
 

  

Abstract— Laser scanners are rapidly gaining acceptance as a 

tool for three dimensional (3D) modeling and analysis in the 

architecture, engineering, and construction (AEC) domain. 

Since 2001, our cross-disciplinary research team has been 

developing new methods for analyzing and modeling laser 

scanner data, with an emphasis on applications in the AEC 

domain.  This paper provides an overview of our group’s recent 

research efforts. Our work includes improving our 

understanding of the low-level aspects of laser scanner data, 

using comparison methods to analyze laser scanner data and 

derived models, and developing modeling and recognition 

algorithms to support the automatic creation of building models 

from laser scan data.  

 

Index Terms—Building information models, laser scanning, 

reverse engineering.  

I. INTRODUCTION 

ASER scanners are rapidly gaining acceptance as a tool 

for three dimensional (3D) modeling and analysis in the 

architecture, engineering, and construction (AEC) domain. 

Technological advances have led to laser scanners capable of 

acquiring range measurements at rates of tens to hundreds of 

thousands of points per second, at distances of up to a few 

hundred meters, and with uncertainties on the scale of 

millimeters to a few centimeters. Such sensors are well suited 

to densely capturing the geometry of building interiors and 

exteriors, process plants, and infrastructure. At the same 

time, software tools for processing and analyzing 3D point 

data sets (also known as point clouds) have been improving in 

their ability to handle the enormous point clouds produced by 

laser scanners and to integrate the use of point cloud data into 

CAD modeling software. 

Since 2001, we have been working in a cross-disciplinary 
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research team to develop new methods for analyzing and 

modeling laser scanner data, with a focus on applications in 

the AEC domain. Our team consists of faculty and students 

from the Robotics Institute and the Civil and Environmental 

Engineering Department, as well as visiting faculty and 

students from other universities. 

This paper provides an overview of our group’s recent 

research on laser scanning for the AEC domain. The genesis 

of our research program was an NSF-funded project called 

ASDMCon (Advanced Sensor-based Defect Management at 

Construction sites) [1]. One key aspect of this project was the 

use of advanced sensors, such as laser scanners, to monitor 

for errors during the construction of a facility. In a series of 

case studies, we used laser scanners to scan construction sites 

periodically and created “as-built” models of each site (Figure 

1). These as-built models were then compared to the facility’s 

design model and geometric discrepancies were detected and 

flagged as potential defects. 

In the course of the ASDMCon research, we learned some 

valuable lessons about using laser scanners for modeling 

buildings. First, it is important to understand the low-level 

limitations of laser scanners and the data processing 

workflows. Without such understanding, it can be difficult to 

tell the difference between a minor construction defect and 

noisy or uncertain data. Second, the concept of comparing 

what is measured (e.g., an as-built model) to what is expected 

(e.g., a design model) can be extended to many aspects of 
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Figure 1. A case study from the ASDMCon project showing 

the design model overlaid on the as-built model.  



 

analysis in the AEC domain. Third, this comparison concept 

has limits, and there is a significant need to support facility 

modeling in situations where no design model is available. 

These lessons translated naturally into three distinct lines of 

research for our group: improving our understanding of the 

low-level aspects of laser scanner data; using comparison 

methods to analyze laser scanner data and derived models; 

and developing modeling and recognition algorithms to 

support the automatic or semi-automatic creation of building 

models from laser scan data. The next three sections describe 

our work on these topics in more detail. 

II. UNDERSTANDING THE LIMITATIONS OF LASER SCANNERS 

Reading the product literature for commercial laser 

scanners, one would conclude that these devices work 

perfectly for sensing all types of surfaces that you might want 

to scan. In reality, laser scanners have difficulty with many 

types of surfaces that occur commonly in the built 

environment, including low-reflectance surfaces (e.g., 

anything painted black), specular surfaces (e.g., shiny metal 

and mirrors), and transparent or translucent surfaces (e.g., 

windows).  

Artifacts can even occur on benign surfaces that are 

considered easy cases. For example, in nearly every laser 

scan, phantom measurements that don’t correspond to any 

physical surface appear at depth boundaries. These artifacts 

are known as mixed pixels because they are caused by the 

laser spot straddling two surfaces that lie at distinctly 

different distances from the sensor. Mixed pixels can cause an 

algorithm to hallucinate structures that don’t exist, and they 

can cause significant error in the dimensions of modeled 

surfaces. We have conducted two research studies to better 

understand these effects. 

A. Mixed Pixel Detection 

Since all laser scans contain mixed pixels, virtually all 

laser scanner software includes some filtering algorithm to 

remove this invalid data. A number of relatively simple 

algorithms have been proposed – such as triangulating the 

point cloud and removing long edges. A few more complex 

algorithms have been put forth as well.  

Many people consider mixed pixel detection to be a solved 

problem. We were interested in determining just how 

“solved” this problem really is. We performed a comparative 

analysis of the performance of the mixed pixel detection 

algorithms that we identified in the 3D vision literature and 

those algorithms that scanner software manufacturers were 

willing to disclose [6]. We scanned several different types of 

environments – a highway bridge, a building exterior, a 

research lab, and a public building interior. In each 

environment, we manually labeled the mixed pixels in several 

patches and then evaluated the performance of each algorithm 

on the labeled data (Figure 2). What we found was somewhat 

surprising. Although some algorithms performed better than 

others, none of the algorithms performed all that well. In fact, 

the best algorithm could only detect 92% of mixed pixels with 

a 7% false alarm rate. Practically, this means that in order to 

remove most of the mixed pixels, a significant number of 

valid pixels must be removed, too, and even still, some mixed 

pixels must be manually removed. We conclude that the 

mixed pixel problem is not quite as solved as we originally 

thought. 

B. Modeling Edge Loss at Depth Boundaries 

In the AEC domain, it is common practice to assess 

geometric properties of structures, such as the width of a 

beam or the length of a wall. Laser scanners can replace 

traditional physical measurement methods by enabling non-

contact virtual measurements within the laser scan data.  

Unfortunately, simply making measurements in the laser scan 

data can lead to significant error when the measurement 

involves a depth boundary. The misestimation is caused 

partly by the eroding effect of mixed pixels and partly by the 

fact that laser scanners sample the environment at discrete 

intervals. In one example, we observed that a 91 cm bridge 

column lost 5.6 cm of its width. 

Based on these observations, we undertook a study to 

develop a model to predict the amount of edge loss that will 

occur at a depth boundary as a function of the various factors 

that could influence the effect [5]. These factors include the 

laser spot size, angular resolution, range, angle of incidence, 

and scanner rotational velocity. One motivation for 

developing this model is that if we can predict the amount of 

edge loss that will occur in a given situation, we can use that 

prediction to compensate for the actual edge loss and, 

therefore, improve the accuracy of measurements. 

We validated our edge loss model using controlled 

experiments in which we scanned a target with known widths 

 

Figure 2. An example of the best performing mixed pixel 

detection algorithm applied to a decorative window overhang 

on a building exterior. Notice that the algorithm generates a 

significant number of false positives and also some false 

negatives on the same boundary. 



 

and heights and also measured the corresponding widths and 

heights in the resulting point cloud data (Figure 3). We then 

compared the edge loss in the virtual measurements to the 

amounts predicted by our model. The measured results closely 

matched the model predictions across a wide range of testing 

conditions and even across scanners using different 

underlying technologies. Interestingly, our model predicted 

(rather counter-intuitively) that in some situations, the 

boundaries could actually grow rather than erode. Our 

experiments confirmed that this effect does indeed occur in 

practice. We also validated the method using field 

experiments on infrastructure inspection tasks. Using the 

edge loss compensation from our model prediction, we were 

able to reduce the error for measurements by an average of 

80% for one scanner, for example, reducing a 5 cm error to 

less than 1 cm. 

III. USING LASER SCANNERS FOR ANALYSIS 

Despite the various artifacts that laser scan data can 

contain, there are many applications where the data can be 

used to effectively analyze surfaces. Our projects in this line 

of research include using laser scanners to inspect concrete 

surfaces for flatness and detecting deviations between laser 

scan data and building models derived from the data. 

A. Analyzing Surface Flatness 

In many construction projects, it is important to ensure that 

concrete surfaces are flat to within a specified tolerance or 

that they conform to some designed surface shape. 

Traditionally, flatness assessment is performed manually, 

either with a long straightedge or with an elevation 

measuring device, such as a rolling profiler. These methods 

are relatively time-consuming and only make sparse 

measurements. Laser scanners, in contrast, can be very fast 

and can make dense measurements.  

It is not clear whether laser scanners can accurately 

measure surface flatness with sufficient accuracy, because the 

required tolerances are often smaller than the uncertainty of a 

scanner’s range measurements. One strategy to improve the 

accuracy of noisy data is to aggregate information spatially, 

trading off spatial resolution in the process. 

Given the relatively high noise levels of laser scanner 

measurements compared to the flatness tolerance, we asked 

the question, “How large does a deviation from perfectly flat 

need to be before a laser scanner can detect it?” To answer 

this question, we developed a framework for controlled and 

objective evaluation of flatness defect detection algorithms 

[4]. The framework consists of a test bed populated with 

flatness defects of various diameters and thicknesses, 

measures for objectively evaluating algorithm performance, 

and a testing procedure for scanning the test bed, applying a 

flatness detection algorithm, and reporting the performance 

results (Figure 4). We also developed several flatness defect 

detection algorithms and compared their performance using 

  

Figure 4. Analysis of surface flatness. Left: An overview of our experimental setup. Center: Our flatness defect test bed with 

circular defects of varying diameters and thicknesses. Right: A map showing regions of correct detection (blue), false detections 

(green), and detections in masked border regions (red). 

  
 

 

Figure 3. Modeling edge loss. Top: The test target used for 

controlled experiments to validate the edge loss model. Bottom: 

A plot showing the predicted edge loss for a specific pulsed 

time of flight (PTOF) laser scanner as a function of scanning 

distance. The first three lines in the legend are the predicted 

upper bound, lower bound, and average edge loss. The 

remaining lines are the measured edge loss for different widths 

in the test target. 



 

this framework and data from multiple laser scanners. The 

results of our experiments show that it is possible to detect 

surface flatness defects as small as 3 cm across and 1 mm 

thick from a distance of 20 m. 

B. Quality Assurance for As-built building models 

Analysis of laser scan data can also play a central role in 

verifying the accuracy of as-built building models. Typically, 

when a company or organization needs a model of a building, 

they will contract the work out to a laser scanning service 

provider. The resulting model must be verified for accuracy 

through a quality assurance (QA) process. One approach for 

QA of as-built models is to acquire physical measurements 

from the building and compare them with virtual 

measurements of corresponding structures in the model. This 

approach has several disadvantages, chief among them are 

requirement of physical access to the facility, sparse coverage 

of potential locations of errors, lack of intuition into the 

source of detected errors, and the time-consuming nature of 

the process. 

Borrowing from the idea of comparing the design model to 

the as-built model that we used in the ASDMCon project, we 

are developing an alternative approach. Here, we compare the 

as-built model to the raw point cloud data. If the as-built 

model faithfully represents the point cloud data, differences in 

the data sets should be minimal. Any regions of the as-built 

model having large deviations from the point cloud data are 

potentially problematic. Commercial reverse engineering 

software already supports this type of analysis, but it is not yet 

commonly used for QA in the AEC community. 

Working with the U.S. General Services Administration 

(GSA), we have conducted a number of case studies to 

evaluate this deviation analysis concept. Our results indicate 

that modeling errors are more common than one would 

expect. The exterior façades of a three storey building 

analyzed in one case study resulted in a significant number of 

errors that were beyond the accuracy tolerance set by the GSA 

(Figure 5 and Figure 6). 

We are currently working on conducting more extensive 

case studies and assisting the GSA in integrating the process 

into their workflow. Our current approach utilizes 

commercial software for the analysis, but the process could 

benefit from automation. For example, windows often show 

up as significant errors, but closer inspection often reveals 

that the point cloud corresponds to unmodeled objects, such 

as curtains inside windows. Automated methods to detect the 

windows and analyze them using different criteria could 

reduce the number of false alarms significantly. 

IV. USING LASER SCANNERS FOR MODELING 

Our QA analysis work shows that the process of creating 

building models from point clouds can be error-prone. The 

process is also very labor intensive. Each component in the 

model must be individually created and fit to the data. 

Frequently, the model needs to be augmented with semantic 

information, such as the identity of walls, windows, 

doorways, etc. These semantically rich models are known as 

building information models (BIMs). 

The automatic creation of BIMs from laser scan data is 

considered to be a “grand challenge” type of problem by the 

AEC community (though it does not have an official 

designation as such). One of the primary reasons that as-built 

BIMs have not yet gained wide acceptance in the community 

is the difficulty and expense associated with their creation, 

and automating the process would likely lead to a paradigm 

  

Figure 5. An example of modeling errors detected by the 

deviation analysis method for QA. The wall of the upper floor is 

offset from the wall of the lower floor by approximately 3 cm, 

but it was modeled using two walls on the same plane. The 

color coding indicated the amount of difference between the 

point cloud and the model, with blue being 3 cm and green 

being under 0.5 cm. 

 

Figure 6. Another modeling error example. In this case, the 

chimney model is offset from the point cloud. The width of the 

chimney was modeled 10 cm larger than the width in the point 

cloud. Here, the deviation are thresholded, so that any deviation 

over 2.5 cm is shown in yellow, and deviations below the 

threshold are shown in green. 



 

shift in the way that facilities are designed and maintained 

throughout their lifecycle. 

For the past year, the focus of our modeling research has 

been on solving the problem of automated creation of as-built 

BIMs. We have already made some progress toward 

achieving our goal. Ultimately, we envision a robotic system 

that could navigate through a facility, obtaining 3D 

measurements, and then would automatically produce a 

highly-accurate, semantically rich building model. In the 

robotics community, many researchers have studied the 

problem of mapping indoor facilities. The main distinction 

between our work and prior research is that robotics 

applications are typically more concerned with supporting 

robotic navigation or generating photo-realistic models, 

whereas the primary focus of as-built BIMs is on 

completeness and accuracy. In our initial work, we are 

concentrating on the components that comprise the building 

envelope – walls, ceilings, floors, windows, and 

doors/doorways. We are interested in modeling buildings that 

are in active use, which means that the environments will 

contain significant clutter and occlusions from furniture, 

fixtures, pictures on the walls, and so on (Figure 7). 

A. Floor Plan Modeling 

One reason to use laser scanners in a facility is to create 

blueprints of the as-built condition, which may differ from the 

design blueprints (assuming they still exist). We are working 

on methods to automatically create accurate floor plan models 

of building interiors using laser scan data. Our approach is 

based on the observation that when the 3D points are 

projected onto the ground plane, the projected point density is 

frequently highest at the wall locations, since those surfaces 

are generally vertically oriented (Figure 8). Using this two 

dimensional (2D) projection, linear structures can be 

extracted using image processing operations like the Hough 

transform. We also observed that the amount of clutter in an 

environment varies as a function of the height above the floor. 

By strategically selecting cross sections with minimal clutter, 

we can significantly improve the chances that a given wall 

surface will be observed without being occluded by clutter. 

Finally, we are developing measures to objectively evaluate 

the performance of floor plan modeling algorithms, since, to 

our knowledge, no such methodology has been established. 

One of the limitations of our approach is that it does not 

model windows and doorways – they are just regions where 

no linear structures were detected. The results could be 

further improved if we explicitly detect and model these types 

of components and if we incorporate full 3D reasoning into 

the process – extensions that we are currently investigating. 

B. Context-based Recognition of Building Components 

The structures which we are interested in modeling (walls, 

ceilings, and floors) are often planar surfaces, so it is sensible 

to try modeling planar regions initially, even if some surfaces 

require more complex geometries. Our goal is not only to 

model the surfaces, but also to identify the surface types and 

to establish connectivity relationships between them.  

Many researchers have modeled building interiors as a 

collection of planar surfaces. In some cases, the planar 

surfaces are classified into categories like wall, ceiling, and 

floor. The predominant method used in previous research has 

been to encode the classification rules in a semantic network 

[2, 3]. The downside to such an approach is that the rules 

must be manually encoded and would likely be brittle when 

faced with novel environments. In contrast, we use a 

learning-based approach, which can adapt to new data when 

it is encountered. 

 

 

Figure 7. A schoolhouse which we are using as a case study for 

modeling. Top: The combined point cloud from all of the scans. 

Bottom: A portion of the reflectance image from one scan, 

showing the degree of clutter in the natural environment. 

Figure 8. An example of automatic floor plan modeling. Left: The histogram of density of points projected onto the ground 

plane for one storey of the schoolhouse data shown in Figure 7. Center: The ground truth location of the walls (taken from a 

manually created BIM). Right: The floor plan model produced by our approach. 



 

We are investigating methods that leverage context for the 

recognition process. In some cases, it can be difficult to 

distinguish similar-looking components based on the 

components alone. A window looks much like a doorway, and 

a table has similar geometry to a floor. We believe that such 

ambiguous objects can be more easily recognized by 

considering the context of the objects. For example, a 

doorway is more likely to be located near the floor, and a 

floor is usually adjacent to a wall at the bottom, while a table 

is not. These types of contextual relationships can be 

represented and reasoned about using machine learning 

techniques. Our initial results indicate that the methods give 

good results for recognizing walls, floors, and ceilings, and 

we are beginning to look at how windows, doors, and 

doorways can be incorporated into the framework (Figure 9). 

C. Detailed Wall Modeling 

Although it is possible to model walls as planar patches, 

they are actually much more complex entities. Walls can be 

interspersed with windows and doorways, parts may be 

occluded by furniture and other objects, and items like 

bookshelves, clocks, and pictures may be attached or adjacent 

to the walls. We are investigating methods to more accurately 

model the detailed aspects of walls by explicitly reasoning 

about occlusions and their impact on the wall model (Figure 

10). As part of this research, we are also developing methods 

to automatically recognize and model windows and doorways, 

even when they are partially occluded. When integrated with 

our context based recognition framework, these detailed wall 

modeling algorithms will enable us to model all of the 

building components that we are targeting in our automatic 

as-built BIM modeling algorithms. 

 

V. CONCLUSION 

Our research on using laser scanners in the AEC domain is 

ongoing in each of the three lines of inquiry that we have 

described. We are particularly encouraged by the progress we 

have made so far on the automatic creation of as-built BIMs. 

However, we recognize that much remains to be done. There 

are numerous open research issues in all of these areas, and 

exciting recent developments in 3D sensors, such as 

improvements in flash LIDAR technology, have the 

additional potential of opening up entirely new areas for 

exploration. 
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Figure 9. Context-based recognition of building components. Left: The raw point cloud for a room. Center: Automatically 

labeled planar regions (blue = wall, red = ceiling, yellow = floor, green = clutter). Right: The recognized components with the 

clutter removed and boundaries cleaned up. 

  

Figure 10. Detailed wall modeling. Left: A reflectance image showing the high amount of wall occlusion and objects blocking 

regions of the window. Center: Wall regions are classified based on occlusion reasoning from all sensor viewpoints (red = 

observed surface, green = free space, blue = occluded). Right: Final wall model after window detection and localization. 


