
Carnegie Mellon University

Robotics Institute

Thesis

Master’s Degree

Title:

Visual Programming Pedagogies and Integrating Current Visual

Programming Language Features

Date of Submission: August 19th, 2009

Submitted by: Erik Pasternak

Supervisor: Professor Illah Nourbakhsh

Robotics Institute

Committee Members: Aaron Steinfeld

Robotics Institute

Leigh Ann Sudol

Computer Science

Contents

1 Introduction 4

1.1 History of VPLs . 5

2 Literature Review 5

2.1 Barriers to Entry . 6

2.2 Gulf of Execution . 7

2.3 Gulf of Evaluation . 8

2.4 Further Discussion . 9

3 JubJub 9

3.1 Researcher Interviews . 10

3.2 System Design . 11

3.3 User Study . 17

3.3.1 Methods . 18

3.3.2 Results and Discussion . 20

3.4 Future Work . 22

4 Conclusion 22

5 Acknowledgements 23

A User Interview Questions 27

B Concept Drawings 28

2

Abstract

This Master’s Thesis presents research on pedagogic visual programming languages for computer

science education. In it we review previous work, discuss current concepts and tools, and propose

further work with initial findings for a new visual Java environment called JubJub. JubJub was

created as part of this research to support customizable sets of visual bocksl in order to easily

interface with diverse sets of educational material. JubJub was inspired by many features of current

pedagogic and visual languages, as well as interviews with experts in the field of CS education and

visual programming languages. A prototype of JubJub was created and used in a pilot test, the

results of which will direct future development of JubJub.

3

1 Introduction

The US Bureau of Labor predicts that by 2016 there will be over 1.5 million computer specialist

jobs available in the US. The number of people with a bachelor’s in Computer Science from a US

university is only expected to account for 53% of the needed workforce [1]. Combined with the

general decline in CS enrollment many colleges are facing [2], it is clear that improvements to CS

curriculum are needed. Pedagogic tools, languages, and environments have been developed to make

programming easier for novices and younger students to start learning and to find new ways of mo-

tivating and inspiring students. Languages like Scratch [3] and Turtle Art [4] are designed to appeal

to children as young as 8, while IDEs such as BlueJ [5] and DrJava [6] provide increased support for

novice programmers. One part of the solution is innovative visual programming languages (VPLs)

designed to motivate students at all age groups and support the teaching of programming and CS

concepts.

Visual programming languages are intended to provide metaphores for programmers. These

metaphores often relate real world activities, such as snapping blocks together [7, 3, 4], creating a

music patch [8], or building circuit diagrams [9], with existing programming paradigms. Through

these metaphores the user becomes able to create an affect with minimal training and more easily

grasp programming concepts. VPLs help to create a more natural programming environment that

users find familiar. In Computer Science education, where the goal is to produce programming and

software experts, VPLs have several goals beyond letting a user write programs:

1. Use metaphores that are understood by a broad audience.

2. Reduce the cognitive load on students learning their first language.

3. Create code that is easily read and understood.

4. Be usable by teachers.

5. Support current curriculum and make integration easy.

6. Support students transitioning into commercial programming languages.

7. Be fun.

4

All of these goals cannot be met for everyone at once, and so many different tools have been

developed which focus on different groups and age ranges. Research on VPLs is still relatively new,

and while there are some great tools already available, there is still a lot of work to be done. To

help, this paper presents research on the current state of VPLs, how they can help with some of the

problems that still persist in CS education, and presents work on a new VPL tool called JubJub to

provide further discussion of the features necessary for pedagogic VPLs to be effective. JubJub is

a visual environment being developed to allow the creation of custom sets of code blocks to easily

support a diverse set of materials and curricula. The main goal of this research has been to identify

the features and requirements important to pedagogic VPLs.

1.1 History of VPLs

W. Sutherland is credited with having created the first interactive VPL in 1966 [10]. Sutherland’s

system resembled a flow diagram with symbols for operations and interactions. VPLs continued

to be developed during the 70’s and 80’s as a way to allow scientists and computer enthusiasts

access to programming, but due to poor graphics capabilities at the time such languages had a

difficult time establishing themselves. Prograph, a box and line style VPL, remains one of the few

exceptions, with their first release in 1988 for the Mac. Prograph remained in active development

until the mid 90’s but has since given way to other languages. IDEs such as Visual Basic created a

hybrid environment which combined visual and textual elements [10]. Interest in VPLs dramatically

increased during the 90’s and today numerous popular VPLs can be found[3, 9, 11, 8, 12, 13].

2 Literature Review

The research important to pedagogic VPLs is wide ranging with roots in many fields. This section

will focus on a small portion of this research with two main goals in mind, (i) to discuss specific

difficulties in CS education which motivate the development of VPLs and (ii) to discuss features

of current VPLs and how they seek to overcome these difficulties. To this end, we will look at a

subsection of the research concerning novice programmers and the difficulties they face, as well as

research on the pedagogic tools that have been developed. When looking at tools we will mostly

focus on VPLs and features of other systems which can readily integrate with a visual environment.

5

This is not intended to be a complete discussion of the field or of all the tools available, but instead

to provide examples and support for important concepts and features of pedagogic VPLs.

Before a student faces any challenges learning to program they must choose to learn program-

ming. For many students, this involves overcoming barriers to entry which can take many forms

for many people. We will first look at some of these barriers and research on how they may be

overcome. Once we examine these barriers, we will make use of Norman’s Gulf of Execution, which

is the distance between what a user intends to do and the actions a system presents, and Gulf of

Evaluation, which is how well a system makes available and understandable its state to the user

for evaluation [14], to scaffold our discussion of the difficulties students face.

2.1 Barriers to Entry

Interest in computer science has been declining significantly since 2000 with a 39% decrease be-

tween the fall of 2000 and 2004 [2]. Women and minorities have had the steepest decline, with

a 79% decrease in interest in CS among women between 2000 and 2008 [1]. This is on top of an

already existing underrepresentation of these groups in CS [1]. Women and minorities face many

extra barriers to entry, including external discouragement and a lack of access to the tools and com-

munities necessary to learn [15, 16, 17, 18]. While dramatic changes are needed to remove these

extra barriers, other steps can be taken to help. Maloney describes a program in which researchers

introduced Scratch into urban youth centers in low income areas to great affect [19]. Within two

years of supporting the Scratch IDE researchers found Scratch had become the most heavily used

media creation tool at the centers, even over programs like MS Word. The key to Scratch’s success

was the explorative model of learning they used; Scratch was supported in the centers, but no

classes or assignments were provided [19]. In interviews, youth who used Scratch did not associate

scripting in Scratch with programming, yet they used a wide variety of programming concepts and

structures [19]. The authors of the study believe not associating Scratch with programming may

have helped youth see it as something fun and cool [19]. Maloney, in [19], also found Scratch was

used by an even mix of boys and girls, showing a general appeal for the style of learning. This

increase in women’s interest has been shown with the use of storytelling and creating worlds with

Alice as well [20].

6

There are also barriers to entry that affect all students. Negative stereotypes regarding com-

puter experts and misconceptions about the skills needed in CS are common among high school

students [18]. Many programs fail to excite students, and use lesson plans that are “disengaging

and isolated from the problem solving and scientific reasoning that is at the core of computer

science” [16]. VPLs empower students and teachers alike by providing access to powerful, real

world applications such as graphics [13, 4], GUIs [12], gaming [11] and robotics [21, 7, 22]. These

motivators have been shown to be effective with standard languages as well [23, 24], though VPLs

allow much younger students to be reached.

2.2 Gulf of Execution

Once a student has decided to learn programming they are faced with many challenges. Students are

asked to master a number of skills in parallel, including syntax and grammar of the language itself,

problem solving and logic, and programming concepts such as object orientation and recursion [25].

Students must learn how to plan in terms of programming concepts, and also how to execute those

intentions in a given environment and language. Faced with this challenge, it is no surprise [26]

found very few students were able to write programs to accomplish simple tasks after one or two

programming courses, with students from four universities achieving an average score of 22.9/110

on the study’s assessment problems. This is where VPLs provide the greatest benefit; their use of

metaphores, simplification of the language, and visible constraints helps guide students, changing

the gulf of execution from a yawning chasm to a pothole and allowing them to focus on the

paradigms important to programming.

Students face many specific problems with execution, especially with syntax, selection, and use.

While most educators agree the goal in intro CS courses is to teach students programming concepts,

not a specific language [25], studies have found students struggle with syntax far more than we

think, with students spending up to 30 minutes on a single ’missing ;’ error [27, 28, 29]. The five

most common compiler errors – missing semicolon, unkown variable, illegal start of expression,

unkown class, and bracket expected – have been shown to account for over half of all compiler

errors among novice programmers [27]. [27, 28] also found a correlation between the students who

struggled with syntax errors and their grades in the course. Others have suggested this leads to

students focusing on writing code that compiles without understanding its function [26]. Many

7

VPLs eliminate the majority of syntax errors by creating visual cues and restrictions on how pieces

can fit together. IDEs like Scratch and Alice only allow valid blocks to be placed [3, 13]. Scratch

also uses shapes as visual cues to help students place code [3]. Students have difficulties with

selecting and using appropriate commands as well; in a study on the barriers students face, half

of the selection and use barriers encountered by students were insurmountable [30]. Pedagogic

IDEs and VPLs both use reduced language sets to make finding an appropriate command easier

for students, though this approach often fails to scale to more complex tasks [31]. VPLs also use

visual hints to help students decide what commands will do and how they are used [9, 3].

2.3 Gulf of Evaluation

Students’ also face problems with evaluating their results, due to conceptual misunderstandings as

well as poor support for tracking the state of a system. [30] describes these as understanding barri-

ers, when students must use system behavior (including compile and runtime errors) to determine

what a system did and did not do, and information barriers, when students attempt to observe the

internal behavior of a system to test their understanding. The majority of understanding and infor-

mation barriers encountered by students were insurmountable (34/38 and 10/14 respectively) [30].

VPLs have explored several features to help students overcome these barriers. Data flow VPLs, like

LabView, Robolab, and Pure Data, provide another way for students to visualize how information

is passed [8, 12, 9]. Labview also provides visualization tools to animate program flow to make it

easier for students to understand what values are being passed and where errors are occuring [9, 12].

Pure Data lets users run code while it is being edited, making it possible to observe the results of

changes in real time [8]. During selection and use students must also evaluate the results and deter-

mine if their understanding of commands is correct. One benefit of many pedagogic languages and

IDEs is that they provide what the creators of DrJava term a “read-eval-print-loop,” or REPL [32].

REPL is a method by which students can execute small portions of code or individual commands

and observe the output, making it much easier for them to discover differences between expected

and actual behavior of commands [32]. DrJava supports REPL by allowing students to enter in-

dividual commands which the system evaluates and displays the results of [6]. Similarly, Scratch

allows students to double click any block or group of blocks to run them [3] and BlueJ provides an

interface for instantiating objects and calling methods from those objects [5]. It has been shown

8

that the REPL method encourages exploration and incremental development among students [32].

2.4 Further Discussion

It has been shown throughout the literature that VPLs can support students in various ways, es-

pecially by reducing cognitive barriers and empowering students to create relevant projects. Many

features, such as animating program flow and providing access to the internal state of code, also

help students evaluate their programs. However, in CS programs where the goal is to produce

programmers and software experts it is also important to support students transferring into com-

mercial languages. Scratch and Alice have both had success motivating these transitions [33, 22].

However, it is unclear that these are the best tools to support such a transition. [34] comments,

“We can now more easily introduce beginners to programming; perhaps it is time to begin studying

the intermediate programmer, someone who has been introduced to programming through a system

designed for beginners and wants to apply that experience to learning a general language.” The

same observations led researchers at Hong Kong Polytechnic University to design a visual language

which generates code that is displayed next to the visual code for the Arduino [35]. Other work has

attempted to bridge the divide between VPLs and textual languages as well, including [36], which

lets students program with sequential sets of blocks, in Logo, or by directly clicking and dragging

the famous turtle around its window. Both of these systems remain experimental.

3 JubJub

The first goal in the design of JubJub is to create an architecture for a customizable and expandable

iconic programming interface. The reason for making this the main goal is to support integration

with current curricula, software, and educational materials. The second goal in designing JubJub

is to identify and integrate a comprehensive set of features useful to pedagogic VPLs with the

specific aim of supporting junior high and high school students who are interested in programming.

The current field of VPLs supports many unique and powerful features that are of great benefit

to novice programmers, and while some features are mutually exclusive, there are many lessons to

be learned from each system. Throughout the design description for JubJub, we will include what

we feel are the most significant contributions and features of current tools, from which JubJub has

9

borrowed heavily. JubJub is not a definitive set of the best features for pedagogic VPLs and many

concessions had to be made due to an accelerated development schedule, however, we feel it is a

solid base for achieving our goals. Initial requirement and feature identification was guided by a

series of interviews with researchers and educators in the field of pedagogic and visual languages.

Further development looked to research and informal feedback from students and educators for

help. Graphics and images for JubJub were created by Cheng Xu, an Interaction Design major at

CMU, while I designed and coded the system. The prototype system was demonstrated to high

school CS teachers and changes guided by their feedback were adopted. The modified system was

then used for an initial pilot with students to identify any critical problems and inform future

development.

3.1 Researcher Interviews

Nine researchers and educators were interviewed during the initial design of JubJub, including

members of the Scratch, Alice, RoboLab, and BlueJ teams. The interviews used an open format in

an informal setting and focused on the interviewees experience with students, the problems students

face, and their opinions and advice about visual languages. All of the people interviewed provided

excellent insight and advice, which will be summarized for discussion in this section.

Many of the problems discussed in the literature were reiterated anecdotally during the inter-

views. The cognitive load associated with standard environments and languages was seen as a

large problem in teaching new students. One educator explained it as, “Java is an 18-wheeler,”

while another described the ’gotchas’ of languages as the hardest part, citing the difference between

’.equals’ and ’==’ in Java as an example. However, when talking about syntax, all but one of the

educators who did not work with a VPL glossed over it, saying it was minor but necessary and that

they expected students to learn the syntax from examples on their own. In contrast, the visual

language researchers listed syntax as one of the problems they were avoiding, with the common

belief that “conceptual models of programming are the most important to learn and syntax and

typing really just get in the way.” Understanding the state of a system was another challenge

described in interviews. Difficulties with debugging, artifacts like overflow, and scope of variables

were all issues students were described as having.

10

The responses about visual languages were more varied, with many educators who used Java

IDEs commenting that VPLs obscured the details, making it too easy for students to build some-

thing without understanding how it works. Professors who used text based IDEs were also uncertain

if features like error highlighting during code writing were good for students, with some pointing

out that they’d like students to complete a thought first and then correct the grammar and syn-

tax. Even among VPL researchers, there was debate whether a language should rely more on

text or icons. All of the VPL researchers did feel that they did not have ’the’ solution, or that

there was a single solution, and were encouraging of the successes of other languages. Several com-

mon themes regarding programming environments were described during interviews. Environments

which encourage secondary notation were beneficial to students, with features like auto-indentation

and brace matching being the most often mentioned. Having students create code that does ’cool

things’ was also important, and most professors provided extensive frameworks to make projects

like Tetris possible. A sense of collaboration and sharing were also emphasized by researchers,

especially among the Scratch team who encourage students to build off of each others’ work. One

other point of emphasis was that students would grasp a new system faster than teachers will, and

that this should be kept in mind when designing a VPL.

3.2 System Design

Figure 1: Example code from

Scratch

To guide the design of JubJub, the research and interviews dis-

cussed earlier were used as a scaffold to explore other systems.

Several different approaches and pedagogies were found and each

system’s pros and cons were considered. Throughout this review of

other languages, it became increasingly apparent there is a lack

of material to bridge a student’s first programming experience

with commercial environments and languages. Three systems were

found to be representative of the most successful approaches in

VPLs, these are Scratch, Alice, and RoboLab. These systems have

been used by multiple universities and programs and have each demonstrated success in certain ar-

eas. Scratch provides the best example of a system that reaches out to new audiences and supports

a first foray into programming concepts, but part of their success comes from the restricted domain

11

they use. Scratch’s simplicity and a carefully chosen set of blocks supports their core concepts, but

Figure 2: Scratch’s stage with a background and several sprites

restricts what users can achieve and necessitates switching to another environment for more com-

plex programs. A snippet of example code from Scratch can be seen in Figure 1. Code in Scratch

affects sprites in a stage area, seen in Figure 2, which students can use to tell stories or make simple

games. Alice provides a larger set of concepts and behaviors and even allows some discussion of

Figure 3: Screenshot of the Alice code area

objects, but at the cost of many of the visual hints that makes Scratch so simple for novices to use

without direction (Figure 3). And Alice still uses a restricted domain of programming, focusing on

manipulating 3D scenes, called microworlds, for storytelling and games. An example microworld

12

can be found in Figure 4. Expanding Alice is possible but difficult, something which the creators

Figure 4: An Alice microworld

acknowledge and are working to support more explicitly in Alice 3.0. RoboLab takes visual lan-

guages a step further, using a purely iconic language, where functions are represented by an image

and use as little text as possible (Figure 5). RoboLab comes in several flavors, including ones for

Lego Mindstorms and as an extension to LabView, the commercial product RoboLab is based on.

RoboLab supports a large amount of expandability and customization of blocks and allows ad-

Figure 5: Example code from RoboLab for Lego Mindstorms(c)

13

vanced users to write code to create new blocks as well. Because RoboLab is based off of LabView

it is easy for students to transition to the commercial language LabView. However, RoboLab has

several problems as a pedagogic language (addressed more thoroughly in [37]). It tends towards

large sets of blocks, making selection a difficult process for novices. Students also face problems of

organizing their code and readability, making complex programs much more difficult to conceptual-

ize and debug. And while LabView is very useful in controls and data processing, especially among

engineers without formal programming experience, it does not have the ubiquity of languages like

Java and C. Finally, RoboLab is primarily a commercial product, coming as a bundle with Lego

Mindstorms or as an add-on to LabView, making access for students more costly. JubJub seeks to

combine many of the features that have been shown to be successful in other languages and act as

a bridge to commercial IDEs. In order to have the greatest impact, JubJub was targeted for 6th

through 12th graders and is intended as a transitional language.

The observations from other systems and interviews led to a set of primary goals which the

design of JubJub focuses on:

1. Explicitly support the creation of language subsets.

2. Make building examples and lessons which focus on single concepts easy.

3. Support integration with varied materials, especially robotics and existing libraries of code.

4. Build a framework that can be scaled to more complex projects.

5. Make it easy to share developed material.

6. Help students transition to a popular commercial programming language.

7. Maintain the level of simplicity and usability that makes VPLs a powerful tool.

The first four goals required extensive architectural considerations. The architecture described

here has been implemented and was used for the prototype, though not all features could be fully

implemented by the prototype interface. In order to provide the level of customization desired, a

modular approach was taken. Methods, functions, and objects were conceptually treated as black

boxes with inputs and outputs and properties that defined how they were used and what they did,

while abstracting the code underneath. The framework developed is general enough to support

14

Figure 6: Annotated concept for the standard view of JubJub

object use, common flow control, including loops and decision making, and supports scaling for

more complex structures like switch statements and multiple returns, which makes the architecture

expandable to languages other than Java and C. Attributes to track visibility and relation between

blocks were added to support identifying scope and tracking the location of errors. To support

recombining of blocks into new functionality all blocks were used through references. This mirrors

the structure of Java and C languages by allowing a single block of code to be called with different

parameters from many places throughout the code. Blocks were designed to maintain a list of these

references so that changes to blocks could immediately update all references and check for errors

that may have been introduced. A straightforward API was developed to make setting up the

properties of these blocks simple. Finally, the structure that stores these blocks was built around

XML concepts of heirarchy, making it easy to store project data in a single file that can be shared.

This structure continues up to the project and library level allowing block sets for lesson plans to

be shared in the same way that students would share their own code.

15

The last three items are primarily features of the interface, which was given equal consideration

in JubJub’s design. The following describes the core features and behavior of the desired interface,

though only a simplified version was implemented for user testing. Most of the features described ap-

pear in Figure 6. Features described will provide a reference to this figure and the letter annotation

they reference. After many iterations of concepts, a visual metaphore very similar to Scratch was

created (Figure 6: F). Blocks were shaped to visually snap together and both color and shape were

used to indicate how blocks should be put together. A palette on the left divides the blocks into high

level categories using tabs (Figure 6: C), which are then subdivided into specific categories with any

block specific help displayed in the palette (Figure 6: B). The interface supports the creation of new

Figure 7: An integer block in

JubJub. A verticle bar at the

left is the symbol for int

tabs and subgroups which the user can specify and rearrange to fit

their own thought process. The palette also uses dynamic updating

to provide access to variables, objects and methods as they are

created and shading and messages to indicate when variables are

in scope. This allows students to see when things are visible in their

code and build relations between methods, classes, and variables.

On the right is a call list (Figure 6: D), which provides quick navigation to methods and classes

and helps students to visualize the structure of their code. Buttons along the top provide access to

creating new projects, classes, and blocks, as well as a straightforward run/stop to make it easy for

students to test their code often (Figure 6: A). The center work frame allows students to manipulate

code by a drag-and-drop interface and uses highlighting to indicate placement (Figure 6: F). Many

errors are prevented by only allowing legal blocks to be placed. Some blocks do allow users to

type in values directly, such as expression blocks, and other errors may be created by changing the

properties of a method or class, so the interface would identify errors on-write and use highlighting

to indicate any errors both in the work space and the call tree. While the shapes of blocks are

similar to Scratch, more details are included, such as variable types and parameter names. These

details are generally represented by both a word and a symbol, so integers use the word ’int’ and a

rounded, verticle bar as a sybmol (Figure 7). Booleans, numbers, and objects are also differentiated

by color and shape, making it clear when each is appropriate as a parameter. The work area also

supports temporal navigation, with forward and back buttons and a visitation stack displayed at

the bottom so students can quickly jump between sections of code (Figure 6: G). Finally, a button

16

allows the work area to be divided into two sections in order to display a second method or the

generated source code (Figure 6: E). This allows students to compare sections of their code to each

other and to a textual language, like Java. Students’ code can be written out to either an XML file

or used to generate language specific text files that students can use as a starting point for more

advanced editing. A similar view would be used to display classes for more advanced projects,

listing the attributes and methods within a class (Figure 8). More advanced attributes, like Java’s

’private’ keyword would be accessible through a right-click menu. Finally, blocks would contain

Figure 8: A JubJub class icon. Attributes and methods are listed under the class name.

information to allow them to be run and evaluated individually, as in Scratch or DrJava. The full

set of concept drawings can be found in Appendix B. The design of an interface for sharing code

and block libraries has not yet been given extensive consideration, though Scratch’s web interface

has been very successful and RoboLab provides a robust interface for documenting code users have

written by putting runnable snippets into a document with text and embedded media. Future work

on code sharing would hope to build on these two systems. Many details of JubJub were inspired

by current VPLs. From Scratch, JubJub uses many of the natural language and shape metaphores

that are so successful with younger students. Alice 2.0 and the beta for Alice 3.0 introduced several

new features as well that were used in JubJub, such as using small symbols to represent variable

types on variable blocks and color coding code output to match the visual language.

17

3.3 User Study

To test our system we conducted a pilot study using six students and a prototype system. The

prototype used only a small subset of the designed features. We chose the features to focus on four

of our original seven goals:

1. Support integration with varied materials, especially robotics and existing libraries of code.

2. Build a framework that can be scaled to more complex projects.

3. Help students transition to a popular commercial programming language.

4. Maintain the level of simplicity and usability that makes VPLs a powerful tool.

The prototype system, shown in Figure 9, only allows editing of a single method and does not

support adding or removing variables. The textual code on the right side of the prototype updated

in real time, with the output generated by the code users were writing. Code was assembled by

dragging and dropping blocks into the center area. A blue line would indicate where code blocks

would be placed on release and a black box outlined where variables and expressions would be

inserted. The prototype contains only two tabs with a small subset of blocks chosen to support

basic Java functionality, including while and if/else constructs, and a set of blocks for interaction

with the Finch, a usb tethered robot programmed in Java and developed for CS education by the

CREATE Lab at Carnegie Mellon.

3.3.1 Methods

The six users were located through social connections and recruitment fliers distributed on the

Carnegie Mellon campus. Our users included three men and three women. Two of the men

were non-native English speakers. They came from three majors: ECE, Design, and Math. All

of our users had taken two or fewer college level classes. All of them had used more than one

programming language, though only two of them programmed as part of their regular coursework.

None of our users had used a VPL before. We met with users individually for about an hour

and our interactions were audio recorded for review later. The first 20 minutes consisted of an

interview in which we asked users about their programming background, experiences learning a

18

Figure 9: Prototype built to test the design of JubJub

19

first programming language, and IDEs they had used. The interviews used a set of questions as a

guide, which can be found in Appendix A. After the interview, users were shown the Finch and the

prototype system. They were given a quick overview of the features of the Finch and a roughly two

minute demo of how to use JubJub. Users were presented with an example program that can be

seen in Figure 9. Before being shown the output of the program, users were asked to look through

the code and describe what they thought the code would do. After they had given their explanation

the code was run on the Finch and anything about the starting program they had trouble with was

further explained. Blocks not in the example code were given no explanation for use. The users

were then asked to add code to the default method to make the Finch dance, using at least two

unique behaviors. If a user asked a question that had been covered in the intro it was answered,

for other questions they were told it would be answered at the end of the exercise. Screen capture

software was used to record their interaction with the prototype and used to perform timing and

identify features of their use. After the exercise was completed, users were asked a series of follow-

up questions about their interaction and they were asked to compare it to other systems they had

used.

3.3.2 Results and Discussion

During the interview portion, the users had a mostly neutral opinion of the IDEs thay had used.

Several of them stressed the importance of a simple interface and two of our users who had used

Processing mentioned liking the run/stop buttons in the Processing interface. Several users also

mentioned features like code completion and brace highlighting positively. However, the users still

felt that the IDEs did not give them enough or the right kind of information, mentioning cryptic

error messages and little or no help debugging faulty code. When asked if the environment helped

or hindered learning the language all of our users said it had little affect. The two users who

program regularly both said they had been exposed through a parent, while the rest of our users

had first learned in college. This further supports research on the benefits of teaching concepts to

a younger audience.

During the first portion of the exercise we introduced users to the JubJub interface and asked

them to read the visual code and describe what the program would do. All of the users correctly

identified that the Finch would drive straight and turn and all but one user said the correct number

20

of times the behavior would loop, with the one user miscounting and being off by two. A more

in depth study comparing the readability of JubJub with other languages is needed to provide

definitive evidence, but these early results are very positive. This observation was supported by

students during follow-up questions who said it took them a minute to understand the layout, but

once they did it was very easy to read. While modifying the code two users made mistakes which

took more than a minute to fix and one user introduced a compile-time error, though no errors

were unrecoverable. The types of errors encountered were mostly conceptual and it was observed

that code flow visualization would have been of benefit for most of the encountered errors. All six

users completed the task, with the fastest completing the exercise in 2m40s and the longest in 24m.

Three of the users took between 6 and 12 minutes, and the two non-native English speakers took

18 and 24 minutes, which implies a language barrier affected use. The most promising result is

that three users asked to continue experimenting after they were told they had completed the task

and two of the three were women. This suggests that the system was enjoyable to our users and

can motivate learning. Further, five users experimented with a block that had not been explained,

which demonstrates the system’s explorability. During follow-up questions, students supported

these observations verbally. On comparison of the follow-up responses, a clear difference in opinion

could be found between our less experienced and more experienced users. The less experienced

users made primarily favorable comments about the prototype, saying it was more intuitive and

easier for them to use than text languages. The more experienced users also felt it was easy to use

but that it was restrictive and that they could type the commands in more quickly. This distinction

is similar to observations made by [35]. A transitional language should therefore support editing

code within blocks and expressions directly, both to support users learning the textual language

and to allow more advanced users to edit code quickly while still receiving the benefits of a visual

interface for organizing a project. Finally, most users compared the interface to devices they see in

their daily lives, such as an iPhone.

While not statistically significant, these results are encouraging of further work. The ease with

which the users learned the interface suggests it could be introduced to schools with minimal

support. The positive response the system received, despite being a prototype, shows that students

are attracted to the interface and would be likely to explore concepts through JubJub. Furthermore,

with minimal support from the interface users were able to match up the Java with the visual code,

21

demonstrating the close conceptual mapping desired. Since all our users were familiar with at least

one textual language this demonstrates a link from textual programming to the visual, but it is our

opinion that concepts would be transfered in the other direction as well. Users also associated the

interface with interactions in their daily lives, showing it felt relevant to them. The architecture

also fully supported the creation of blocks for interfacing with the Finch, and the full set of blocks

took only about an hour to assemble using the API.

3.4 Future Work

The next step for JubJub will be to provide further documentation and establish the system as

an open source project. As a more complete interface is developed extensive attention will be

given to the design of visualization and debugging tools, especially for program flow visualizations

and making the value of variables during run-time clearly visible. A first step towards debugging

and advanced editing tools will be to integrate JubJub with a current text IDE, such as BlueJ or

Eclipse. An interface for creating new sets of blocks and sharing them online will be critical to

the success of JubJub and will be pursued in parallel to work on the main interface. In developing

the sharing interface other systems will be used for inpsiration, especially RoboLab’s RoboBook

tutorial system and the Scratch community website. As JubJub is developed further user studies

are required to ensure its goals are being met. These studies should be performed in junior and

senior high schools as part of a CS class and compared against other systems.

4 Conclusion

Current VPLs have been shown to be very successful in motivating students to explore program-

ming, but they lack a clear transition to commercial environments and languages. They are often

restricted to a single domain, making them difficult to adapt to other areas of programming and

educators’ lesson plans. JubJub demonstrates a set of features that can be used to fill this need and

provides a level of flexibility necessary for wide-spread distribution. Initial results for JubJub are

very promising and with further development can become a step towards more general pedagogic

VPLs. However, there remains a great deal of work before a full system is implemented and tested.

JubJub is by no means the best solution and it will continue to be influenced by the successes of

22

other systems and will hopefully inspire new features in the work of others as well.

5 Acknowledgements

Many people gave their time and skills to make this project successful. Cheng Xu is an interaction

design major at CMU and the creator of all the graphics used in JubJub. Without her help JubJub

would not have been a success. My adviser, Illah Nourbakhsh, and committee members, Aaron

Steinfeld and Leigh Ann Sudol, provided excellent support and advice throughout my work on

JubJub. The researchers who found time to meet with me were very encouraging and provided the

motivation for developing JubJub as well as insight towards many of the features included in the

final design. I am also grateful to our users who found several bugs and made excellent suggestions.

Finally, my housemates were very encouraging and gave up several of their evenings to review and

provide on my presentation and this document.

The source code for JubJub and updates on current work can be found at http://code.google.com/p/jubjub/

References

[1] “National center for women and information technology,” web, 2006.

[2] Jay Vegso, “Interest in cs as a major drops among incoming freshmen,” Computing Research

News, vol. 17, no. 3, 2005.

[3] “Scratch,” web.

[4] Sugar Labs, “Turtle art,” web.

[5] “Bluej,” 2009.

[6] “Drjava,” web, 2009.

[7] Lego, “Mindstorms nxt software,” 2009.

[8] “Pure data,” web, 2009.

[9] “Robolab @ ceeo,” .

23

[10] Jeffrey Vernon Nickerson, Visual programming, Ph.D. thesis, New York University, New York,

NY, USA, 1995.

[11] “Kodu,” .

[12] National Instruments, “Labview,” .

[13] “Alice,” 2009.

[14] D.A. Norman, The Design of Everyday Things, Doubleday, 1988.

[15] Allan Fisher and Jane Margolis, “Unlocking the clubhouse: women in computing,” in SIGCSE

’03: Proceedings of the 34th SIGCSE technical symposium on Computer science education, New

York, NY, USA, 2003, p. .23, ACM.

[16] Jane Margolis, Stuck in the Shallow End: Education, Race, and Computing, The MIT Press,

2008.

[17] Jonathan Kozol, Savage Inequalities: Children in America’s Schools, Harper Perennial, 1992.

[18] Uma G. Gupta and Lynne E. Houtz, “High school students’ perceptions of information tech-

nology skills and careers,” Journal of Industrial Technology, vol. 16, 2000.

[19] John H. Maloney, Kylie Peppler, Yasmin Kafai, Mitchel Resnick, and Natalie Rusk, “Program-

ming by choice: urban youth learning programming with scratch,” in SIGCSE ’08: Proceedings

of the 39th SIGCSE technical symposium on Computer science education, New York, NY, USA,

2008, pp. 367–371, ACM.

[20] Caitlin Kelleher and Randy Pausch, “Using storytelling to motivate programming,” Commun.

ACM, vol. 50, no. 7, pp. 58–64, 2007.

[21] “Mindstorms robolab,” .

[22] Briana Lowe Wellman, James Davis, and Monica Anderson, “Alice and robotics in introductory

cs courses,” in TAPIA ’09: The Fifth Richard Tapia Celebration of Diversity in Computing

Conference, New York, NY, USA, 2009, pp. 98–102, ACM.

[23] Joseph Bergin, Mark Stehlik, Jim Roberts, and Richard Pattis, “Karel j robot,” March 2008.

24

[24] T. Lauwers, I. Nourbakhsh, and E. Hamner, “Csbots: A case study in introducing educational

technology to a classroom setting,” Tech. Rep., October 2008.

[25] Tony Jenkins, “On the difficulty of learning to program,” in Annual Conference of the LTSN

Center for Information and Computer Sciences, 2002, number 3, pp. 53–58.

[26] Michael McCracken, Vicki Almstrum, Danny Diaz, Mark Guzdial, Dianne Hagan, Yifat Ben-

David Kolikant, Cary Laxer, Lynda Thomas, Ian Utting, and Tadeusz Wilusz, “A multi-

national, multi-institutional study of assessment of programming skills of first-year cs stu-

dents,” SIGCSE Bull., vol. 33, no. 4, pp. 125–180, 2001.

[27] M.C. Jadud, “A first look at novice compilation behaviour using bluej,” Computer Science

Education, vol. 15, no. 1, pp. 25–40, 2005.

[28] E.S. Tabanao, M.M.T. Rodrigo, and M.C. Jadud, “Identifying at-risk novice java programmers

through the analysis of online protocols,” Philippine Computing Science Congress, 2008.

[29] James B. Fenwick, Jr., Cindy Norris, Frank E. Barry, Josh Rountree, Cole J. Spicer, and

Scott D. Cheek, “Another look at the behaviors of novice programmers,” in SIGCSE ’09:

Proceedings of the 40th ACM technical symposium on Computer science education, New York,

NY, USA, 2009, pp. 296–300, ACM.

[30] A.J. Ko, B.A. Myers, and H.H. Aung, “Six learning barriers in end-user programming systems,”

in 2004 IEEE Symposium on Visual Languages and Human Centric Computing, 2004, pp. 199–

206.

[31] Dieter Vogts, André Calitz, and Jean Greyling, “Comparison of the effects of professional and

pedagogical program development environments on novice programmers,” in SAICSIT ’08:

Proceedings of the 2008 annual research conference of the South African Institute of Computer

Scientists and Information Technologists on IT research in developing countries, New York,

NY, USA, 2008, pp. 286–095, ACM.

[32] Eric Allen, Robert Cartwright, and Brian Stoler, “Drjava: a lightweight pedagogic environment

for java,” in SIGCSE ’02: Proceedings of the 33rd SIGCSE technical symposium on Computer

science education, New York, NY, USA, 2002, pp. 137–141, ACM.

25

[33] David J. Malan and Henry H. Leitner, “Scratch for budding computer scientists,” in SIGCSE

’07: Proceedings of the 38th SIGCSE technical symposium on Computer science education,

New York, NY, USA, 2007, pp. 223–227, ACM.

[34] Caitlin Kelleher and Randy Pausch, “Lowering the barriers to programming: A taxonomy

of programming environments and languages for novice programmers,” ACM Comput. Surv.,

vol. 37, no. 2, pp. 83–137, 2005.

[35] Joey C.Y. Cheung, Grace Ngai, Stephen C.F. Chan, and Winnie W.Y. Lau, “Filling the gap in

programming instruction: a text-enhanced graphical programming environment for junior high

students,” in SIGCSE ’09: Proceedings of the 40th ACM technical symposium on Computer

science education, New York, NY, USA, 2009, pp. 276–280, ACM.

[36] Andy Cockburn and Andrew Bryant, “Leogo: An equal opportunity user interface for pro-

gramming,” Journal of Visual Languages and Computing, pp. 601–619, 1997.

[37] T.R.G. Green and M. Petre, “Usability analysis of visual programming environments: A

’cognitive dimensions’ framework,” Journal of Visual Languages and Computing, vol. 7, no.

2, pp. 131–174, 1996.

26

A User Interview Questions

Background Questions:

What was the first language you learned?

What IDE did you use?

What was the hardest thing to learn when starting a new language? Why?

Which concepts did you have the most trouble learning? Why?

Which concepts were the easiest to learn? Why?

How did the IDE you used help or hinder your learning?

What do you think are the most important programming concepts you’ve learned?

What are the main language concepts you had to learn (variables, methods, etc.)

After showing JubJub:

Ask to describe what the demo code does.

How easy is it to read and understand the iconic code?

After exercise with JubJub:

What aspects of JubJub were easy to understand?

What are you still unclear about or did you have trouble understanding?

How does JJ compare to other programming environments youve used? What features are

missing that youve used before? Are there any features youd like other environments to have?

Did you find having the Java displayed on the right helpful? In what way?

How comfortable did you feel using JubJub? How intuitive was the interface?

Were there any aspects of the interface you didnt like?

If there were an application for creating custom sets of blocks how likely would you be to use

it?

27

B Concept Drawings

28

Figure 10: A snapshot concept drawing for the JubJub interface, showing a basic method editing

activity and access to color coded Java for comparison.

29

Figure 11: A snapshot concept drawing for the JubJub interface, showing the classes view and a

split screen mode for editing.

30

