns the correct cost function for a
specific planner or system of planners, and maps to cost from a specific perception
system. The purpose is not to try and improve the separate performance of these
systems; rather, it is to optimize the coupling of these modules to provide the best
overall system performance. As the Crusher system operates with costs defined over
a 2D grid, subsequent descriptions will deal specifically with this setting. Without
loss of generality, it is easiest for now to consider the planning system as a basic
A* planner, and a planned path as a sequence of 2D grid cells. Adaptation to more
complex planning systems is covered in the next section.

4 David Silver, J. Andrew Bagnell, Anthony Stentz

Our imitation learning approach is based on the LEARCH algorithm, (Figure 2);
for a full derivation, see [10]. The input to the algorithm is a set of example paths,
each a sequence of 2D locations leading from a start s to a goal g and representing
the correct path (according to the expert). LEARCH seeks to find a cost function C
such that each example path P, is the planner output under the cost function. The
LEARCH inner loop iterates through each example. For each example path P, with
start and goal s, and g, a path P, is planned under the current candidate cost function
C;i (Cp can be initialized to any prior). Since P, is the output of an optimal planner,
Ci(P.) < Ci(P,). Since we desire a C such that C(P,) = C(P,), we seek to minimize
the difference in cost C(P,) — C(P,). As the cost of a path is simply the sum of costs
at states along it, P, and P, provide a list of states where the cost could be changed
to lower this cost difference: states in P, could have their cost lowered and states in
P, could have their cost raised (states in both simply cancel).

This list of candidate states (called the visitation counts) provides a local gradi-
ent in the space of cost functions. However, the cost at each state can not simply
be raised or lowered, as the goal is not to identify the correct cost for each cell, but
rather a function that maps perceptual features to an appropriate cost. If a function
AC; could be found that approximated this gradient (the output is positive or nega-
tive when provided with the appropriate features), adding it to C; would lower the
cost difference.

Finding a general function to match a list of input/output pairs can be solved
through regression analysis. In this case, the inputs are well defined (perceptual
features), but the outputs are not; for each input, the required cost delta is not known,
just its sign. Therefore, outputs targets are specified as +1 depending on whether
the costs need to be raised or lowered. In this way, the regressor R generalizes the
local cost changes over the entire feature space. Each regression target can also be
weighted to indicate that certain cost changes are more important relative to others.
Determining these relative weights is discussed in Section 3.

The final learning procedure is summarized as follows: for each example path
and the corresponding plan (under C;), compute the set of visitation counts and the
corresponding perceptual features. Next train a regressor R over these input/output
pairs, and combine it with C;, weighted by a learning rate parameter 1. The cost of
cells along an example path (which an expert specifically chose to encounter) will
generally be lowered, while the cost of cells along a temporarily cheaper path (which
the expert chose to avoid) will generally be increased. This loop is then iterated until
convergence. Figure 3 provides a visual example of this procedure in action.

A few details remain. Rather than summation, we use an update rule of C; (f) =
Ci(f)e"Rilf), resulting in exponentiated functional gradient descent [10] which
makes better use of available dynamic range, as well as naturally enforcing a posi-
tivity constraint on costs. The choice of regressor (e.g. linear, neural net, etc.) is also
unspecified. This decision helps define the balance between descriptiveness and gen-
eralization in the space of possible cost functions, and is discussed further in Section
3. Finally, by augmenting costs with a margin (determined by a loss function L, (x)),
trivial cost solutions can be eliminated and generalization improved.

Applied Imitation Learning for Autonomous Navigation in Complex Natural Terrain 5

Fig. 3 Anexample of the LEARCH algorithm learning to interpret satellite imagery (Top) as costs
(Bottom). As the cost function evolves (left to right), the current plan (green) recreates more and
more of the example plan (red). Quickbird imagery courtesy of Digital Globe, Inc.

In addition to the algorithm as described, there are a few modifications that can
increase robustness to noisy or imperfect expert demonstration [11, 12]. Human ex-
perts rarely demonstrate exact optimal behaviors, especially in large areas of similar
terrain. By performing a balanced regression (normalizing relative weights such that
positive and negative targets have equal total weight), the regressor can be forced
to more strictly separate between terrains when changing cost. Another addition to
the algorithm is to continually replan the example path. Human demonstration often
contains a degree of high frequency noise; a smoothing operation is therefore bene-
ficial. This smoothing can be performed by selecting a new example that is entirely
contained within a corridor of width 8 around the original example. The new exam-
ple is created by planning the optimal path using the current cost function within the
corridor (and infinite cost elsewhere). This has the effect of adapting the example
to the current cost hypothesis at a small scale (implicitly defined by f3), while still
adapting the hypothesis to the example at a large scale.

3 Application to Autonomous Navigation

Our imitation learning approach was applied to the task of interpreting perceptual
data for the purpose of motion planning on the Crusher system. Crusher is provided
with two main forms of perceptual data: static sources of prior data (overhead im-
agery and LiDAR), and dynamic sources of data collected in real time (onboard
cameras and LiDAR). Once these data sources have been converted to 2D cost grids
and fused together (at the cost level), Crusher’s motion planning system is respon-
sible for choosing vehicle actions. The motion planning system is similar to [4],
and combines a global planner based on Field D* [2] and a local planner based
on forward simulation of potential vehicle actions (specifically constant curvature
commands) for a fixed horizon.

For the Crusher platform, imitation learning was first applied to the task of inter-
preting overhead data to create prior cost maps [11]. 2D feature maps are extracted
from the input data sources, and then converted from maps of features to a map of
costs. These maps are then used for global route planning offline, as well as online
global planning when fused with current perceptual data. This context provides an
ideal setting for the application of the LEARCH algorithm due to the static nature

6 David Silver, J. Andrew Bagnell, Anthony Stentz

of the perceptual data, and the ease of collecting training examples: each example
is simply a path that can be ’drawn’ by an expert on top of imagery or other visual-
ization of the underlying data.

Since overhead costs are only used for planning in regions that have not yet
been directly observed by the robot, overhead costs are learned with respect to the
Field D* global planner. As Field D* plans an interpolated path over a 2D grid,
computing visitation counts is not as straightforward as simply marking which states
each path traverses through. Instead, the distance traveled through each grid cell
must be recorded. This results in visitation counts that are real valued instead of
binary. During regression the output target for a real valued visitation count is still
41, but the target is now weighted relative to the visitation count. If a path passes
through cell x; for twice as long as x;, then x; has twice the impact on the cost of a
path; moving the cost in the right direction is therefore twice as important.

Like many motion planning algorithms, Field D* also makes use of a configura-
tion space expansion to account for the dimensions of the vehicle. A configuration
space expansion also results in non-binary visitation counts; it is taken into account
by incrementing the count of all states x; relative to their contribution to the cost
of state x; when x; is on a path. Crusher’s planning system performs an expansion
by averaging costs over a circular window. Therefore, for a path traveling distance
d through cell x;, all cells x; within the expansion window have their counts incre-
mented by d. More complex expansions can be accounted for in the same manner.

Imitation learning was next used to learn costs from features generated by
Crusher’s onboard perception system. Crusher’s perception software processes raw
sensor data into feature descriptions of voxels in real time; each column of voxels
is then converted into a 2D cost. Therefore, unlike learning from overhead data,
features are not static. While additional adaption of the LEARCH algorithm is re-
quired in order to deal with the dynamic and unknown nature of real time perceptual
data, the approach remains conceptually similar and will be treated as such moving
forward; for details see [12].

Instead of drawing a path on top of a visualization, collecting expert examples to
train the perception system consists of the expert manually driving Crusher through
an example behavior. Along with the path traversed, all raw sensor data is logged
during this collection. Sensor data is then post-processed via playback through
Crusher’s perception software to generate the final features that will be converted
into costs. By logging the raw sensor data, perception software does not need to
remain static after training data collection. Whenever changes or improvements are
made to perception software, features can simply be regenerated, and a cost function
relearned. Therefore, training data in this form does not need to be recollected every
time the system changes; the cost function is simply retrained offline.

Since costs from online perceptual data determine Crusher’s actual motion com-
mands, costs must be learned with respect to the local planning system. Figure 4(a)
provides a simplified example to demonstrate why this is so. If costs were trained
with respect to the global planner, LEARCH would be satisfied with the cost on the
obstacle O when it is sufficiently high to make up for the extra distance |Py| — |P.|.
However, since |P|,|P| > |P:|+ O > |P,|, P. remains the cheapest local planner op-

Applied Imitation Learning for Autonomous Navigation in Complex Natural Terrain 7

global planner path
— — — loca planner actions “;,,,,
— — - examplepah . N

(a) (b)
Fig. 4 (a) A simplified scenario where the local planner has only 3 possible actions. (b) Example
of a new feature (right) learned from panchromatic imagery (left).

tion in this case. The result would be that the local planner would still choose to
drive over the obstacle. This result is observed empirically in Section 4.

Unfortunately, there are also problems with training directly for the local planner.
As the local planner only considers a discrete, kinematically feasible set of actions, it
is often the case that no series of actions will sufficiently match the expert example.
In this case, the LEARCH termination condition is undefined. Terminating when
the example path is lower cost than the planned path will not suffice; in Figure 4(a)
this could result in C(P,) < C(P;) < C(P,),C(P,) (the colliding action would still be
preferred). Running until the cost function converges is therefore necessary, but has
its own side affects. Once C(P.) > C(F;),C(P,), LEARCH will start to try and raise
the cost along P, or P.. If the chosen regressor can differentiate between the terrain
under P, or P, and that under P,, it will raise those costs without proper cause. The
end result is a potential addition of noise to the final costs, and lower generalization.
The degree of this noise depends on the resolution of the planner and the regressor.

If there were some way to know the ’right’ planner action, then the selection
of that action could serve as a termination condition. Collecting this information
during demonstration by an expert would be extremely tedious, requiring an ex-
pert selection at every planning cycle. Instead, we propose the use of a heuristic
approach to approximate this decision. Essentially, we seek to ’project’ the expert’s
example behavior onto the space of possible planner actions. This is performed by
first learning a perception cost function for the global planner. As described above,
such a cost function will generally underestimate the cost necessary for the local
planner. Therefore, we score each local planner action by its average cost instead of
total cost!. An action with low average cost can not be said to be optimal, but it at
least traverses desirable(low cost) terrain. An additional distance penalty is added to
bias action scores towards those that make progress towards the goal®. After scoring
each action, that with the lowest score is used as the new example. The result of this
initial replanning step is to produce a new example behavior that is feasible to the
local planner.

! The global planner section of each action is still computed with respect to total cost

2 the weight of this penalty can be automatically tuned by optimizing performance on a validation
set, without any hand tuning

8 David Silver, J. Andrew Bagnell, Anthony Stentz

When dealing with static overhead data a cost function, once learned, will gener-
ally only be applied once through a data set. In contrast, a perception cost function
will be continually applied in real time on a robot when operating autonomously.
Therefore, it is important that the cost function be computationally inexpensive. As
combining multiple linear functions yields a single linear function, linear regressors
have a significant computational advantage over nonlinear regressors (which would
require a separate evaluation per regressor). Unfortunately, they also suffer from
limited expressiveness. This can be dealt with by adding a feature learning phase,
as described in [9, 11]. Such a phase automatically decides to occasionally learn
simple non-linear combinations of the original input features that help differentiate
terrains that are difficult for a linear cost function to discriminate. This approach is
similar to the way in which cost functions are often hand-engineered: simple lin-
ear functions handle the general cases, with sets of rules to handle difficult special
cases. Additionally, such new features can be used as a guide in the development of
further engineered features. Figure 4(b) provides an example in the overhead con-
text, demonstrating a new feature derived from only panchromatic satellite imagery.
This new feature strongly disambiguates roads and trails from surrounding terrain,
and could be taken as an indication that an explicit road extractor would be useful.

4 Field Results and Conclusions

The described imitation learning approach was implemented to learn mappings from
both overhead and onboard perceptual data to cost. As described in [10], this ap-
proach is guaranteed to converge when using a properly chosen learning rate 3. In
practice, a decaying learning rate of the form 1 /+/n is used at the n'" iteration. The
parameter 1 affects only the rate of convergence; a well chosen 1 usually results
in convergence after approximately 50 - 100 iterations. The computation required at
each iteration for each example is dominated by the cost of applying the current cost
function to local feature maps, and then planning through the resulting cost map. For
the training sets used in this work, computation per iteration was approximately 5
minutes on a 2.4 Ghz processor®.

The Crusher autonomy system originally made use of hand-tuned cost functions
for converting overhead and perception features to costs. Comparing autonomous
performance when using different cost functions can quantify the differences in per-
formance brought about by these different approaches. Engineered prior cost maps
were used for the first 4 Crusher field experiments. This process consisted of first
performing a supervised classification of the raw feature maps, and then converting
the classifier outputs into costs. This lossy compression of the feature space was
performed to make designing a cost function easier and more intuitive. As different
test sites provided differing data sources and resolutions, this process was repeated

3 Use of a smoothing corridor removes the theoretical guarantee; however in practice this has not
proven to affect convergence

4 If faster learning is required, LEARCH can be parallelized by example at each iteration

Applied Imitation Learning for Autonomous Navigation in Complex Natural Terrain 9

for each test site. Additionally, the desire to create cost maps from different subsets
and resolutions of prior data (in order to perform resolution comparisons), meant
multiple cost functions were necessary. For each site, labeling training data and de-
termining parameters for multiple cost functions would involve on average more
than a day of a domain expert’s time. Learned prior cost maps were then used for
the remaining 6 field experiments. For each site, producing a series of example paths
would take on average only 1-2 hours of an expert’s time. These examples could then
be used to train multiple cost maps using different data sources and resolutions.

In a timed experiment on a 2 km? test site, producing a supervised classification
required 40 minutes of expert involvement, and tuning a cost function required an
additional 20 minutes. In contrast, producing example paths required only 12 min-
utes. As Crusher has been tested on sites ranging up to 200 km?, this time savings
is magnified in importance. The final cost maps were also evaluated by comparing
planned routes to an independent validation set of examples. The engineered map
produced routes that matched 44% of states along validation paths on average. Using
imitation learning to learn just the correct weights for the supervised classification
produced a map that scored 48%. Imitation learning from the raw features scored
57%. This result demonstrates that the automated approach performs superior pa-
rameter tuning, and makes better use of all the available raw data. It has also been
shown that Crusher navigates more efficiently when using learned prior maps online
as opposed to engineered maps, driving safer routes at faster speeds [11].

During the more than 3 years of the Crusher program, an engineered perception
cost function was continually redesigned and retuned, culminating in a high perfor-
mance system [14]. However, this performance came at a high cost. Version control
logs indicate that 145 changes were made to just the form of the cost function; ad-
ditionally more than 300 parameter changes were checked in. As each committed
change requires significant time to design, implement, and validate, easily hundreds
of hours were spent on engineering the cost function. In contrast, the final training
set used to learn a cost function consisted of examples collected in only a few hours.

The performance of different perception cost functions was compared through
over 150 km of comparison trials. The final results comparing 4 different cost func-
tions are presented in Table 1. In comparison to the engineered system, a cost func-
tion learned for the global planner resulted in overly aggressive performance. As
discussed in Section 3, learning in this manner does not result in sufficiently high
costs; the result is that Crusher drives faster and turns less while appearing to suffer
from increased mobility risk. In contrast, the costs learned for the local planner per-
formed very similarly to the high performance of the engineered system. Addition-
ally, adding an initial replanning step further improved performance; by reducing
cost noise, average speed increased, with a decrease in turns and direction switches,
and no increase in mobility risk.

In conclusion, this work has demonstrated the applicability of imitation learning
towards improving the robustness of autonomous navigation systems, while helping
to minimize the necessary amount of expert interaction. Specifically, the parame-
ter tuning problem that often results from the coupling of complex perception and
planning systems can be automated through expert demonstration instead of expert

10

David Silver, J. Andrew Bagnell, Anthony Stentz

Table 1 Averages over 295 different waypoint to waypoint trials per perception system, totaling

over 150km of traverse. Statistically significant differences (from Engineered) denoted by *

System Avg. Distance |Avg. Cmd.| Avg. Cmd. | Avg. Lat. | Dir Switch| Avg. Motor | Avg. | Avg. | Avg Vert. Avg Lat. Susp. | Safety
| Made Good (m) | Vel. (m/s) [Ang. Vel.(o/s)| Vel. (m/s)| Perm | Current (A) [Roll(0) | Pitch(o) | Accel (m/s2) | Accel (m/s2)|MaxA (m) | E-stops
Engineered 130.7 3.24 6.56 0.181 0.107 7.53 4.06 2.21 0.696 0.997 0.239 0.027
Global 123.8% 3.34% 4.96% 0.170* 0.081%* 7.11% 4.02 2.22 0.710* 0.966* 0.237 0.054*
Local 127.3 3.28 5.93* 0.172% 0.100 7.35 4.06 2.22 0.699 0.969* 0.237 0.034
Local w/replan 124.3* 3.39% 5.08% 0.170* 0.082% 7.02% 3.90* 2.18 0.706* 0.966* 0.234* 0.030

intervention. In the future, we wish to expand this approach to also automate the
selection of parameters internal to a planning system, further reducing the need for
human tuning.

This work was sponsored by DARPA under contract “Unmanned Ground Com-
bat Vehicle - PerceptOR Integration” (contract MDA972-01-9-0005) and by the U.S.
Army Research Laboratory under contract “Robotics Collaborative Technology Al-
liance” (contract DAAD19-01-2-0012). The views and conclusions contained in this
document are those of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of the U.S. Government.

References

10.

11.

12.

13.

14.

15.

. Abbeel, P, Ng, A.: Apprenticeship learning via inverse reinforcement learning. In: Interna-

tional Conference on Machine Learning (2004)

. Ferguson, D., Stentz, A.: Using interpolation to improve path planning: The field d* algorithm.

Journal of Field Robotics 23(2), 79-101 (2006)

. Green, A., Rye, D.: Sensible planning for vehicles operating over difficult unstructured ter-

rains. IEEE Aerospace Conf. (2007)

. Kelly, A., Stentz, A., Amidi, O., Bode, M., Bradley, D., Diaz-Calderon, A., Happold, M., Her-

man, H., Mandelbaum, R., Pilarski, T., Rander, P., Thayer, S., Vallidis, N., Warner, R.: Toward
reliable off road autonomous vehicles operating in challenging environments. International
Journal of Robotics Research 25(5-6), 449483 (2006)

. Kim, D., Sun, J., Oh, S.M., Rehg, J.M., Bobick, A.F.: Traversability classification using unsu-

pervised on-line visual learning. In: IEEE International Conference on Robotics and Automa-
tion (2006)

. LeCun, Y., Muller, U., Ben, J., Cosatto, E., Flepp, B.: Off-road obstacle avoidance through

end-to-end learning. In: Advances in Neural Information Processing Systems 18 (2006)

. Pomerleau, D.: Alvinn: an autonomous land vehicle in a neural network. Advances in neural

information processing systems 1 pp. 305 — 313 (1989)

. Ratliff, N., Bagnell, J., Zinkevich, M.: Maximum margin planning. In: International Confer-

ence on Machine Learning (2006)

. Ratliff, N., Bradley, D., Bagnell, J., Chestnutt, J.: Boosting structured prediction for imitation

learning. In: Advances in Neural Information Processing Systems 19. MIT Press (2007)
Ratliff, N.D., Bagnell, J.A., Silver, D.: Learning to search: Functional gradient techniques for
imitation learning. Autonomous Robots (2009)

Silver, D., Bagnell, J.A., Stentz, A.: High performance outdoor navigation from overhead data
using imitation learning. In: Proceedings of Robotics Science and Systems (2008)

Silver, D., Bagnell, J.A., Stentz, A.: Perceptual interpretation for autonomous navigation
through dynamic imitation learning. In: ISRR (2009)

Stentz, A.: CD*: a real-time resolution optimal re-planner for globally constrained problems.
In: Proceedings of AAAI National Conference on Artificial Intelligence (2002)

Stentz, A., Bares, J., Pilarski, T., Stager, D.: The crusher system for autonomous navigation.
In: AUVSIs Unmanned Systems (2007)

Tompkins, P., Stentz, A., Whittaker, W.: Mission planning for the sun-synchronous navigation
field experiment. In: IEEE International Conference on Robotics and Automation (2002)

