
 
 

 

  

Abstract—In the near future robots will be used in home 
environments to provide assistance for the elderly and 
challenged people. As home environments are complicated, 
external sensors like ceiling cameras need to be placed on the 
environment to provide the robot with information about its 
position. The pose of cameras influences the area covered by 
the cameras, as well as the error of the robot localization. We 
examine the problem of the finding the arrangement of ceiling 
cameras at home environments that maximizes the area 
covered and minimizes the localization error. Genetic 
algorithms are proposed for the single and multi-objective 
optimization problem. Simulation results indicate that we can 
obtain the optimal arrangement of cameras that satisfies the 
given objectives and the required constraints.  

I. INTRODUCTION 
ECENTLY, improved medical care and high living 
standards have contributed to a dramatic rise of the 

median age of the population in most developed countries. 
The use of robots in home environments can play a major 
role in providing assistance for the elderly and reducing 
labor costs.  

    Home environments are complicated environments, 
consisting of doors, walls and furniture. Such environments 
are full of obstacles that limit the movement of the robot. In 
order to execute home service tasks, as well as for safety 
reasons, a robot needs to have precise information about its 
own position. Due to the complexity of the environment, 
external sensors placed on the environment are used for 
robot localization. Although there has been much research 
on robot and object localization techniques with different 
types of sensors [1], in most of past research sensors were 
placed randomly or intuitively. However, the position of 
sensors affects greatly the error of the localization process. 
Where to fix sensors is an important requirement, when we 
design a robotic environment.  
      Past research on camera placement was mostly limited to 
the placement of only one sensor  [2, 3], two sensors [4] or to 
the special case of marker detection [5]. The problem of 
camera placement is closely related to the guard placement 
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problem (AGP). The guard placement problem is the 
problem of determining the minimum number of guards 
covering the interior of an art gallery and it is known to be an 
NP-hard problem [6]. It is addressed by the art gallery 
theorem [7]. In the AGP all guards are assumed to have 
identical properties. In this study, however, we consider 
cameras with different field-of-views. Furthermore, we 
consider not only the area covered, but also the uncertainty 
of the position of a robot moving at that area during 
localization process, due to sensor constraints. Occluded 
area in complicated 3D environments is also considered. 
     In Section II we define the optimization problem of 
optimal camera placement. In Section III we describe a 
methodology to estimate the localization error due to image 
resolution error, as well as the occlusion by obstacles in the 
room. In Section IV and V we study the camera placement 
optimization problem for the single and multi-objective case 
respectively. All experiments are presented in Section VI. 
Finally, conclusions are drawn in Section VII. 

II.  THE OPTIMAL CAMERA PLACEMENT OPTIMIZATION 
PROBLEM 

A. Assumptions 
   We consider the case of a robot executing home-service 
tasks at a room in a home environment. For simplification 
purposes, we assume that the 3D map of the room is known. 
As 3D map, we mean the position and CAD model of doors, 
walls and room furniture. We assume the presence of only 
one robot in the room. As the floor of the room is flat, we can 
assume that the robot is moving at a known and fixed height. 
When optimizing the pose of each camera, we search for its 
optimal 2D position on the ceiling, pan and tilt angle. All 
simulations are performed at a virtual 3D room, built using 
the OpenGL library [8], which is an exact 3D model of the 
Kanagawa House Square Experimental Room (Fig. 1). This 
room is a part of the Universal Design Project [9]. 

B. Definition of the Optimization Problem  
When placing cameras on the room for robot localization, 

we want to use as few cameras as possible, as the cost of the 
cameras is high. In other words, given a fixed number of 
cameras, we want these cameras to cover as much area as 
possible, so that the robot is visible and therefore localized 
by the cameras in that area. The area covered by the cameras 
is influenced by the pose of the cameras. Therefore, given a 
fixed number of cameras, we need to find the arrangement of 
cameras that results in the maximized area covered. Due to 
the complexity of the home environment, as well as for 
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safety reasons, the robot should be localized with a certain 
precision. In other words, robot localization error should be 
as small as possible. Therefore, robot localization error 
should be also considered, together with the area covered, 
when placing the cameras. 
   In the following sections, we consider two cases for the 
optimization problem, a single and a multi-objective one. 
For the single-objective case, only the visible to total area 
ratio of the room is considered as evaluation function for the 
optimization problem. For the multi-objective case, the ratio 
of visible to total area of the room and the average 
localization error of the visible area are both considered.  
   Accordingly, the optimization problem is defined as 
follows: The optimization problem is, given the map of the 
room, the required objectives and the given constraints, to 
find the optimal arrangement of cameras, which satisfies the 
necessary constraints and maximize / minimize the required 
objective(s).  

   
      (a)                (b) 
Fig. 1. (a) Virtual 3D room environment and (b)  Real room environment at 
Kanagawa House Square.  

III. IMAGE RESOLUTION ERROR AND OCCLUSION 
ESTIMATION 

In order to be able to estimate the average localization 
error of the area where a robot executes home service tasks, 
we need to estimate this error for each sampled point of the 
area, for a given camera arrangement. Errors that affect the 
accuracy in robot localization are mainly: 
1) image resolution errors (quantization errors) 
2) image processing errors 
3) camera calibration errors 
Among these errors, image resolution errors are focused 
mainly on this paper, because these errors can be reduced by 
appropriate arrangement of cameras. Image processing 
errors depend mainly on software and camera calibration 
errors are not related to camera arrangement. 

A. Image Resolution Error 
At 3D localization process, most vision-based tracking 

systems perform some sort of triangulation on rays from two 
or more cameras. Some target feature is detected on the 
image and the ray defined by its 2D location and the camera 
center is back-projected into 3D space. The intersection 
point of rays from multiple cameras defined by the same 
feature is the 3D location of the feature. However, one can 
only determine the 2D location of a feature on an image to a 
certain precision, as limited by the image resolution, as 
shown in Fig. 2. Assuming the robot is navigating at a 

known height, one camera is enough for robot localization. 
In that case, the uncertainty caused by the image resolution 
of the camera during the localization process, can be 
estimated as follows. 

Let us assume a plane П and a point P(X, Y, Z), visible by 
a camera C. The height of the camera with reference to the 
plane П is assumed to be known. Then, the point P is 
projected to a pixel P’(x, y) at the image plane of the camera. 
Assuming that the intrinsic and extrinsic parameters of the 
camera are known, we can calculate the area Ω at the plane П 
corresponding to the same pixel at the image plane. This area 
represents the uncertainty of the robot location, when the 
robot is detected at  pixel P’ in the image plane (Fig. 3). 

 

 
 Fig. 2. (a) 3D localization with triangulation. (b) 3D position uncertainty 
due to image resolution.  
 

              
Fig. 3. Uncertainty caused by image resolution, when the robot is known to 
be moving at a known height. The robot can be anywhere inside the area Ω, 
yet it will be detected at the same pixel P’. 
 

Given a certain camera arrangement, we can sample the 
area the robot is moving with a large number of points and 
calculate the uncertainty for each point. Therefore, the 
uncertainty distribution of the whole visible area can be 
estimated. In Fig. 4, the visible area is calculated from the 
projection of the viewing frustrum of the camera at a specific 
height. The uncertainty distribution of that area is also 
illustrated. 

Hence, our goal is to arrange the cameras in such a way 
that the average uncertainty of the whole area is minimized. 
If two or more cameras observe the same area, the camera 
that results at the minimum uncertainty is selected, and this 
minimum value is adopted. This is reasonable, as after we 
design the camera arrangement we can know which camera 
is optimal for the localization process at each arbitrary point. 
This is illustrated in Fig. 5, for the case of three cameras. 

Even if a point at the area of the room is inside the field of 
view of the camera, it may be invisible to the ceiling cameras 
due to occlusion. When calculating the average localization 
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error of the area, it is important to find the regions that are 
occluded by obstacles and therefore are not visible by the 
cameras.  

 

    
(a)                      (b) 

Fig. 4. (a) Uncertainty distribution of the visible area at a specific height 
(2D cut of the room at a specific height).(b) The uncertainty distribution 
illustrated at the 3D visual environment. 
 

            
Fig. 5. Uncertainty distribution for the case of three cameras with 
overlapping viewing frustrums. 

B. Occlusion Estimation at 3D Environment 
    We use an algorithm proposed by [10] that, given the 3D 
map of the room, computes if some or all points of a feature 
of interest are occluded by environment objects. Convex and 
concave polyhedral with or without holes and the viewing 
model of projective projection are employed. We assume 
that the objects in the environment are at a known position 
and can be represented by known CAD models. Then, the 
boundaries of these polyhedral objects are considered to be 
comprised of one or more polygonal faces, and the occluded 
region of an area of interest due to the environment as a 
whole is equal to the union of the component occluded 
regions generated by the individual object faces. In this 
method, the problem of computing the occluded region 
between a convex occluding polygon and a convex feature 
polygon is employed as a component step. A concave or 
multiply connected object face is decomposed (i.e. 
partitioned) into convex polygons. As an example of convex 
partitioning, it is known that any simply or multiply 
connected polygonal domain can be triangulated [7]. The 
occluded region is the union of the component occluded 
regions generated between all pairs of convex polygons, one 
taken from the convex polygons of the object face and one 
from the convex polygons of the feature. Computing the 
occluded region in the case of a convex occluding polygon 
and a convex feature is explained in detail in [11]. 
   As an application of the above algorithm, we consider as 
area of interest a plane parallel to the floor of the 3D room of 
Fig. 1 and at a specific height above the floor of the room.  
Then, we place a television in the middle of the room, and, 
we illustrate the part of the area of interest that is visible 
from a ceiling camera fixed at the top left of the room, 

considering the occlusion caused by the presence of the 
television (Fig. 6). 
 

     
(a)                 (b) 

Fig. 6. (a) Virtual 3D room environment and (b) 2D cut of the room at a 
specific height and projection of the viewing frustrum of the camera at a 
specific height considering occlusion from the television in the middle of 
the room. 

IV. SINGLE-OBJECTIVE OPTIMIZATION 

A. Formulation of the Optimization Problem 
  The first step is to maximize / minimize the required 
objectives in the environment with a fixed number of n 
cameras. In the single-objective case, we fix the cameras so 
that the ratio of the visible to total room area is maximum. 
    Assuming that the total area that the robot executes 
home-service tasks is sampled by a rectangular grid of N 
points Pi of equal distance, the visible to total area ratio is 
defined as follows:   

1
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 where f (Pi) →  {0, 1} .        (1) 

   The function f (Pi) is one if the point Pi is visible by one or 
more cameras or zero if it is not visible by any camera. The 
point is not visible by any camera if it is outside the FOV 
(Field Of View) of the camera, or if it is occluded by another 
obstacle.  

B. Methodology  
A genetic algorithm is proposed to address the 
single-objective case of optimal camera placement. 

1) Genetic Algorithms Overview 
    Since the appearance of GAs (Genetic Algorithms) in 
1975 [12], GAs have been used in solving many 
optimization problems successfully. GAs are stochastic, 
parallel search algorithms based on the mechanics of natural 
selection and the process of evolution. GAs perform a 
multidirectional search by maintaining a population of 
potential solutions and encourage information formation and 
exchange between these solutions. A selection mechanism 
based on the fitness is applied to the population and the 
individuals strive for survival. The fitter ones have more 
chance to be selected and to reproduce offsprings by genetic 
operators such as crossover and mutation. The process is 
repeated and the population is evolved generation by 
generation. After many generations, the population 
converges to solutions of good quality, and the best 
individual has good chance to be the optimal or near-optimal 
solution. 



 
 

 

2) Problem  Representation  
   In this study each individual of the generation of the 
genetic algorithm is encoded as a binary string. Each string 
contains information about the position (x, y), pan angle (θ), 
and tilt angle (φ ) of each camera. We encode with 7 bits the 
position in x-axis, 7 bits the position in y-axis, 6 bits pan 
angle and 6 bits the tilt angle of the camera. Therefore, the 
total length of each individual is 26 n×  bits, where n is the 
number of cameras.  

3) Genetic Operators 
   We use the following genetic operators: 

(a)  Selection: A proportionate stochastic selection is 
used for the selection of the individuals [13]. In other 
words, each individual is chosen for reproduction 
with a probability proportionate to its fitness. As 
fitness of each individual we consider the visible to 
total area ratio (Eq. (1)) resulting from the encoded 
camera arrangement of that individual.  

(b)  Crossover: After two individuals (called parents) are 
selected, a single-point crossover is done.  A 
crossover - point is selected randomly and the data of 
the two parents before that point is interchanged [13]. 
The role of crossover operator is to combine data of 
selected individuals in order to create new, better 
solutions.  

(c)    Mutation: We implement mutation by changing the 
value of an arbitrary bit of an individual with some 
probability. Mutation is essential in maintaining a 
large diversity of solutions. 

(d)  Elitism: We select a number of the best individuals of 
the generation and copy them to the next generation 
without performing any genetic operation on them. 
This is because we want to keep a proportion of the 
best of these solutions to the next generations intact, 
without having them recombined or mutated. 

4) Genetic Algorithm Flow 
   We illustrate the algorithm flow of the genetic algorithm in 
the activity diagram of Fig. 7. As a solution we choose the 
individual from the final generation that has the best fitness. 

V. MULTI-OBJECTIVE OPTIMIZATION 

A. Formulation of the Optimization Problem 
   In this study, as optimization criteria we consider the 
visible to total area ratio F1 and the average localization error 
of the visible area F2. F1 is given by Eq.(1) (Section IVA), 
whereas F2 is defined by Eq.(2). We assume again that the 
total area in which the robot executes home-service tasks is 
sampled by a rectangular grid of N points Pi of equal 
distance. The function g(Pi) returns the uncertainty of the 
position of the center of the robot, if the center is located at 
point Pi. The uncertainty is estimated as the area 
corresponding to the same pixel Pi at the image plane of the 
camera, as explained in Section III-B. 
 

  
 
Fig. 7. Activity diagram of genetic algorithm for the single-objective case. 
gen is the current generation index and MAX is the maximum generation 
number. 
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 f (Pi) →  {0, 1} .       (2) 

The function ( )if P , like in (Eq. (1)) is 1 if the point is 
visible by at least one of the cameras and 0 elsewhere. 
Therefore, the function calculates the localization error of 
the visible area. For the trivial case of a solution with no 
visible point Pi , we reject the solution without calculating 
F2.  
   We want to maximize F1 and minimize F2 : 

1 2max,  minF F→ →                (3) 
   Furthermore, we assume to have the additional constraints: 

1 1 2 2,  F K F K≥ ≤  .                    (4) 
It is clear that there is an objective conflict between F1 and 
F2. In other words, optimal solutions for each objective 
individually are different from the optimal solutions for both 
objectives. 

B. Methodology 
1) Overview 

   Traditional multiobjective optimization approaches 
usually combine all objectives to form a scalar fitness 
function by using a weighted aggregation approach, the 
method of distance functions, or the Min-Max formulation 
[14]. Then, any optimization algorithm, like the steepest 
descent or the genetic algorithm can then optimize this scalar 
fitness function. However, these classic approaches can be 
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very sensitive to the precise aggregation of goals and tend to 
be ineffective and inefficient. Furthermore, these approaches 
lead to one solution only. However, there may be a set of 
multiple solutions that maximizes / minimizes the given 
objectives and satisfies the given constraints. In real-world 
situations, we are usually interested in finding more than one 
optimal solutions that satisfy the given constraints. This is 
because decision makers often  need different alternatives in 
decision making. 
   For these reasons, we use the NSGA (Nondominated 
Sorting Genetic Algorithm) [14], which is a multi-objective 
pareto optimization algorithm, which returns a set of optimal 
solutions, called pareto optimal set or pareto front. These 
solutions are all optimal solutions and represent the best 
trade-off between conflicting design goals, in our case the 
ratio of visible to total area and the average localization 
error. 

2) Pareto Optimization 
   In order to analyze the flow of the NSGA algorithm, we 
first need to give some basic definitions of pareto 
optimization, specified for the camera placement. In this 
problem, we want to maximize objective function 1( )F x  and 
minimize objective function 2 ( )F x , as described in Eq. (3)). 
Here, x is a decision variable vector, consisting of 4n 
variables representing the camera arrangement of n cameras: 

1 1 1 1, , , ,..., , , ,n n n nx y x yϑ φ ϑ φ= ⎡ ⎤⎣ ⎦x , where ( ),i ix y  is the 2D 
position of camera-i on the ceiling, and iϑ and iφ  its pan and 
tilt angle. The goal space is the two-dimensional space with 
 F1 (x) on one axis and F2 (x) on the other. We define that a 
solution x(1) dominates a solution x(2) if  

( ) ( )(1) (2)
1 1F F⎡ ≥

⎣
x x  and ( ) ( )(1) (2)

2 2F F ⎤<
⎦

x x ,  or 

( ) ( )(1) (2)
1 1F F⎡ >

⎣
x x  and ( ) ( )(1) (2)

2 2F F ⎤≤
⎦

x x . 

From a set of p solutions, any solution x(i) that is not 
dominated by any other solution is called nondominated 
solution. The solutions that are nondominated within the 
entire search space are denoted as pareto optimal and 
constitute the pareto optimal set or pareto front. Pareto 
optimization algorithms search for the entire set of pareto 
optimal solutions. Then, the solutions that satisfy the 
required constraints are selected. From these solutions, the 
designer can then choose the one that bests fits his interests. 

3)  The NSGA algorithm 
   Compared to a typical genetic algorithm (Section IV-B)., 
the NSGA is different basically in the way the selection 
operator works  Before the selection is performed, the 
population is ranked on the basis of an individual’s 
nondomination, as it is described in the previous Section. 
The nondominated individuals are assumed to constitute the 
first nondominated front in the population and are assigned a 
large dummy fitness value. The same fitness value is 
assigned to give an equal reproductive potential to all these 
nondominated individuals. In order to maintain diversity in 
the population, these classified individuals are then shared 
with their dummy fitness values. Sharing is achieved by 

performing selection operation using degraded fitness values 
which are obtained by dividing the original fitness value of 
an individual by a quantity proportional to the number of 
individuals around it. This causes multiple optimal points to 
co-exist in the population. After sharing, these 
nondominated individuals are ignored temporarily to 
process the rest of population in the same way to identify 
individuals for the second nondominated front. This new set 
of points is then assigned a new dummy fitness value which 
is kept smaller than the minimum shared dummy fitness of 
the previous front. This process is continued until the entire 
population is classified into several fronts.  
   The sharing in each front is achieved by calculating a 
sharing function value between two individuals in the same 
front. We used the sharing function in Eq. (5). 

2 ,  if 
( )

1            otherwise

ij
ij share

ij share

d
d

Sh d
σ

σ
⎧

− <⎪= ⎨
⎪
⎩

 .               (5)

   In the above equation, the parameter ijd is the phenotypic 
distance between two individuals i and j in the current front 
and shareσ is the maximum phenotypic distance allowed 
between any two individuals to become members of a niche. 
A parameter niche count is calculated by adding the above 
sharing function values for all individuals in the current front 
and dividing the sum with the number of individuals at that 
front. Finally, the shared fitness value of each individual is 
calculated by dividing its dummy fitness value with its niche 
count.  
   Figure 8 shows a flow chart of the NSGA algorithm. The 
algorithm is similar to the simple GA (Fig. 7, Section IV-B), 
except for selection operation, which is done by classifying 
the nondominated fronts, as well as  the sharing operation.  
   With the above technique, NSGA performs a ranking 
classification according to the nondominance of the 
individuals in the population and a distribution of the 
nondominated points is maintained using a niche formation 
technique. Therefore, distinct nondominated points are 
found in the population. 

VI. EXPERIMENTS 

A. Single-Objective Optimization 
    In this Section, we use the genetic algorithm described in 
the Section IV-B, in order to find the optimal arrangement of 
n cameras in a virtual 3D room environment. 
The system is set up as the following: 

1. We use n = 3 cameras. 
2. The environment is a 4.90[m] x 4.55[m] x 2.3[m] 

virtual 3D  room as shown in Fig. 1(a). 
3. Each simulated camera has a zoom lens of 3[mm], a  

 horizontal viewing angle of 42 [deg] and a 4/3 image 
width – height ratio. 

4. The height at which we assume the robot is executing 
home service tasks, and  at which the visible and the 
total area are calculated, is set to 0.75 [m].  



 
 

 

 

 
Fig. 8. Activity diagram of genetic algorithm for the multi-objective case. 
gen is the current generation index, front the current front index and MAX 
is the maximum generation number.   

 
The parameters of the genetic algorithm are: 

1.   Maximum Generation Number: 1000 
2.   Population size: 100  
3.   Elitism rate: 0.1  
4.   Crossover probability: 0.85  
5.   Mutation probability: 0.01  

   The evolution of the best and average fitness are 
illustrated in Fig. 9. For the case of three cameras, it takes 
about 47 minutes with a Pentium D CPU (3.20 GHz) for 
the algorithm to converge. We can see that for the case of 
three cameras, the algorithm quickly converges to the 
visible ratio of 1. The solution that has the best fitness at 
the final generation is illustrated in Fig. 10. 
   We then change the number of cameras and apply the GA 
algorithm for different number of cameras. As solution, we 
choose the individual from the last generation which has the 
largest fitness value. As can see from Figure 11, if there is a 
required threshold for the visible ratio of the room area of 
0.90, we need at least two cameras, if it is 0.95 we need at 
least three cameras. We optimize the pose of cameras for the 
same evaluation criteria using the steepest descent method. 
The steepest descent method was used for the camera 

placement optimization problem in [15]. Results are 
included in Fig. 11. 
   It is obvious that the GA has a better performance than the 
steepest descent method. The superiority of the genetic 
algorithm is expected, as the steepest descent method 
converges to local minima and its results depend on the 
initial arrangement of the cameras, whereas GA is a 
global-search heuristic which scans a large search-space.  

 
Fig. 9. Best and average fitness evolution of genetic algorithm for 

 three cameras 

  
Fig. 10. Converged solution of the genetic algorithm for three 

 cameras 

 
Fig. 11. Results of GA and steepest descent for different number 

of  cameras. 

B. Multi-Objective Optimization 
   We apply the NSGA algorithm for the problem of optimal 
camera arrangement. The environment set up is the same as 
that for the single-objective case (Section VI, Part A).   
Apart from the objective functions F1 and F2, we have the 
additional constraints 1 1 2 2,  F K F K≥ ≤ . In this experiment, 
we chose K1 and K2 so that  

2
1 20.75,  70 [mm ]K K= =                (6)   

In the NSGA Algorithm, dij in the sharing function of Eq. (5) 
is the phenotypic distance between two individuals i and j in 
the current front. In this study dij is given by: 

2 2
1 1 2 2( ) ( )i j i j

ijd F F F F= − + −                (7)
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In the above equation 1
iF  is the value of objective function 

F1 for individual i. Objective F1 is defined as the ratio of 
visible to total area and has a range of [0, 1], whereas 
objective F2 is defined as the average localization error of 
the visible area. Therefore, we normalize the value of F2 by a 
maximum value M, so that the values of function F2 are 
approximately of the same order as with F1, and therefore 
terms 2

1 1( )i jF F− and 2
2 2( )i jF F−  in Eq. (7) contribute 

equally to the value of dij. 
 The parameters of the NSGA genetic algorithm are: 

1. Maximum Generation Number: 1000 
2.  Population size: 1000  
3.  Crossover probability: 0.85  
4.  Mutation probability: 0.01  
5.  At the sharing function of Eq. (5), we chose the   
  normalizing value M of  F2 to be 100 [mm2] and the 
  value of shareσ  to be 0.02 

   In Fig. 12, the initial and final population of the NSGA are 
illustrated. The horizontal axis represents the average 
localization error (F2 objective), whereas the vertical axis 
the ratio of visible to total area (F1 objective). The 
population is “pushed” to the upper left of the two axes, as 
the genetic algorithm is minimizing the average localization 
error and maximizing the ratio of visible to total area. 
   In Fig. 13, the final generation and its pareto front are 
illustrated. We can see that the NSGA algorithms converges 
to a set of optimal solutions (pareto front) which cover a 
wide range of visible ratio (F1) and localization error (F2) 
values. In case we have some additional constraints we 
choose from the pareto front the solutions that satisfy the 
required constraints. For the constraints of Eq. (6), solutions 
that satisfy the required constraints are inside the shaded 
area of Fig. 13. 
   We isolate the shaded area of Fig. 13 and keep only the 
pareto-optimal solutions in Fig. 14. From these solutions, the 
designer can select the solution that best fits the design of the 
house environment or other factors. We randomly select one 
solution (circled solution in Fig. 14) and illustrate it in Fig. 
15. 

Discussion 
      The greatest advantage of the pareto multi-objective 
algorithm is that with one execution we can acquire a set of 
pareto-optimal solutions that satisfy the required constraints. 
Therefore, the designer can select the best solution from a 
number of several alternatives. On the other hand, if we 
solved the optimization problem by using a scalar fitness 
function (weighted aggregation approach) we would get 
only one optimal solution with one execution, which would 
be very sensitive to the selection of the weights of the 
evaluation function [14]. The drawback of the implemented 
algorithm is the large computational load, as the ranking 
procedure is proven to be of O(MN2) complexity, with M the 
number of objectives and N the population size [16]. Given 
the parameters listed in Section V-B, it took 5 hours and 13 
minutes for the algorithm to converge for the case of three 

cameras, using with a Pentium D CPU (3.20 GHz) 
processor. 
 

 
Fig. 12. Initial and final generation of NSGA algorithm     

 

 
Fig. 13. Final generation and its pareto front. The yellow area represents the 
sub-region of the performance space that satisfies the constraints given by 
Eq. (6). 
 

 
 
Fig. 14. Set of pareto-optimal solutions that satisfy the constraints given by 
Eq. (6) and selected final solution (red circle) 
 

  
         (a)                  (b) 
Fig. 15. Visualization of selected solution (a) virtual 3D room environment 
(b) top view 



 
 

 

VII. CONCLUSION 
   In this study, the problem of optimal camera arrangement 
has been examined. In particular, we: 
 explained the need for precise robot localization at a home 
environment and verified the importance of the camera 
pose at the robot localization process 

 divided the problem of optimal camera placement into two 
sub-objectives:  

a) place the cameras in order to maximize the area 
covered (single-objective case) 

b) place the cameras in order to maximize the area 
covered and minimize the average localization 
error of the visible area (multi-objective case) 

 approached sub-objective (a) by a genetic algorithm and 
quantitively compared its performance with the steepest 
descent method used in past research [15]. 

 approached sub-objective (b) by the NSGA genetic 
algorithm. 

  The qualitive and quantitative results obtained from this 
study can be summarized as follows: 
 To our knowledge, it is the first time that a four-degree 
optimization for a non-fixed number of cameras is 
achieved. 

 For  the  single-objective  case, we used the genetic 
algorithm to find the position on the ceiling, pan and tilt 
angle of the cameras so that the robot could be visible at 
100% of the area of a complex home environment with 
obstacles 

 For the multi-objective case, we found a set of optimal 
solutions that minimized the objective conflict between the 
maximization of the area covered and the minimization of 
the robot localization error. Then, we selected the set of 
solutions that satisfied the required constraints. As an 
example, we presented a solution where the robot is visible 
at 85% of the area and the average localization error is 65 
[mm2]. 
In the future, we intend to generalize the optimization 

problem of sensor arrangement by including different kinds 
of sensors, such as range sensors, RFID (Radio Frequency 
Identification) technology etc.. 

This research has been part of the Universal Design 
Project [9] and the results from this study have been used for 
the arrangement of the ceiling cameras at the u-RT 
(ubiquitous Robot Technology) Kanagawa House Square 
Experimental Room. 

APPENDIX 
In this study we assumed that the robot is tracked and 

localized by one or more ceiling cameras through image 
processing. To prove the validity of our assumption, we 
implemented a system of robot 3D localization with multiple 
ceiling cameras at a real home environment. We used a red 
Roomba floor-cleaning mobile robot (made by iRobot) and 
four pan/tilt cameras (SNC-RZ50N made by Sony) attached 
on the ceiling. Color information of the robot and of a 
marker placed on top the robot are stored in a database. Then, 

we use a slightly modified version of the CamShift 
algorithm [17], to online track the robot using the color 
information stored in the database. For stable lighting 
conditions, we could continuously track and localize the 
robot with a small localization error. Further details of the 
localization system developed are beyond the scope of this 
paper.  

REFERENCES 
[1] S. Thrun et al, Probabilistic Robotics, MIT Press. 2005. 
[2] Triggs B, Laugier C, “Automatic camera placement for robot vision 

tasks”, Proceedings of the IEEE International Conference on 
Robotics and Automation, pp. 1732-1737, 1995. 

[3] Kececi F, Tonko M, Nagel H-H, Gengenbach V: “Improving visually 
servoed disassembly operations by automatic camera placement”, 
Proceedings of the IEEE International Conference on Robotics and 
Automation, pp. 2947-2952, 1998. 

[4] Lee, J.H., Akiyama, T., Hashimoto, H., “Study on optimal camera 
arrangement for positioning people in intelligent space”, IEEE/RSJ 
Intl. Conference on Intelligent Robots and Systems, pp.220-225, 2002. 

[5] He X, Benhabib B, Smith K C, Safaee-Rad R:  “Optimal camera 
placement for an active-vision system”, Proceedings of the IEEE 
International Conference on Systems, Man and Cybernetics, Vol. 1, 
pp. 69-74, 1991. 

[6] D. T. Lee, “Computational Complexity of Art Gallery Problems”, 
IEEE Transactions on Information Theory, Vol. 32, Issue 2, pp. 
276-282, March 1986. 

[7] O’Rourke J, Art Gallery Theorems and Algorithms, Oxford 
University Press, New York, 1987.. 

[8] Richard Wright et al., OpenGL SuperBible: Comprehensive Tutorial 
and Reference, 4th Ed., Addison-Wesley Professional, 2007. 

[9] K. Ohara et al., “Ubiquitous Robotics with Ubiquitous Functions 
Activate Module”, Proc. INSS 2005, pp. 97-102, 2005. 

[10] Tarabanis K.A., Tsai R.Y., Allen P.K.: “The MVP sensor planning 
system for robotic vision tasks”, IEEE Transactions on Robotics and 
Automation, Vol. 11, pp. 72-85, Feb. 1995. 

[11] K. Tarabanis and Tsai, R. Y., “Computing occlusion-free 
 viewpoints,” IEEE Transactions on Pattern Analysis and Machine 
Intelligence, Vol. 18, pp. 279-292,  March 1996. 

[12]  J. Holland, Adaptation in natural and artificial systems. Ann Arbor 
  University of Michigan Press, 1975. 
[13]  Michael D.Vose, The Simple Genetic Algorithm, The MIT Press, 

 1999. 
[14] N. Srinivas and K. Deb, “Multiobjective optimization using 

 nondominated sorting in genetic algorithm,” J. Evolutionary 
Computation, Vol. 2, pp. 221-248, 1995. 

[15] Stefanos Nikolaidis, Ryuichi Ueda, Akinobu Hayashi, Tamio Arai, 
"Optimal Camera Placement Considering Mobile Robot Trajectory," 
 IEEE International Conference on Robotics and Biomimetics, 2008 
  (to appear). 

[16] Deb K., Pratap, A., Agarwal, S., Meyarivan, T., “A fast and elitist   
 multiobjective genetic algorithm: NSGA-II”, IEEE Transactions on   
 Evolutionary Computation, Vol. 6, Issue 2, pp. 182-197, April 2002. 

[17] Bradski, G. R., “Computer vision face tracking for use in a perceptual    
 user interface”, Intel Technology Journal, 2nd Quarter, 1998. 


