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Abstract

Local experts have been used to great effect for fitting de-

formable models to images. Typically, the best location in

an image for the deformable model’s landmarks are found

through a locally exhaustive search using these experts. In

order to achieve efficient fitting, these experts should afford

an efficient evaluation, which often leads to forms with re-

stricted discriminative capacity. In this work, a framework

is proposed in which multiple simple experts can be utilized

to increase the capacity of the detections overall. In partic-

ular, the use of a mixture of linear classifiers is proposed,

the computational complexity of which scales linearly with

the number of mixture components. The fitting objective is

maximized using the expectation maximization (EM) algo-

rithm, where approximations to the true objective are made

in order to facilitate efficient and numerically stable fitting.

The efficacy of the proposed approach is evaluated on the

task of generic face fitting where performance improvement

is observed over two existing methods.

1. Introduction

Deformable model fitting is the problem of finding the
optimal configuration of a parameterized shape model that
best describes the object of interest in an image. Objects
that are typically modeled in this way include the human
face [3, 19] and organs in medical image analysis [22, 24].
Numerous representations and fitting strategies have been
proposed for these objects, most of which can be catego-
rized based on their representations as being either holistic
or patch-based.

Holistic representations, for example [3, 12, 21], model
the appearance of all image pixels describing the object.
The advantage of such a representation is that all available
data is used simultaneously during fitting. As such, these
methods have the capacity to attain highly accurate fitting.
However, such a representation generalizes poorly when the
object of interest exhibits large amounts of variability, such
as in the case of the human face under variations in iden-

tity, expression, pose and lighting [8, 19]. This is due to the
high dimensionality of the represented appearance and the
typically limited amount of available training data. It has
been shown in [1, 19] that a parts-based representation can
improve the model’s representation capacity as it accounts
only for local correlations between pixels values.

Patch-based approaches, for example [4, 6, 25], model
the appearance around each landmark of the parameterized
shape model independently of all others. They exhibit good
generalization with limited data and can offer a degree of
robustness towards changes in lighting conditions. Unlike
holistic based approaches, where fitting is generally posed
either as a regression between the image and the parameter
updates [20, 21, 28] or as the deterministic minimization of
some kind of fitting criterion [12, 14, 17], patch-based de-
formable model fitting typically proceeds by exhaustively
searching for the best landmark locations in the image that
are then constrained to adhere to the shape model’s parame-
terization. Care should to be taken here with regards to how
the landmark locations are constrained to reflect confidence
over their detections [10, 25]. Local experts used in the
exhaustive search generally require an efficient evaluation.
This places limits on the complexity, and hence capacity, of
these experts. For complex visual objects, simple local ex-
perts may be unable to discriminate correct from incorrect
locations, limiting the fidelity of such an approach.

In this work, we propose a principled way of combining
responses for each landmark from an ensemble of simple
local experts. This is achieved by posing the fitting problem
probabilistically, where the likelihood of each landmark lo-
cation is approximated using a mixture model. Each com-
ponent of the mixture is of the result of an exhaustive search
with a local expert. The parameters of the shape model de-
scribing the object in the image are found by maximizing
the likelihood over all landmark location through the expec-
tation maximization (EM) algorithm. We begin in §2 with a
brief overview of relevant work, where the parameterization
of the shape model and local experts are discussed. The fit-
ting algorithm is then presented in §3. Results of empirical
experiments investigating the efficacy of this approach are



presented in §4. We conclude in §5 with a brief overview
and mention of future work.

2. Background

Deformable model fitting is a heavily researched topic.
In this section, we give a brief overview of advances in local
experts based deformable model fitting, motivating the use
of mixture of experts in §3, where the parameterization is
discussed in §2.1 and the local experts in §2.2.

2.1. Constrained Local Models

The most typical parameterization of a deformable visual
object is that of the point distribution model (PDM) [4]. It
assumes a linear generative model on the non-rigid varia-
tions of the object 1:

s = s̄ + Φ q, (1)

where s denotes the coordinates of the shape’s landmarks
in the pose normalized frame, s̄ denotes the mean shape,
Φ is a matrix whose columns consist of the directions of
variability, and q are the parameters of the model. In
this work we utilize a 3D linear shape model (i.e. s =
[x1; y1; z1; . . . ; xn; yn; zn]), where s̄ and Φ are found by
applying non-rigid structure from motion on a set of 2D
shapes [23]. The shape of the visual object in the image
frame is obtained by projecting s onto the image with a suit-
able scaling, rotation and translation:

x = [x1; . . . ;xn] = α (I ⊗ R) s + 1⊗ [tx; ty]. (2)

Here, α denotes the global scaling, [tx; ty] denotes the
global translation and R denotes a truncated rotation ma-
trix (i.e. we use a weak perpective model). In discussions
that follow, the parameter set describing the PDM is denoted
p = {α,R, tx, ty,q}.

Patch-based approaches to deformable model fitting typ-
ically involve an exhaustive local search for the best loca-
tion of each PDM landmark that are then constrained to
adhere to the PDM’s parameterization. This is typically
achieved through a least squares fit:

Q(p) =
n

∑

i=1

‖xi − µi‖
2
Wi

, (3)

where {µi}n
i=1 denote the locations found by the exhaustive

local search procedure and {Wi}n
i=1 are weighting matri-

ces that represent the importance of matching to any par-
ticular landmark. In this work, we will collectively refer to

1Notation: Function names are written in upper case, scalars in lower
case, vectors in lowercase bold and matrices in uppercase bold, where I

denotes the identity matrix. Greek letters denote either vectors or matri-
ces depending on context. The ⊗ operator denotes the Kronecker (tiling)
product. N (x;µ,Σ) denotes a Gaussian probability density function over
the random variable x with mean µ and covariance Σ. The elliptical error
norm is written: ‖x‖2

W
= xT Wx.

all methods that utilize such a fitting strategy as constrained
local models (CLM) 2.

2.2. Local Experts

The exhaustive local search for the best location of each
PDM landmark is typically realized through the use of local
experts. These local experts can be roughly divided into two
types: generative and discriminative.

Generative local experts model the distribution of local
patch appearance across the many instantiations of the vi-
sual object. The simplest patch expert assumes a Gaussian
distribution on patch appearance. When the appearance dis-
tribution of the model is assumed to be full rank, the match-
ing criterion used by the Gaussian local expert is the Ma-
halanobis distance [4]. However, such a criterion is compu-
tationally expensive to evaluate. In [4], both the patch and
search region are constrained to lie along profiles, allow-
ing an efficient evaluation. In general, where a rectangular
patch representation and search window are utilized, a more
efficient criterion is the distance-from-feature-space [16].
This involves a truncated basis of patch appearance, the di-
mensionality of which is usually much smaller than the di-
mensionality of the patch. However, this may still incur
significant computational costs. In [6], a combined deter-
ministic/stochastic optimization strategy is utilized, where
a search for the optimal PDM parameters is alternated with
solutions for the optimal parameters of the truncated patch
appearance model. For a fixed shape, the optimal patch ap-
pearance parameters can be computed in closed form by
virtue of the use of a linear generative appearance model.
For a fixed appearance, the optimal landmark locations are
found through a stochastic sampling of the spatial domain
(i.e. the exhaustive local search).

Although generative approaches have an intuitive appeal,
they are optimally constructed for synthesis rather than clas-
sification. To address this drawback, some authors propose
using discriminative local experts, where both aligned and
misaligned examples are considered during training [5, 25].
In the interest of facilitating an efficient evaluation, discrim-
inative local experts are generally limited in their capac-
ity. For example, in [25], a linear support vector machine
(SVM) was used for this purpose. It allows an extremely
efficient evaluation as it requires only the inner product of
two patch-sized vectors in its evaluation. However, a lin-
ear classifier may be too restrictive to account for the large
inter-class variability exhibited by many deformable ob-
jects. In [5], a boosted ensemble of weak classifiers was
used that allowed an efficient evaluation through the utility
of Haar-based features.

A third category of CLM fitting methods is one that uses
a displacement expert for each PDM landmark [5, 26]. Such

2This term should not be confused with the work in [6] which is a
particular instance of CLM in our nomenclature.



an approach has the potential to be more efficient since a
locally exhaustive search is avoided. However, since the
displacement expert needs to determine both the direction
and magnitude of misalignment, such an approach is more
difficult to train and exhibits poorer generalization.

3. Fitting with a Mixture of Local Experts

As previously mentioned, local experts in the CLM fit-
ting framework require an efficient evaluation as well as
accurate estimates of the correct landmark locations. The
effects of these two opposing criteria are most clearly ob-
served when the object of interest exhibits large intra-class
variability. If the model is too simple, it lacks the capac-
ity to accurately distinguish aligned from missaligned loca-
tions (see experimental results in §4). If the model is too
complex it requires a large computational overhead as well
as exhibiting generalization difficulties.

In terms of computational efficiency, no expert is better
than the linear classifier used in [25]. Further computational
savings can be made through an intelligent feature selection
scheme, such as that proposed in [18]. However, its domain
of application is limited to cases where the data is linearly
separable. In this section, we make the case for the use of
a mixture of linear experts and demonstrate how they can
be efficiently integrated into a CLM fitting framework. Al-
though the discussion here centers on the use of linear clas-
sifiers, the proposed optimization strategy can be applied to
any combination of local experts that afford a probabilistic
interpretation.

3.1. Mixture of Linear Experts

In this work we are interested in a particular class of non-
linear classifiers that take the form of an additive ensemble
of simple classifiers:

E(d) =
K

∑

i=1

πi Ei(d), (4)

where d denotes the observed data (i.e. the cropped image
patch), Ei denotes the ith simple classifier and {πi}K

i=1 are
the mixing coefficients. Classifiers that exhibit such a form
include the boosted set of weak learners and kernel SVM. In
particular, we are interested in a probabilistic interpretation
of classification, where Ei denotes the likelihood of d be-
ing positive data (i.e. observed from the aligned landmark
location) given that the ith simple expert is selected for clas-
sification, and πi denotes the probability of selecting that
expert (i.e.

∑K
i=1 πi = 1).

Within a probabilistic CLM framework, the parametric
form of a mixture of experts for the ith PDM landmark takes

the following form:

p(li|xi, I) =
Ki
∑

k=1

p(zi = k|x, I) p(li|zi = k,xi, I), (5)

where li ∈ {aligned, missaligned}, I denotes the image, zi

denotes the mixture membership and Ki denotes the num-
ber of mixture components for the ith landmark. Here, we
model the likelihood of a landmark being correctly aligned,
given the choice of its location and mixture component, us-
ing the exponential of the negative hinge loss (i.e. the data
term of a linear SVM) [2]:

p(li = aligned|zi = k,xi, I) = e−max(1−wT
ikC(xi;I)+bik,0),

(6)
where C crops the image I around x:

C(x; I) = [I(y1); . . . ; I(ym)] ; {yi}
m
i=1 ∈ Ωx, (7)

with Ωx denoting a rectangular region centered around x
in the image (i.e. the image patch). The mixture weights
in Equation (5) capture the likelihood of a particular mix-
ture component membership. For this, we use a data-driven
model, a convenient choice of which is the multinomial log-
linear model [11]:

πik(x; I) = p(zi = k|x, I) =
eγvT

ikC(x;I)

∑Ki

j=1 eγvT
ijC(x;I)

, (8)

where C is as in Equation (7) and γ controls the ”soft-
ness” of the assignment that can be learned from the data
though cross validation. Making the mixture weights data-
dependent allows more flexibility in modeling and the abil-
ity to cope with ambiguous data labels.

The advantage of a mixture of linear experts over more
general classification schemes is twofold. First, the com-
putational complexity of a mixture of linear experts grows
only linearly with the number of mixture components. Sec-
ond, the generalization capacity of the model is directly re-
lated to the number of mixtures used, akin to the number
of weak learners used in a boosting framework [13]. Com-
pared to kernel SVM, for example, mixture of linear SVMs
has been shown to exhibit similar classification accuracy
and generalization whilst affording a much reduced com-
putational complexity [7].

3.2. Optimization through the EM Algorithm

With a probabilistic interpretation of the local expert re-
sponses, the problem of CLM fitting can be posed as find-
ing the parameters of the PDM that maximize the likelihood



that its landmarks are correctly aligned3:

p({li = aligned}n
i=1|{xi}

n
i=1) =

n
∏

i=1

p(li = aligned|xi),

(9)
where landmark detections are assumed to be conditionally
independent. Regardless of the type of classifier used to
define {p(li|xi)}n

i=1, Equation (9) is a nonlinear function
of the PDM parameters p, which define {xi}n

i=1 through
Equations (1) and (2). Although a solution can be obtained
by using a general purpose optimization strategy, the partic-
ular form of the objective allows a more specialized treat-
ment.

Treating the local expert membership z = {zi}n
i=1 as

latent variables, the objective in Equation (9) can be op-
timized using the EM algorithm. The E-step involves the
computation of the posterior over the latent variables:

p(zi = k|li,xi) =
πik(xi) p(li|zi = k,xi)

∑Ki

j=1 πij(xi) p(li|zi = j,xi)
. (10)

In the M-step, the expectation of the negative log of the
complete data is minimized with respect to the parameters
of the PDM:

Q(p) = Eq(z)

[

− log

{

n
∏

i=1

p(li = aligned, zi|xi)

}]

,

(11)
where q(z) =

∏n
i=1 p(zi|li = aligned,xc

i ), with xc
i denot-

ing the current estimate of the ith landmark. Maximizing
this objective function with respect to the PDM parameters
p is difficult as both πik(xi) and p(li = aligned|zi,xi)
are nonlinear in xi. In addition, the landmark locations
are related nonlinearly to the PDM parameters, as defined
through Equations (1) and (2). In the following, we describe
some approximations that greatly simplify the computations
involved in the EM algorithm.

Likelihood Approximation: Regardless of the type of
classifier used in the mixture model, p(li = aligned|zi,xi)
will generally be nonlinear as it involves the extraction of
pixel intensities from the image, defined in Equation (7),
which are generally related to the PDM parameters nonlin-
early. Recently, in a method coined convex quadratic fit-
ting (CQF) [25], the authors propose substituting the true
responses for each landmark with a convex quadratic that
best matches the responses locally. This greatly simplifies
the optimization procedure, allowing a closed form solu-
tion to be attained. Furthermore, such an approximation
has been shown to approximately preserve the expert’s di-
rectional uncertainty (i.e. the aperture problem), which is

3Throughout the rest of this paper, dependence on the image I will be
dropped for succinctness, but implicitly assumed in all function.

Figure 1. Approximating the left eye corner landmark likelihood

with a Gaussian mixture model. The true responses for each local

expert, {p(li = aligned|zi,xi)}
Ki
zi=1

, are first approximated by a

Gaussian, then combined using the approximate mixing weights:

p(li = aligned|xi) ≈
P

Ki
k=1

π̃ik N (xi; µik,Σik).

prevalent in patch based detection due to the limited struc-
ture of the data. A probabilistic interpretation of CQF is that
the expert responses denote the negative log of a generating
probability density function (PDF), in which the quadratic
approximation is equivalent to assuming the PDF is Gaus-
sian in the spatial dimensions. Utilizing such an approxi-
mation here, the likelihood of the ith PDM landmark being
correctly aligned is given by:

p(li = aligned|zi = k,xi) ≈ N (xi ; µik,Σik), (12)

where the mean and covariances are set to their maximum
likelihood estimate over the search region:

µi =
1

∑

y∈Ψxi
py

∑

y∈Ψxi

py y (13)

Σi =
1

∑

y∈Ψxi
py

∑

y∈Ψxi

py(y − µi)(yi − µi)
T , (14)

where py = p(li = aligned|zi = k,y) and Ψxi
denotes the

rectangular search region centered at xi.
Rather than applying the Gaussian approximation to the

response map of each local expert separately, it is also pos-
sible to apply the approximation directly to the combined
response maps {p(li = aligned|xi)}n

i=1. However, such an
approximation may over-smooth the response maps, limit-
ing the fidelity of the resulting fit. In contrast, the approx-
imation made here loosely preserves the modalities of the
true response map originating from the various local ex-
perts. Although it is possible to directly fit a Gaussian mix-
ture model to the true response map, this process is compu-
tationally expensive and not provably optimal (i.e. depen-
dent on initialization).

Mixing Weight Approximation: The data dependent mix-
ing weights, {πik}

Ki

k=1, also inject nonlinearities into Equa-



tion (11). For this, we assume that both aligned and mis-
aligned patches for a given image acquire the same local
expert membership through the gating function defined in
Equation (8). Such an assumption is reasonable since the
experts primarily cluster the data based on patch appearance
variations between instances of the visual object. A simple
approximation, therefore, is the average membership likeli-
hood:

πik(x) ≈ π̃ik =

∑

y∈Ψxi
πik(y)

∑Ki

j=1

∑

y∈Ψxi
πij(y)

; ∀x ∈ Ψxi
. (15)

This approximation, along with the Gaussian estimated
landmark likelihood described previously, constitutes re-
placing p(li = aligned|xi) in Equation (9) with a Gaussian
mixture model (GMM) with fixed mixing weights. An il-
lustration of this approximation is shown in Figure 1.

It should be noted that this approximation is only re-
quired when the prior over mixture membership is data
driven, such as for the multinomial log-linear model in
Equation (8). When the mixing weights are independent
of the data, as in the case of typical additive classifier en-
sembles, then Equation (15) is no longer an approximation.

Shape Model Approximation: With the GMM approxi-
mation described above, the so called Q-function in Equa-
tion (11) simplifies to:

Q(p) ∝
n

∑

i=1

Ki
∑

k=1

wik‖xi − µik‖
2
Σ−1

ik

+ const, (16)

where wik = p(zi = k|li = aligned,xi) given in Equa-
tion (10). Although this form is much simplified compared
to that in Equation (11), it is still nonlinear due to the way
shape is parameterized in Equations (1) and (2). For this,
we apply a first order Taylor expansion of the shape model
around the current estimate of its parameters:

xi = xc
i + Ji∆p, (17)

where xc
i are the 2D-coordinates of the ith landmark of the

PDM under its current parameter estimate, Ji is the Jaco-
bian of that landmark’s coordinates, and ∆p is the sought
parameter update, which is to be applied additively to the
current estimate: p ← p + ∆p4. With this approximation,
the solution for the M-step of the EM algorithm takes the
form:

∆p =

(

n
∑

i=1

Ki
∑

k=1

wikJ
T
i Σ−1

ik Ji

)−1 n
∑

i=1

Ki
∑

k=1

wikJ
T
i Σ−1

ik dik,

(18)
where dik = µik−xc

i . The complete CLM fitting algorithm
with a mixture of local experts is outlined in Agorithm 1.

4To apply the additive parameter update to the weak perspective model
in Equation (2), we utilize the small angle rotation matrix approximation
in the Taylor expansion. Details on this can be found in [15].

Algorithm 1 CLM Fitting with a Mixture of Local Experts

Require: I and p.
1: while not converged(p) do
2: Compute {{πik}

Ki

k=1}
n
i=1 {Eqn. (8)}

3: Compute {{p(li|zi = j,xi)}
Ki

j=1}
n
i=1 {Eqn. (6)}

4: Compute Gaussian approximation {Eqn.(12)}
5: Compute mixture weight approximation {Eqn.(15)}
6: Linearize Shape Model {Eqn. (17)}
7: Initialize parameter updates: ∆p ← 0
8: while not converged(∆p) do

9: E-step {Eqn. (10)}
10: M-step {Eqn. (18)}
11: end while

12: Update parameters: p ← p + ∆p

13: end while
14: return p

4. Experiments

The performance of CLM with a mixture of local experts
(CLMix) was evaluated using the CMU Pose, Illumination
and Expression Database (MultiPie) [9]. A collection of
2457 images of 339 subjects were hand labeled with 68-
points that were used as ground truth. The collection con-
tains significant variations in identity, facial expression and
pose. The 3D shape model was learned using structure from
motion [23], retaining 15 modes of non-rigid shape varia-
tion. The images were partitioned into four parts for use in
a 4-fold cross validation procedure, where three parts were
used for training and the remainder for testing in each of
the four trials. During testing, the PDM was randomly per-
turbed from its optimal configuration in each training image
and CLM fitting performed until convergence, as measured
through the change in landmark locations between itera-
tions. Fitting performance was measured as the root-mean-
squared (RMS) distance between the converged shape and
the ground truth.

CLMix was compared against two other methods,
namely the active shape model (ASM) [4], which acts as a
baseline for deformable model fitting, and CQF [25], which
is equivalent to CLMix with one mixture component for
each landmark. In all methods the linear SVM was used
for the local experts, where the training data consisted of
(11 × 11)-patches. Positive data was cropped from the im-
age at the ground-truth coordinates and negative data at a
distance (5 ≤ δ ≤ 20)-pixels from it. The mixture of local
experts were trained using the EM-based method described
in [7], initialized using K-means on the positive data patch
appearance. Models were trained for Ki = {1, . . . , 5},
where {Ki = Kj ; ∀ i, j ∈ [1, . . . , n]}. During fitting,
the exhaustive local search for all methods was performed
within a (11 × 11)-window. As such, all methods share the
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Figure 2. Fitting performance using ASM, CQF and CLMix. Subscripts for CLMix in the legend denote the number of mixture components.

(a): Fitting curves with an initial perturbation range of 0.1σ. (b): Fitting curves with an initial perturbation range of 1.0σ. (c): Plot of area

under the fitting curves against the range of initial perturbation.

same parameterization and local expert type, differing only
in the number of experts used and their optimization strat-
egy5.

The combined results of these experiments are presented
in Figure 2. The fitting curves in Figures 2(a) and 2(b) show
the proportion of images at which various levels of maxi-
mum error was exhibited at convergence. Figure 2(c) plots
the area under the fitting curves, which is a measure of over-
all convergence accuracy, against the range of initial pertur-
bations as measured in fractions of σ, the standard deviation
of variation exhibited in the database6. The fitting curves in
Figures 2(a) and 2(b) are for initial perturbation ranges of
0.1σ and 1.0σ, respectively. Some examples of fitting re-
sults are shown in Figure 3

The results show a significant improvement in perfor-
mance afforded by CLMix over CQF and ASM. This is
most pronounced when the range of initial perturbation is
small. When the model is grossly misplaced (i.e. an initial
perturbation range greater than σ), CLMix performs simi-
larly to CQF but much better than ASM. This suggests that
CLMix is more sensitive towards local minima than CQF.
However, CLM lacks the capacity to account for the large
amount of variability exhibited by faces in the database due
to its use of only a single linear classifier as its local ex-
pert. This can be seen by its limited accuracy even when
optimally initialized (i.e. zero initial perturbation range).

5ASMs typically use a generative Gaussian expert and a profile search
region. The particular instance of ASM being compared here was chosen
to highlight the utility of mixture of experts and the proposed optimization
strategy.

6The various parameters of a PDM typically exhibit differing scales,
resulting in different variances across the database. We use σ here as a
generic indicator of parameter variance. For example, a perturbation range
of 0.1σ denotes the ranges within 0.1 of the variance in scale, translation
rotation and nonrigid parameters within the database, independently.

The results also show that performance improvement is
marginal when using more than two mixture components.
This suggests that two mixture components are sufficient
to distinguish aligned from misaligned landmarks in this
database. This further motivates the use of a mixture of
linear classifiers as opposed to more general nonlinear clas-
sifiers, since good performance can be attained with as little
as two mixture components. Examining Figure 3, one no-
tices that the ASM and CQF fail to accurately detect land-
marks on the outline of the face. Since patches extracted
from these landmarks will include background pixels, two
disjoint cases exist: when the background is lighter than the
face, and vice-versa. A linear classifier can not accurately
distinguish such cases, but a mixture of two linear classi-
fiers can. This is a partial explanation of the performance
improvement afforded by CLMix. When the database ex-
hibits other sources of variability, changes in lighting con-
ditions for example, more than two mixture components
may be required to accurately distinguish aligned from mis-
aligned landmark locations. In practice, the number of mix-
ture components used for each landmark should reflect the
data for that landmark in order to maximize the utility of
such a framework.

Finally, despite the significant improvement in perfor-
mance, the computational complexity of CLMix scales only
linearly with the number of mixture components. In the
experiments presented here, the average fitting time for
C/C++ implementations of ASM, CQF, CLMix2, CLMix3,
CLMix4 and CLMix5 on a 2.5GHz Intel Core 2 Duo were
101ms, 113ms, 178ms, 223ms, 285ms and 353ms, respec-
tively. In addition, further computational savings can be
attained when parallel processing is involved. The compu-
tation of the response maps for each local expert of each
landmark constitutes the bulk of the computational load in



CLMixRawImage ASM CQFInitialization

Figure 3. Examples of fitting results for ASM, CQF and CLMix2.

CLMix. However, the computation of each response map
is independent of all others, due to the conditional indepen-
dence assumption made in Equation (9) regarding landmark
detections. This facilitates a multithreaded implementation,
computing all response maps in parallel rather than in se-
ries.

5. Conclusion

In this work, an approach for combining multiple local
experts for deformable model fitting was presented. The ap-
proach makes use of a mixture of linear classifiers for each
landmark of the model’s shape. Optimization is performed
using the EM algorithm, where some approximations to the
true objective are made in order to achieve efficient fitting.
Experiments were performed, comparing the proposed ap-
proach with two existing methods, where improvements in

fitting fidelity was observed when using multiple local ex-
perts. Furthermore, the computational complexity of the
approach was shown to scale only linearly with the number
of mixture components used.

Further improvements to the proposed framework are
also possible. In particular, the local experts can be trained
specifically for use in the proposed approach. This would
involve training local experts to generate distribution of
landmark likelihoods that are better approximated by a
Gaussian. For example, in [17, 27] an expert is learned that
can generate approximately convex responses. Other im-
provements may include relaxing the simplifying assump-
tions made in §3.2, optimizing the true objective rather than
an approximation thereof. This may be achieved by fitting
on a hierarchy of smoothed estimates to avoid local minima
and promote numerical stability.
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