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Abstract

Variations in appearance can detrimentally impact the accuracy of object de-
tectors leading to an unacceptably high rate of missed detections. We propose
an incremental retraining method that combines a self-training strategy with
an uncertainty-based model for active learning. This enables us to augment an
existing training set with selectively-labeled instances from a larger pool of ex-
amples that exhibit significant intra-class variation while minimizing the user’s
labeling effort. Experimental results on an aerial imagery task demonstrate that
the proposed method significantly improves over conventional passive learning
techniques. Although the experiments presented in this paper are in the do-
main area of visual object recognition, our method is completely general and is
applicable to a broad category of problems in machine learning.
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1 Introduction

Overhead imagery, such as that obtained using satellite and aerial sensors is a
valuable source of information in providing structural overviews since it helps
users to effectively grasp geographic characteristics of the region. Although large
quantities of high-resolution images have become widely available!, manually
annotating them is infeasible. There has been considerable research on auto-
matically analyzing, mining and updating information extracted from overhead-
view imagery but a key difficulty is that even relatively simple features, such as
parking spots, vary significantly in appearance and are therefore challenging to
detect in such images.

Recovery of road structures such as road segments, intersections, and parking
lots in overhead-view imagery is an important task for generating route maps for
autonomous vehicles and maintaining cartographic databases. Road structures
may be recovered by first detecting partial structures and then by optimally in-
terpreting detection results, with respect to geometric and image characteristics
of the results. The interpreted results are then used to delineate the geometry
of road structures. The underlying idea of such part-based object detection ap-
proach is conceptually appealing because structures or complete objects can be
modeled by part-objects in a deformable configuration [8]. For example, detect-
ing all of the visible parking spots (or spaces) narrows down to image regions
that need a further analysis for recovering parking lot geometry [19]

Learning a part detector requires a large quantity of labeled examples for the
detector to learn the model of a target object. Manual labeling has traditionally
served as the primary means of preparing a training data for such detection
tasks. Since it is expensive and tedious, there is significant interest in reducing
the human effort in generating labeled data [15, 21, 20, 3, 16].

We have developed aerial image analysis algorithms that produce a map of
drivable regions in a parking lot aerial image. To minimize the effort of manual
labeling in this task, we developed a self-labeling method that automatically
collects the training data. Our self-labeling method extracts and analyzes low-
level image patterns such as lines to automatically obtain a set of parking spot
sub-images [19]. Using these self-labeled examples, we learnt the local appear-
ance model of parking spots and showed promising results on detecting parking
spots on parking lot overhead imagery.

However, because our self-labeler relies on easily detectable low-level image
patterns, it is unable to acquire the training parking spot sub-images from aerial
imagery with challenging appearances such as shadows, faded road-markings,
and occlusions. This affects the performance of our hypothesis generation
method that collects candidate parking spot sub-images based on the spatial
layouts and geometric characteristics of self-labeled examples. Because our de-
tector only examines these candidate sub-images, the true parking spots undis-
covered by the hypothesis generation would not be recovered, resulting in an
unacceptable false negative rate. This is caused primarily by intra-class appear-

le.g., USGS provides foot-resolution maps of the U.S. and its territories.



ance variation that objects belonging to the same category look different based
on their physical properties and illumination conditions. This problem is com-
mon in many object detection and data-mining tasks where the performance of
a detector is limited by the quality of the available training data.

Our goal is to develop a self-learning part-object detector for road structure
recovery that automatically collects training examples by analyzing low-level
image patterns, learns the model of the target object, and automatically updates
the learned model when a detection accuracy drops.

This paper focuses on the second aspect of this goal: how to incrementally
update the learned model so as to cover the intra-class variations while mini-
mizing the user’s manual labeling effort.

In this paper we present a incremental retraining approach motivated by
uncertainty sampling [6] to improve the performance of our detector with a
small quantity of manually-labeled data. The initial detector is trained using
self-labeled examples and classifies the newly-available labeled data based on the
learned model. Classified examples with low confidences are assumed to lie near
the decision boundary of a binary classification. Thus, retraining the detector
using these examples enables the detector to explore uncertain regions and to
better generalize its current model of objects with previously-unseen examples.

2 Related Work

Learning a reliable visual object detector requires a substantial amount of la-
beled examples. Manual labeling has been employed as the primary means of
obtaining high-quality examples of the target object. Because manual labeling
is expensive, there has been a great deal of research conducted in developing
methods that minimize human involvement in a learning task while ensuring
the generalization of a learner.

Active learning is a popular approach for reducing manual labeling. Instead
of passively receiving training data, a learner actively chooses examples from a
pool of unlabeled instances based on a sampling criterion and requests a human
labeler to provide the labels for these selected examples [6, 13]. The sampling
criterion is the key component that enables any active learning method to pick
more informative examples and a learner to generalize its model with less labeled
data.

In the general setting of active learning, a learner estimates the initial model
of the target object from the initial labeled examples. The learner assigns
unlabeled examples with confidences that explain how certain the learner is
about its classification. The closer the location of examples to the current
decision boundary the lesser certain their memberships are. Thus examples
located near the decision boundary are clearly important for improving the
learner’s performance. Tong et al. utilize the spatial proximity of unlabeled
examples to the decision boundary as a sampling criterion [23]. Gurevich et
al. use this criterion to select negative examples for learning a visual object
recognizer [11]. Near-miss examples are examples that are slightly different from



positive ones and hence located around the decision boundary. They are very
informative to learn a visual detector that tightly focuses on the target object.
Wu et al. combine this criterion with two other measures such as diversity and
representativeness for selecting images in an image retrieval application [26].
The diversity criterion is closely related to our coverage measure in that favors
requesting labels for instances that are less redundant with the labeled data [2].

Self-labeling is an alternative way of minimizing the use of manually labeled
data. Most of self-labeling methods implement heuristics derived from domain
knowledge to automatically collect labeled instances using an initially trained
classifier.

In a multimodal input data setting, one can utilize the most precise data
source to label other data sources that are complementary, but unlabeled. For
example, because laser range measurements are quite reliable within range find-
ers’ operating ranges, they are used to predict the roughness [21] and the
traversability [20] of terrain and detect road boundaries [14]. Stavens and Thrun
estimate the associations between inertial data and laser readings on the same
terrain and use the learned rules to predict possible high shock areas in upcom-
ing terrains [21]. Similarly, Sofman et al. use local range estimates as self-labeled
examples to learn relations between the characteristics of local terrain and cor-
responding regions in aerial images [20]. The learned relations are used to map
aerial images to long range estimates of traversability over regions that a robot
is exploring. Lieb et al. devised a self-supervised approach to road following
that analyzes image characteristics of previously traversed roads and extracts
templates for detecting boundaries of upcoming roads [14].

In a unimodal input data setting, one can utilize low-level data patterns
for self-labeling. Nair and Clark exploit foreground movements on static back-
ground to automatically collect training examples for the task of detecting peo-
ple from the video of an office corridor scene [15]. Rosenberg et al. introduce a
weakly labeled data that loosely confines the possible image regions containing
the target objects and are selectively utilized to improve the detector’s perfor-
mance [17]. Our self-labeler extracts lines forming parking lot road-markings
and analyzes spatial layouts between them, resulting in a collection of parking
spot image patches which can be used as training examples [19]. We additionally
use these initial parking spots to guide a random selection of negative examples.

Our approach is closely related to a semi-supervised learning technique called
self-training where the learner obtains the initial model from the labeled data,
classifies the unlabeled data, and updates the model using augmented training
data with the labeled data and the predicted unlabeled data [17]. For example,
Rosenberg et al. iteratively retrain a human face detector with the initial labeled
data and the weakly-labeled data. The weakly-labeled data is the unlabeled data
with high-confidences that are considered as the training data. Their approach
is different from ours in that we add the k most uncertain unlabeled examples
to increase the training data’s coverage on variation of visual appearances.

In the GIS community, there is extensive work on extracting road structures
in aerial imagery: estimating geometric characteristics and connectivity of inter-
sections by analyzing rasterized images [5], updating [10, 1, 9] and conflating [4]



Figure 1: A parking lot image used for self-labeling. FEach of the (green)
rectangles is a self-labeled training parking spot example.

roadmap databases by analyzing ortho-imagery.

Although there is significant research in extracting road network structures
from overhead aerial imagery, to the best of our knowledge, ours is the first
work that mines the geometric structures of parking lots from large collections
of images, using self-supervised machine learning techniques.

3 Incremental Retraining with
Exploratory Sampling

Our task is to learn a binary classifier for parking spots. For the preparation
of a training data, we developed a self-labeling method that extracts lines from
a parking lot ortho-image? and analyzes their spatial layouts to automatically
collect parking spot sub-images [19]. These self-collected images are used to
train a parking spot detector. Figure 1 shows examples of such self-labeled
parking spots. However, because our self-labeler relies on easily-detectable line
patterns (the outcome of our self-labeling hinges on the quality of a given gray
image), it is unable to obtain the training parking spot sub-images from aerial
imagery with challenging appearances. Figure 2 shows the examples of aerial
images used in this work where varying illumination conditions and occlusions
degrade the performance of our self-labeler. This variation in object appearances
breaks our parking spot detection procedure based on self-labeling and make our
detector unable to correctly classify parking spot sub-images with challenging
appearances, resulting in an unacceptable false negative rate.

2 An ortho-image is an aerial image where terrain relief and camera tilt are removed through
a rectification process.



(b) Parking spots with challenging appearances: occlusions,
shadow, and fish-bone shapes.

Figure 2: Examples of the parking lot ortho-imagery with challenging appear-
ances.

To handle this problem, we propose an active-learning based retraining. We
assume that a human labeler detects a performance drop and provides our de-
tector with manually labeled parking spot sub-images with challenging appear-
ances. Because manual labeling is expensive, our retraining algorithm aims at
minimizing the use of manually labeled data while maintaining a low rate of
label noise.

Our method is an extension of a pool-based active learning [13] that en-
ables discriminative supervised machine learning techniques to improve their
performance with small amounts of manually-labeled data. Unlike a passive
(or batch) learning method, where the learner passively requires a completely-
labeled dataset to learn the target function, our method gradually labels and
uses the available data through a retraining process. For an individual re-
training processes, the current binary classifier assigns its confidences of class



Algorithm 1 Incremental Retraining with Exploratory Sampling.

Input: - S = {s1,...,5/5}, a set of self-labeled examples; U = {u1,...,up}, a
set of unlabeled data s;,u; € R™; hg, an initial classifier; Ay, the current
classifier; bs = {bsy, ..., bsk }, a list of bucket size; A, the size of an increment

Output: h*, an optimal classifier

1: Initialization: hy < hg,
2: for k=1 to K do
3: Classify(hg, U), assign classification confidences to the unlabeled data
4:  Score(U), compute the selection scores of U and Sort(U) in descending
order of the scores
By, = Sampling(U, bsi), |Bi| = bsk
Present examples in By, to the oracle for labeling
- B, = B;U B,., By = ¢, exploratory sample set, B, = By, the remaining

data
8:  while B, # ¢ do
9: B; = Sampling(B,d), B, = By, — Bs
10: h;c = Train(hy, D), train hy using D = S U Bs

11: Classify(hy, By)
12: end while

13: end for

14: Return h* < hy;

assignments to each of the sampled data that is compiled by a random sam-
pling. Examples with low confidence values are selected to retrain the current
classifier. From the perspective of the current classifier’s model, those examples
with low confidences are the ones at the decision boundary. Retraining the de-
tector with these examples enables the detector to explore uncertain regions of
the decision space.

Algorithm 1 shows the pseudo-code of our method. The initial classifier, hg,
is trained by only using self-labeled examples, S. The list of the buckets defines
the number of examples used for sampling in each of the retraining steps. The
bucket size increases as the retraining proceeds. The predefined list of buckets
ensures a careful and incremental use of the limited labeled data in terms of the
ratio of the number of labeled data to the performance change. In other words,
this list allows us to observe the correlation between the number of newly added
examples and the performance increase if any.

Initially, Classify(hk, U) executes a binary classification where the initial
classifier, hy, assigns the unlabeled data, U, with confidences of its classification
decisions based on the current model that is obtained from the self-labeled
examples, S. In the Sampling(U, bsy,) step, we sample bsj, instances of unlabeled
data based on two different selection criteria: the informativeness, dr(u;), and
the abnormality, dc(u;), of an unlabeled example, u;. The informativeness
measures how much information an example contains based on its assigned
classification confidence. The current classifier assigns an unlabeled example



with a low confidence about its decision when the example is located closely
at the decision boundary and hence its class membership is uncertain. Such
examples are likely to be informative for the classifier to update its model.

or(uj) =1 — conf(uy),

where conf(u;) € [0,1] is a classification confidence assigned by the current
classifier, hy.

Another sampling criterion is the abnormality of an unlabeled data, which
measures how far an unlabeled example is located from the centroid of positive
examples in an local appearance space. The local appearance space is a high-
dimensional space where objects with similar appearances are proximate. We
construct this appearance space by first computing the eigenvectors of an affin-
ity matrix among all of the parking spots and then projecting m-dimensional
parking spot image onto the k most significant eigenvectors [25]. The affinity
matrix, W, is computed by

W, :exp{_w},
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where d(g; — g;) is a function that measures Euclidean distance between two
parking spot image patches, g; and g;; and o is the width of a kernel that
controls the range of neighbors. The farther an unlabeled example is located
from the centroid of positive examples the more unusual its appearance.

doluy) = dist(ug, py),

where dist(uj, py) is the Euclidean distance between an unlabeled data and the
centroid of positive examples in the appearance space and p4 is the centroid of
positive examples in the appearance space.

Figure 3 shows examples of canonical and unusual parking spot sub-images
and their projections onto the compressed appearance space. Because of our
imperfect self-labeler, the initial training data is only comprised of canonical
parking spot sub-images shown in 3(a). Parking spot images with unusual ap-
pearances shown in 3(b) are manually collected. When there is only self-labeled
canonical parking spot sub-images available, any learning algorithm might re-
sult in producing the solution of the parking spot classification that is biased
to the centroid of the self-labeled examples. This solution might be the optimal
in that it minimizes the error of canonical parking spot classification. However,
this solution might not be ideal when the whole appearance space is considered,
resulting in a high error rate on unusual parking spots [18]. To remedy this,
it is necessary to update the biased model using data with previously-unseen
appearance.

When the classification is done, our algorithm computes the score of sam-
pling selection criteria, sorts the data in descending order of the scores, and
selects the top |By| number of examples for updating the current classifica-
tion model. After receiving the true labels of samples in the sample set, By,



our algorithm exhaustively re-uses these samples during a retraining phase (de-
scribed in Algorithm 1, steps 9-13). In step 10, the top § number of samples,
B, is selected again. A composite of the newly-added unlabeled data and the
self-labeled examples, D, is used to retrain the current classifier, hy. The newly-
trained classifier, h;c, assigns the remaining examples in the sample set, By, with
classification confidences. Due to newly-added examples, the classifier adjusts
its decision boundary and its classification confidences are different. Instead of
using a sample set, By, at once, this incremental use of samples is useful in that
it allows the classifier to thoroughly investigate examples when it is uncertain
about their class memberships.

4 Experimental Results

In this section, we describe experimental results that evaluate the effectiveness
of our method, emphasizing on improving performance with small amounts of
labeled data. We downloaded 45 parking lot images from Google Maps?, each
containing a large number of individual parking spaces. A small number (8) of
these images with consistent illuminations and clear road markings were pro-
vided to the self-labeler. Our self-labeler automatically collected 532 parking
spot sub-images, of which 42 contain vehicles and 32 are false positives (not
parking spots). Retaining the label noise, we used these as positive examples to
train the initial parking spot classifier. The same number of random sub-images
are automatically collected and used as negative examples. From the rest of the
parking lot images, we manually labeled 365 parking spot sub-images. The
appearances of these manually collected images are quite different from those
of self-labeled images in terms of the geometric shape (e.g., parking spots for
the handicapped), shadows, occlusions, and the quality of road-markings (e.g.,
new or degraded). We term the self-collected training examples as “canonical”
since they exhibit consistency in visual appearance and the manually-collected
examples with varied appearance as “unusual”. Figure 3(a) and 3(b) show
examples of parking spots with canonical and with unusual appearances. Al-
though parking spot images used in this paper are scale- and rotation-free, their
appearances vary greatly in terms of geometric shape, intensity, color, and the
quality of road-markings.

We represent a parking spot sub-image in raw-intensity values by a feature
vector that is comprised of 6 different parts: the geometric shape of a parking
spot (i.e., layout of road-markings in a parking spot sub-image), the distribution
of Hue-Saturation-Intensity color, the values of Radon transform, the distribu-
tion of oriented gradients, the statistics of pixel intensity, and the responses of
spatial filters. A combination of extracted lines and the Radon transform is used
to describe the geometric shape of road-markings in a parking spot sub-image.
Specifically, it is measured by the angles of intersection between lines. The
Radon transform is also used to describe the geometric shape of road-markings
by projecting the raw-intensity of a parking spot sub-images along a radial line

3http://maps.google.com



oriented at specific angles (i.e., 0°, 90°, 154°). We employ overcomplete meth-
ods for representing the geometric shape because our line extraction method
is not 100% reliable, particularly for degraded road markings. The intensity
values in a parking spot sub-image are summarized by a set of six statistics:
mean, standard deviation, skewness, smoothness, uniformity, and entropy. The
histogram of oriented gradients (HOG) [7] is used to summarize intensity values
and geometric shapes together by approximating the distribution of oriented
gradients in a parking spot sub-image. To capture the textual characteristics,
we use Leung-Malik (LM) spatial filter banks that is comprised of 48 differ-
ent spatial filters: 6 orientations, 6 scales, 6 center-surround, and 6 low-pass
Gaussian filters [12].

For the parking spot binary classification, we use two different discriminative
classifiers that can produce probabilistic classification, SVM? and AdaBoost in
two different learning settings: Passive (random sampling) and active (uncer-
tainty sampling) learning.

Our application of AdaBoost is motivated by Viola and Jones’ approach
for face detection [24] where decision stumps of individual features are linearly
combined with their learned confidences for classification. A decision stump in
our case is a single-layer decision tree that computes the similarity of one of
the six parts in our feature representation between a parking spot image and
the centroid of individual classes and assigns the label of the closest centroid
to a testing image. For the actual similarity computation, we found that the
histogram intersection [22] produces the most reasonable score.

Our experiments aim at verifying the usefulness of our method from two
perspectives: First, how the classifier trained only using self-labeled examples
improve its performance for the task of classifying the canonical and the unusual
data at an incremental use of unusual data and, second, whether our incremental
retraining approach provide a better result than a batch approach.

Figure 4 shows the experimental results from our incremental retraining and
comparison to batch-learning. The horizontal axis represents the number (the
percentage) of the unusual data (e.g., 13 (3%) out of 365 unusual data) and
the vertical axis represents the classification accuracy measured by the ratio
of the correctly classified testing examples to the total number of the testing
examples. Because we fix the number of the training data, the number of the
canonical data instances is decreased as unusual data is added. The initial
binary classifiers were obtained only using the self-obtained data: 80% of the
canonical data are used as the training and 20% of them are used as the testing
data. The performance of the initial classifiers is shown as the first element on
the graph. As predicted, the initial classifiers perform well on the canonical data
but are poor at detecting the unusual instances of parking lots. This is because
the large variations in visual appearance in the latter cannot be modeled as
intra-class variations given the initial training set.

As unusual data is incrementally added to the training data, the performance

4Implemented using libsvm, which is publicly available at http://www.csie.ntu.edu.tw/
~cjlin/libsvm/



improves significantly without adversely affecting performance on the canoni-
cal set (which remains above 90%). This is important since we do not wish
the introduction of automatically-labeled unusual data instances to degrade the
classifier accuracy over the base set. When 28% of the training data is com-
posed of unusual data cases (65% of the unusual data is used as the training
data), SVM with uncertainty sampling outperforms all of the other approaches,
including batch techniques.

At the end of graphs, there are two sets of performance measurements about
a batch learning approach where all of the available data is used at once. Table 1
shows the comparison of classification accuracies between our incremental re-
training approach and a batch learning approach. This observation is supported
by a paired t-test at the significance level 5% with p-value of 0.0129.

5 Conclusions and Future Work

This paper presents a novel approach to improving the accuracy of a classi-
fier by exploiting unlabeled data. Specifically, given a detector that has been
trained using domain knowledge to accuractely recognize only a “canonical” set
of instances, we expand its ability to model unusual instances by augmenting its
training set using a combination of self-labeling and active learning techniques.
This enables the incrementally retrained detector to significantly improve its de-
tection rate by better accounting for intra-class variations that were not present
in its original dataset.

We present experiments that apply the proposed method to the problem of
parking spot detection in overhead aerial and satellite images, where intra-class
variations in appearance due to illumination changes, lane quality degredations
and occlusions can significantly degrade detector performance. We demonstrate
that our technique allows the retrained detector to mine “unusual” parking
spots without adversely impacting its ability to recognize canonical instances
of parking spots. While the experiments shown in this paper are limited to a
visual recognition task in aerial images, the proposed technique is very general
and can be applied to a broad class of detection and data mining problems.
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Figure 3: A two-dimensional projection of multi-dimensional parking spot
images with varying appearances. Canonical part spot sub-images are auto-
matically obtained by our self-labeler whereas unusual parking spot sub-images
are manually collected.
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265 (73%)

265 (73%)

294 (80%)

Uncertainty

.9282 (+.0123)

19376 (+.0046)

9299 (+.0212)

.9867 (£.0058)

9379 (£.0047)

.9602 (£.0260)

Random

9149

+.0119

9567

£.0058

eT

Uncertainty

.8668

£.0105

8526 (+.0307)

8667 (£.0203)

8044 (£.0078)

.8034 (£.0345)

Random

.8692

+.0106

( )
( )
( )
77940 (£.0160)
( )
( )

7353

+.0305

Table 1: Comparison of accuracy between incremental learnings and batch learnings.
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