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Linearized Motion Estimation for Articulated
Planes

Ankur Datta, Yaser Sheikh, and Takeo Kanade

Abstract—In this paper, we describe the explicit application of articulation constraints for estimating the motion of a system of
articulated planes. We relate articulations to the relative homography between planes and show that these articulations translate into
linearized equality constraints on a linear least squares system, which can be solved efficiently using a Karush-Kuhn-Tucker system.
The articulation constraints can be applied for both gradient-based and feature-based motion estimation algorithms and to illustrate
we describe a gradient-based motion estimation algorithm for an affine camera and a feature-based motion estimation algorithm for
a projective camera that explicitly enforce articulation constraints. We show that explicit application of articulation constraints leads
to numerically stable estimates of motion. The simultaneous computation of motion estimates for all the articulated planes in a scene
allows us to handle scene areas where there is limited texture information and areas that leave the field of view. Our results demonstrate
the wide applicability of the algorithm in a variety of challenging real world cases such as human body tracking, motion estimation of
rigid, piecewise planar scenes and motion estimation of triangulated meshes.

Index Terms—I.4.3.d Registration, I.4.8.d Motion, I.4.8.n Tracking

✦

1 INTRODUCTION

THE principal challenge in developing general pur-
pose motion estimation algorithms is the wide-

variety of rigid and nonrigid motions encountered in
the real world. Consider the three examples shown in
Figure 1. In Figure 1(a), the motion of a human is shown
where each limb’s motion is dependent on the motion of
its connected limbs. Motion of a rigid scene, shown in
Figure 1(b), is induced by the confluence of the structure
of the scene and the motion of the camera. Finally,
the motion of a nonrigid object such as the cloth in
Figure 1(c) depends on the elasticity of the object and the
force acting on it. The problem of motion estimation for
varied objects such as these has resulted in proposition
of a large number of algorithms, for instance [1]–[9].
In particular, due to their wide applicability, layered
motion models have gained significant traction over the
years [10]–[12]. However, existing layers based motion
algorithms do not exploit a key constraint that exists in
the motion of a large number of real scenes.

We demonstrate that articulation constraints are impor-
tant in many common scenarios for motion estimation
and yield useful constraints when taken into account
explicitly. Articulation constraints posit the existence of
points where the motion of a pair of planes is equal.
For instance, even though a human body can move in
a variety of complex ways, one constraint that must
be followed is that the motion of the upper and lower
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Fig. 1: Examples of articulated motion (a) Motion of human
body limbs are dependent on each other. (b) Motion of the
facades of a building are dependent on each other and on
the ground plane. (c) A popular choice for parameterizing the
motion of a nonrigid surface is a triangulated mesh, where the
motion of each triangle is dependent on the its neighboring
triangles.

arm must move the elbow to the same position (Figure
1(a)). Rigid, piecewise planar scenes also observe this
constraint because the motion of points on the line of
intersection of any two planes is the same for the two
planes (Figure 1(b)). For nonrigid surfaces, a triangulated
mesh is a popular representation. Each vertex, shared by
multiple triangles, must also move to the same position
under the motion of all those triangles and can therefore
be considered an articulation (Figure 1(c)).

In this paper, we study the relationship between ar-
ticulations and the homographies induced by articu-
lated planes (Section 3). Unlike previous constraints [3],
[9], we define exact equality constraints on the motion
model of the articulated planes for an affine camera
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(Section 4.1). Articulation constraints can be used for
motion estimation in both gradient-based and feature-
based motion estimation algorithms. As an illustration,
for an affine camera, we describe the application of
articulation constraints in a gradient-based motion es-
timation algorithm that solves a linear equality con-
strained least squares system for estimating motion of
multiple planes simultaneously (Section 4.2). For a pro-
jective camera, we describe the application of linearized
articulation constraints on the motion model (Section
5.1). For feature-based motion estimation algorithms, we
show the application of articulation constraints for a
projective camera that minimizes linearized least squares
transfer error between two images (Section 5.2). Our
results demonstrate that the incorporation of explicit
articulation constraints in motion estimation algorithms
results in accurate estimation of motion in a wide-variety
of settings such as human body tracking, estimating
motion of rigid, piecewise planar scenes and estimating
motion of triangulated meshes (Section 6).

2 RELATED WORK

Motion estimation from image sequences is a core com-
puter vision task. The earliest motion estimation algo-
rithms were pixel-based approaches that used first order
image derivatives and were based on image transla-
tion [1], [13]–[16]. Pixel-based methods are descriptive,
however, they can be unstable due to the corruption of
image intensity from real-world effects such as sensor
noise during the image acquisition process, aliasing and
the “aperture problem”. Region-based methods, on the
other hand, provide an alternative motion estimation
approach to mitigate these effects [17]–[20]. Motion esti-
mation, according to region-based approaches, has been
defined as yielding the best fit between image regions
at different times [21]. The match score between the
regions at different times can be evaluated according to
similarity measures such as the normalized correlation
or Sum of Squared Differences (SSD). Consequently,
region-based approaches are stable but less descriptive
than pixel-based approaches since they operate at region
granularity and not pixel granularity. The interested
reader is directed to excellent surveys on gradient-based
optical flow approaches by Fleet et al. [22] and also to a
survey by Beauchemin et al. [21] on other optical flow
approaches.

The need to balance model descriptiveness and param-
eter estimation stability led to the development of the
piecewise planar framework for motion estimation by
Wang and Adelson in [10]. The layer framework models
an image as a collection of independently moving planes
that compete for the ownership of image pixels. The
layers are ordered by depth and each has an intensity
and an alpha map that is used in compositing to ex-
plain the underlying image. Sawhney and Ayers [23]
introduced a maximum likelihood estimation algorithm
for estimating the parameters of the motion layers and

their ownership probabilities. The layer framework has
been applied successfully to a wide variety of real-world
applications [24]–[26].

The traditional layer framework treats each plane in
the scene as moving independently. Several methods
have been used to enforce the dependencies that exist
between moving planes in rigid scenes such as [12],
[27]. For articulate object motion, such as human motion,
[9], [28] defined articulations to capture relationships
between the motion of different planes. Ju et al. [9]
introduced “Cardboard People” for modeling the human
body as a set of connected planar patches or layers.
Motion was estimated for all layers simultaneously using
gradient-based motion estimation where articulations
provide soft constraints on the motion. The motion of the
connected layers is enforced to be spatially constrained
and a regularization parameter is used to weigh the artic-
ulation constraints relative to gradient-based motion es-
timation. The use of the regularization parameter, how-
ever, introduces arbitrariness in the motion estimation
algorithm since there is no one consistent value that will
work across all applications. Ju et al. in [28] extended the
cardboard people model to articulated motion estimation
for multi-layer framework. The articulated layers models
has subsequently been used in a number of papers [29]–
[33] and articulation constraints, including constraints
on angular velocity and acceleration, have been used
for 3D model estimation as well [34]–[40]. Bregler et
al. in [34], [35] demonstrate recovery of 3D articulated
motion using twists and exponential maps. In their for-
mulation, twists are modeled as revolute joints anchored
at articulations, that are then propagated to the next
time-step under the assumption of isotropic Gaussian
noise. Ruf et al. in [41] introduced projective formulations
for revolute and prismatic joints in the context of an
articulate chain with a fixed base. Articulated motion
for the ith joint is estimated in terms of all the (i − 1)
joints using twists and exponential maps. Sigal et al. in
[3], [42] used conditional probability distributions, which
can be interpreted as soft articulation constraints, to
model the relationships between body joints. Demirdjian
et al. in [43] imposed kinematic constraints using a linear
manifold estimated from the previous body pose. Non-
linear kinematic constraints were then enforced using a
learning-based approach via a support vector classifier.

The articulated layers models described above are not
descriptive enough to handle nonrigid surface motion.
This led to the introduction of specialized models for
nonrigid surface motion such as the Thin Plate Spline
(TPS) model [44] and triangulated meshes [5], [45].
The principal advantage of using triangulated meshes
is that sharp surface creases can be handled by tri-
angulated meshes, but require additional mechanisms
with TPS. Sclaroff et al. [46] employed texture-mapped
triangulated meshes, active blobs, for tracking deformable
shapes in images. Active blobs, similar in spirit to the
TPS model, solve an energy minimization problem with
an application dependent regularization parameter to
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perform nonrigid tracking. Bartoli et al. introduced a
direct motion estimation algorithm employing Radial
Basis Functions to model nonrigid image deformations
[47]. A subsequent feature-driven nonrigid registration
method was developed by Gay-Bellile et al. [48]. The idea
of pairwise nonrigid registration of images was extended
in a paper by Cootes et al. in [49], where they developed
a framework for registering a group of images together
using a set of nonlinear diffeomorphic warps employing
a regularizing parameter to penalize convoluted defor-
mations. Over the years, many physics-based methods
have been introduced for recovering shape and/or track-
ing of nonrigid surfaces, such as [50]–[55]. A key aspect
of physics-based modeling requires making assumptions
about the underlying nonlinear-physics of nonrigid sur-
face deformations; these assumptions are hard to justify
and are seldom accurate in practice. This has led to the
introduction of data-driven priors for modeling nonrigid
surface deformations. Recent work in this area includes
[56]–[58]. However, a key shortcoming of data-driven
approaches is that they require large training data sets
which may not be available for nonrigid surfaces.

In contrast with the previous work on articulated and
nonrigid motion estimation, which imposes articulation
constraints as a soft regularizer or as a “smoothness”
term, we introduce the idea of imposing the articulation
constraints as exact equality constraints on 2D motion
estimation. The proposed constraints facilitate models
of motion that are both descriptive and numerically
stable to estimate. The articulation constraints can be
applied to both gradient-based and feature-based motion
estimation algorithms and as an example we have in-
corporated them in a gradient-based motion estimation
algorithm for an affine camera and in a feature-based
motion estimation algorithm for a projective camera. We
show results on several real world tasks of estimating
motion of humans, rigid planar scenes and nonrigid
surfaces. In addition, for the nonrigid surfaces, we do not
require any physics-based prior i.e. assumptions about
the mechanical principles governing the motion of non-
rigid surfaces [52] or any data-prior for nonrigid surface
registration [58]. The estimation algorithms proposed in
this paper have been demonstrated to run upwards of
90 Hz on a Commercial Off-The Shelf (COTS) machine.

3 ARTICULATED PLANES

Between a pair of planes (Πi,Πj) undergoing Euclidean
transformations (Ti,Tj) respectively, an articulation P, is
a point that moves identically under the action of both
Ti and Tj in IR3. There can be at most two such points
between planes since if there are three noncollinear
articulations the two moving planes are, in fact, the same
plane. Note that this does not exclude collinear points
that lie on the line connecting the two articulation points
to serve as articulation constraints. Singly articulated
planar systems, or planes that share a single articulation,
are a popular model of the human body [9], [59] (see
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(a) (b)

Fig. 2: Articulation Constraints: (a) Articulations move iden-
tically under the transformations of two planes (b) Singly
articulated planes as a model for body tracking. Five points
connect six body parts.

Figure 2) and what can be considered doubly articulated
planar systems, or planes that share two articulations,
have found application in shadow analysis, view syn-
thesis and in scene reconstruction, [60]–[62].

Under the action of a projective camera, the motion
field induced by a moving plane can be described by a
homography,
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that is x′ ∼= Hx where x,x′ ∈ IP2, H is a nonsingular 3×3
matrix and ∼= refers to equality up to scale. The motion
fields induced between a pair of articulated planes are
not independent and their dependencies physically man-
ifest themselves in 2D motion as well. Consider Figure
2(a); let p be the image of the articulation point P in
the first image and let Hi and Hj be the respective
homographies induced by the motion of the two planes
Πi and Πj respectively. Since p is the image of an
articulation, it follows that,

p
′ ∼= Hip ∼= Hjp, (2)

where p
′

is the image of the articulation point P in the
second image. 2D articulations can be computed directly
from the pair of homographies by noting that they are
related to the fixed or united points [63] of the relative
homography Ωij = H−1

i Hj . The 2D articulations, pk,
k ∈ {1, 2, 3}, correspond to eigenvectors of Ωij (and Ωji).
This can be seen from

sk
i Hipk = p′

k, sk
j Hjpk = p′

k. (3)

Since Hi is non-singular and real,

(H−1
j Hi − λkI)pk = 0, (4)

where λk =
sk

j

sk
i

and I is a 3 × 3 identity matrix. Thus,

given (Hi,Hj), finding all p that satisfy Equation 3 is
the generalized eigenvalue problem. From Equation 4,
each λk is an eigenvalue and each pk is an eigenvector
of H−1

j Hi. To illustrate the meaning of articulations in
terms of optic motion, the absolute difference in motion
fields generated by two homographies is shown in Fig-
ure 3. The location of the eigenvectors of the relative
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Fig. 3: Magnitude of the difference between the motion fields
induced by two homographies. The black dots denote the real
eigenvectors of the relative homography. (a) From homogra-
phies induced by two identical planes rotating in opposite
directions about a common point. (b) From homographies
whose relative homography is a planar homology. Note that
two points lie on a line of fixed points.

homography are marked by black dots. It should be
noted that all eigenvectors of the relative homography
do not necessarily correspond to 3D articulations. A
relevant example is that of a pair of moving planes fixed
with respect to each other. The relative homography in
this case is a planar homology [60]. Two eigenvectors are
images of points that lie on the fixed line of intersection
(which can be considered a stationary articulation) but
the third eigenvector does not correspond to any 3D
articulation (see Figure 3(b)).

4 ARTICULATED MOTION MODEL FOR AFFINE
CAMERAS

Articulation constraints are constraints that are placed
on the articulations of two or more planes that share
the articulated points. In this section, we make explicit
the constraints placed by the articulated points for an
affine camera. As an illustration of the use of articulation
constraints in gradient-based or “direct-methods”, we
describe an algorithm for articulated motion estimation
viewed by affine cameras.

4.1 Articulation Constraints

The motion induced between two views of a plane for an
affine camera is represented by an affine transformation,





x′

y′

1



 =





a1 a2 a3

a4 a5 a6

0 0 1









x

y

1



 , (5)

or equivalently x′ = Aix. Between plane Πi and plane
Πj articulated at p, the articulation constraint takes a
particularly simple form,

Aip = p′ = Ajp. (6)

Equation 6 can be rewritten as,

(Ai − Aj)p = 0, (7)
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Fig. 4: A system of three triangles sharing three articulations
(a) before and (b) after motion.

and therefore the null-vector of (Ai − Aj) is the articu-
lation p.

We also observe that for a pair of affine transfor-
mations, (Ai,Aj), with two articulations, p1 and p2,
any point on the line defined by p1 and p2 is also a
articulation. All points that lie on the line defined by the
articulations p1 and p2 can be expressed through the
convex relationship p3 = αp1 + (1 − α)p2. Since p1 and
p2 are articulations, from Equation 6,

Aip1 = p′
1 Ajp1 = p′

1,

Aip2 = p′
2 Ajp2 = p′

2.

We can see that when p3 is transformed by Ai and Aj

we get,

Aip3 = Ai(αp1 + (1 − α)p2)

= αAjp1 + (1 − α)Ajp2 = Aj(αp1 + (1 − α)p2)

= Ajp3,

and therefore any point p3 that lies on the line defined
by two articulations of a pair of affine transform is itself
an articulation. This property is useful when considering
motion estimation over triangulated meshes (Figure 4)
as it ensures that tears do not occur while warping the
underlying images.

Finally, a remark on the linear dependencies of con-
straints from articulations between multiple (≥ 3) planes.
For a system such as the one shown in Figure 4, there
are five unique articulations1: a12, b12, c23, b23 and b13.
However, there are only four linearly independent con-
straints since the constraint produced by b13 is linearly
dependent on those of b12 and b23.

4.2 Articulated Motion Estimation

In this section, we describe how to use articulation
constraints in the affine parameter estimation algorithm
proposed by Bergen et al. [2]. Under an affine camera
assumption, the imaged motion of planes is described by
an affine transform. By making the brightness constancy
assumption between corresponding pixels in consecutive
frames, the motion estimation process involves SSD min-
imization,

E(a) =
∑

x

(

It(x) − It+1

(

W (x|a)
)

)2

, (8)

1. aij refers to the articulation a between triangles i and j.
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where W is a warp function, a = [a1, · · ·a6]
⊤ are the

motion parameters. Gauss-Newton minimization is used
to estimate the motion parameters. Thus, applying a first
order approximation yields the optical flow constraint
equation,

∇Ixu+ ∇Iyv + ∆It = 0, (9)

where ∇Ix, ∇Iy and ∆It are the spatiotemporal image
gradients and u = x′ − x and v = y′ − y are the
horizontal and vertical components of the optical flow
vector. Under an affine transformation,

x′ = a1x+ a2y + a3, (10)

y′ = a4x+ a5y + a6, (11)

or in matrix form as,

x
′

= Xa, (12)

where

X =

[

x y 1 0 0 0
0 0 0 x y 1

]

. (13)

Equations 9 and 12 can be combined to create a linear
system of equations in the unknown motion parameters
a. Thus, in a system of planes, for the ith plane we have,

Λi(∇Ix,∇Iy)ai = bi(∇Ix,∇Iy ,∆It), (14)

where Λi =
∑

X⊤(∇I)(∇I)⊤X, bi = −
∑

X⊤(∇I)(∆It).
For two planes Πi and Πj , their independent linear
systems may be combined by means of a direct sum into
a larger system,
[

Λi(∇I) 0

0 Λj(∇I)

] [

ai

aj

]

=

[

bi(∇I,∆It)
bj(∇I,∆It)

]

. (15)

Solving the system in Equation 15 is equivalent to
solving individually for each plane. However, if Πi and
Πj share an articulation p, the affine transformations Ai

and Aj are related as described in Equation 7. In terms
of [ai aj ]

⊤ this constraint can be written as,
[

p⊤ 0 −p⊤ 0

0 p⊤ 0 −p⊤

] [

ai

aj

]

=

[

0
0

]

, (16)

or simply [θ(p) θ(−p)][a⊤
i a⊤

j ]⊤ = 0. Estimating
[a⊤

i a⊤
j ]⊤ from Equations 15 and 16 is a standard equal-

ity constrained linear least squares problem which can be
solved stably using the Karush-Kuhn-Tucker system as
described below or by standard optimization packages
(such as lsqlin in MATLAB R©). For further details on
such optimization the interested reader is directed to
[64].

For more than two planes with pairwise articulations,
such as the case in Figure 2(b), this analysis can be
used to globally constrain the motion estimate of the
planes. Each pairwise articulation introduces a pair of
constraints on the affine parameters of the system. For n
planes with k articulations, we have 6n affine parameters
and 2k equality constraints. The matrix in Equation 15

Objective
Given 2 images, P articulations and the support of each of
the N planes, estimate the motion of the system of articulated
planes.

Algorithm
Do until convergence

1) Create Linear System: Create a block diagonal matrix Γ
and a vector B as in Equation 17 for the system of planes.

2) Apply Articulation Constraints: Create the linear equal-
ity constraint matrix Θ as in Equation 18.

3) Solve Linearly Constrained Least Squares System:
Solve ΓA = B subject to ΘA = 0.

4) Update Source Image: Warp the source image towards
the target image.

Fig. 5: Motion estimation for a system of articulated
planes under an affine camera.

would be expanded into a block diagonal matrix with n

blocks,





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. . .

Λn










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an
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


=


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...
bn






, (17)

or in matrix form, ΓA = B.
Each of the k articulations would provide two con-

straints that can be directly encoded in a single ma-
trix. As an illustration, consider the following constraint
equations for the system in Figure 4,









θ(a) θ(−a) 0

θ(b) θ(−b) 0

0 θ(b) θ(−b)
0 θ(c) θ(−c)













a1

a2

a3



 = 0. (18)

or in matrix form, ΘA = 0. We wish to solve,

min
A

‖B − ΓA‖2 subject to ΘA = 0, (19)

where Γ is an M×N matrix, B is a M -vector, Θ is a C×N
matrix and C ≤ N ≤M . Using Lagrange Multipliers,

f(A|λ) = ‖B − ΓA‖2
2 + 2λTΘA. (20)

The gradient of f(A|λ) equals zero when,

ΓTΓA + ΘTλ = ΓTB, (21)

and
ΘA = 0. (22)

This can be written and solved as a Karush-Kuhn-Tucker
system,

[

ΓTΓ ΘT

Θ 0

] [

A
λ

]

=

[

ΓTB
0

]

. (23)

From commutativity, it should be noted that the motion
of a in Figure 4 is not independent of the motion of c

even though an explicit connection is not present. The
network of articulations place a constraint on the global
motion estimation of the system of planes.
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5 ARTICULATED MOTION MODEL FOR PRO-
JECTIVE CAMERAS

In this section, we make explicit the constraints placed
by the articulated points for a projective camera. As an il-
lustration of the use of articulation constraints in feature-
based methods, we describe an algorithm for articulated
motion estimation viewed by projective cameras.

5.1 Articulation Constraints

For projective cameras, the motion induced between two
views of a plane is represented by a homography. Let
Hi be the homography that maps the plane Πi from
the first image to the second image of the same plane
and similarly let Hj be the homography for plane Πj ,
where H = [hT

1 ,h
T
2 ,h

T
3 ]T and hT

i represents the ith-row
of the homography matrix H. Between plane Πi and
plane Πj articulated at homogeneous image point p ∈
R

3, the articulation constraint takes the form,

Hip ∼= p′ ∼= Hjp. (24)

Given a point in one image and its corresponding point
in the other image, the transfer error [65] is defined as
the squared Euclidean distance between the projection
of the point using homography and its corresponding
point. We define a variant of the transfer error to impose
articulation constraints for homography estimation. This
constraint measures the difference in the projection of an
articulation point using the homographies of the planes
which share that point,

φ(Hi,Hj ;p) = 0, (25)

where

φ(Hi,Hj;p) =




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−
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)









. (26)

A single articulation point p, therefore, results in a vector
with 2 rows, φ(Hi,Hj ;p), imposing constraints on the
articulated motion. Rigidly connected planar systems,
such as in Figure 1(b), share two articulated points that
define the line of intersection. In such a case, a vector
with 4 rows of articulation constrains can be formed,

Φ(Hi,Hj ;p1,p2) = 0, (27)

where

Φ(Hi,Hj ;p1,p2) =

[

φ(Hi,Hj ;p1)
2

φ(Hi,Hj ;p2)
2

]

, (28)

where p1 and p2 are the two articulated points and
φ(Hi,Hj ;p)2 denotes element-wise square operation on
the vector.

5.2 Articulated Motion Estimation
We now describe how to use the articulation constraints
for motion estimation for a projective camera. The ar-
ticulation constraints can be applied to both direct and
feature-based algorithms, and as an example, we present
a feature-based articulated motion estimation algorithm
in this section.

Consider a doubly articulated planar system consist-
ing of two planes, Πi and Πj , with their respective
homographies, Hi and Hj , that map the images of the
planes from the first image to the second image. Given
the feature correspondences for each plane between the
two views, we can use the transfer error [65] to measure
the accuracy of point transfer from one image to the
other using homography,

Ψ(Hi,Hj; {xi,x
′

i}, {xj,x
′

j}) =

[

ψ(Hi; {xi,x
′

i})
2

ψ(Hj ; {xj ,x
′

j})
2

]

,

(29)
where

ψ(H; {x,x
′

}) =


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)

...
(

f(H;xn) − xn′
)
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



, (30)

where (f(H;xj) − xj′ ) is a vector with 2 rows, f(H;xj)
is transfer of the jth point, xj , from the first image to
the second image using homography H and xj′ denotes
its corresponding feature match in the second image.
{xi,x

′

i} is the set of homogeneous feature-point matches
in the first and the second image respectively for plane
Πi and similarly {xj ,x

′

j} is the set of homogeneous
feature-point matches for plane Πj .

Equation 29 is a nonlinear equation in the motion
parameters of the two planes, Hi and Hj , and can be
minimized using the Gauss-Newton gradient descent
algorithm. Taking the Taylor series expansion, we get,

Ψ(Hi,Hj ; {xi,x
′

i}, {xj,x
′

j}) ≈

([

ψ(Hi0; {xi,x
′

i})

ψ(Hj0; {xj ,x
′

j})

]

+

[

JfHi0 0

0 JfHj0

] [

∆Hi

∆Hj

])2

, (31)

where Hi0 and Hj0 are initial homography estimates for
planes Πi and Πj that can be obtained from the Direct
Linear Transform algorithm [65], JfHi0 and JfHj0 are the
corresponding Jacobians for the transfer error function
f and ∆Hi, ∆Hj are the respective motion parameter
updates.

Taking the derivative with respect to ∆Hi and ∆Hj ,
and equating to zero, we get,

HessfHi0Hj0

[

∆Hi

∆Hj

]

= −J⊤
fHi0,Hj0

[

ψ(Hi0; {xi,x
′

i})

ψ(Hj0; {xj ,x
′

j})

]

,

(32)
where JfHi0Hj0 is the combined Jacobian and
HessfHi0Hj0 is the combined Hessian,

JfHi0Hj0 =

[

JfHi0 0

0 JfHj0

]

, (33)
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HessfHi0Hj0 =

[

HessfHi0 0

0 HessfHj0

]

. (34)

The Jacobian JfH of the transfer error function f is
described in Appendix A and HessfH is the Gauss-
Newton approximation to the Hessian,

HessfH = J⊤
fHJfH. (35)

Equation 32 can be rewritten in matrix form as ΓHH =
BH.

Doubly articulated planar system consist of two
rigidly connected planes that share two points of articu-
lations; these points serve as articulation constraints on
the motion of the planes. Equation 27, which is a nonlin-
ear articulated motion constraint, can be linearized using
Taylor series and used to estimate articulated motion,

Φ(Hi,Hj;p1,p2) ≈

([

φ(Hi0,Hj0;p1)
φ(Hi0,Hj0;p2)

]

+

JΦ(Hi0,Hj0;p1,p2)

[

∆Hi

∆Hj

])2

, (36)

where JΦ(Hi0,Hj0;p1,p2) is the Jacobian of Φ and is de-
scribed in Appendix B. Since the articulation constraint
is of the form, Φ(Hi,Hj ;p1,p2) = 0, we get,

J⊤
Φ JΦ

[

∆Hi

∆Hj

]

= −J⊤
Φ

[

φ(Hi0,Hj0;p1)
φ(Hi0,Hj0;p2)

]

. (37)

Equation 37 can be rewritten in matrix form as, ΘHH =
C.

We wish to solve,

min
H

‖BH − ΓHH‖2 subject to ΘHH = C. (38)

This can be written and solved as the following Karush-
Kuhn-Tucker system,

[

ΓH ΘT
H

ΘH 0

] [

∆H

λ

]

=

[

BH

C

]

, (39)

where ∆H represents the update parameters for the ho-
mographies, Hi and Hj and λ is the Lagrange multiplier.

6 RESULTS

We have conducted several experiments to quantitatively
and qualitatively evaluate our motion estimation algo-
rithm for a wide variety of motions. In particular, we
evaluated our algorithms on the specific tasks of estimat-
ing the motion of the upper body of a human, estimating
motion of rigid, piecewise planar scenes with low texture
planes, and finally on estimating the motion of nonrigid
surfaces with low texture and large deformation.

6.1 Quantitative Evaluation

In this section, we quantitatively evaluate feature-based
motion estimation under projective camera with articu-
lation constraints. In addition, we evaluate the accuracy
of gradient-based human motion estimation under affine
camera against known ground-truth and also compare
the proposed approach of exact equality articulation
constraints against soft articulation constraints [9], [28].
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Fig. 6: Estimating homographies with varying number of
noisy feature points with a Gaussian noise. The estimated
homographies with and without the articulation constraint are
compared against the ground truth homography and we can
see that inclusion of articulation constraints consistently leads
to low errors in homography estimation.

6.1.1 Do Articulation Constraints Help?

An interesting question that arises is whether incor-
poration of articulation constraints leads to accurate
estimation of motion compared with the approach of
not including the articulation constraints during motion
estimation. Consider a doubly articulated planar system
composed of two planes, a ground plane Πg and a
vertical plane Πv, that share two articulation points that
defines their line of intersection. The planes Πg and Πv

are viewed from a random pair of projective cameras,
P1 and P2. Since in this setup, the plane equations
and the camera matrices are known, we can estimate
ground-truth homography associated with each plane
[65]. We next select k feature point matches on each plane
between the two views and add Gaussian noise σ to
them to simulate feature matching noise. Homography
can then be estimated with the articulation constraints
using Equation 39. Homography without the articulation
constraints can be estimated by setting the Lagrange
multiplier to zero in Equation 39. Figure 6 shows the
result of homography estimation for different number
of feature matches k with and without the articulation
constraints against the ground truth homographies for
two different levels of Gaussian noise (σ = 1.0 and
σ = 2.0) under 500 trials. To compare the ground
truth homography against the estimated homography,
we used, ||I − H−1

gt Hest||
2, where I is a 3 × 3 identity

matrix, Hgt is the ground truth homography and Hest

is the estimated homography [12]. It can be observed that
inclusion of articulation constraints consistently leads to
lower error in motion estimation, especially for feature
points with higher Gaussian noise. This is to be expected
since the inclusion of the articulation constraints helps to
make the homographies of the two planes, Πg and Πv,
consistent with each other, thereby reducing the effect of
noisy feature points.

6.1.2 Human Body Tracking: Comparison with Ground
Truth

We manually labeled 300 frames (image size: 640× 480)
of a human performing a challenging activity recorded
from a 30 frames per second (fps) camera. Motion was
then estimated using a gradient-based algorithm under
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an affine camera. The motion estimation algorithm was
initialized in the first frame at the ground-truth location,
and human motion tracked for the remainder of the
sequences. Figure 7(a) compares the recovered body-
part locations against the ground-truth for six body-
parts. Figure 7(b) plots body-part location error as a
percentage of the total distance moved by the body-part
respectively. We can note that even though left wrist
(LWrist) seems to have the highest absolute location
error, as a percentage of distance moved, however, it has
good accuracy. Figure 8 shows the ground-truth in green
and the tracked body posture in red. Note the presence
of motion blur due to a 30 fps camera and the presence
of self-occlusion in the test sequence that makes motion
estimation challenging.

6.1.3 Human Body Tracking: Drift Analysis
Motion estimation algorithms suffer from the problem
of drift for a variety of reasons such as accumulation
of subpixel errors or changes in object appearance. It is
therefore important to quantify the magnitude of drift
in motion estimation algorithms. We manually labeled
another sequence of 100 frames of a person reaching
for the glove box for the purpose of drift analysis.
Drift was computed by first estimating motion in the
forward direction, followed by, estimating motion in the
reverse direction and comparing the difference in the
initial position (first frame) versus the recovered initial
position. Motion estimation was done using a gradient-
based algorithm under an affine camera. For frame to
frame motion, the accuracy of the estimated motion is at
times subpixel. Figure 7(c) plots the drift error (in pixels)
of individual articulations. Figure 7(d) plots drift error
as a percentage of the total distance moved by the entire
system of planes. As expected as the motion increases,
the drift increases too, but remains under control across
the sequence.

6.1.4 Comparing Proposed Exact Equality Articulations
with Soft Articulations and No Articulations
In this subsection, we quantitatively compare the pro-
posed exact equality articulation constraints for human
body tracking using a gradient-based algorithm under
an affine camera against the soft articulation constraints
proposed by Ju et al. in [9], [28] and no articulation
constraints. Given a corpus of labeled training data of
2, 000 frames for each of the 3 people, we estimated
motion using the exact equality articulation constraint
using Equation 23. Soft constraints proposed by Ju et
al. in [9], [28] were also used to estimate motion. Motion
without articulation constraints was estimated by setting
the Lagrange multiplier to zero in Equation 23. Figure
9 qualitatively compares the three different articulation
constraints for motion estimation. Top row for each
person is motion estimation without any articulation
constraints, the middle row for each person shows recov-
ered motion using soft articulation constraints, while the
last row for each person shows motion estimates using
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Fig. 7: Comparison of tracked joint position against the man-
ually labeled data of a human steering the wheel. (a) Plots the
absolute position error in pixels for individual articulations on
a 640 × 480 image. (b) Plots tracking error as a percentage
of the total distance moved by the entire system of planes.
Measuring drift of motion estimation on a video sequence of a
person reaching for the glove box. (c) Plots the absolute drift as
measured in pixels for individual articulations. (d) Plots drift
as a percentage of the total distance moved by the entire system
of planes. The motion estimation algorithm has low error and
low drift on complex activities.

Fig. 8: Images corresponding to the evaluation in Figure 7.
Green lines represent manually labeled ground-truth over the
course of 300 frames of the video sequence. Red lines represent
the tracked human body posture. Note the presence of fast-
motion of wrist that cause motion blur and the presence of
occlusion between the two wrists that present challenging
scenarios for motion estimation.

exact equality articulation constraints. It can be observed
that in all the three cases imposition of exact equality
constraints leads to accurate recovery of motion. Table
1 reports quantitative comparison for motion estimates
in Figure 9. In the table, W, E, S, refer to the average
root-mean square error across the image sequence for the
two wrists, two elbows, and two shoulders respectively.
We can observe that soft articulation constraints on an
average lead to a 70% reduction in error against ground-
truth as compared to no articulation constraints. Exact
equality articulation constraints lead to on an average
a further reduction of 65% over the soft articulation
constraints.
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Exact Equality Constraints Soft Constraints (Ju et al. [9], [28]) No Articulation Constraints
Subject W E S Average W E S Average W E S Average

S1 0.011 0.029 0.065 0.035 0.259 0.125 0.113 0.166 0.650 0.889 0.362 0.634
S2 0.083 0.042 0.004 0.043 0.117 0.169 0.216 0.167 0.205 0.499 0.503 0.402
S3 0.091 0.086 0.132 0.103 0.170 0.127 0.270 0.189 0.644 0.949 0.423 0.672

Average 0.061 0.052 0.067 0.060 0.182 0.140 0.199 0.174 0.499 0.779 0.429 0.569

TABLE 1: Driving Sequence Quantitative Comparison: Imposition of exact equality articulation constraints for motion estimation
results in more accurate motion estimation as compared to the soft and no articulation constraints. ‘W’ corresponds to the average
RMS error for the left and the right wrist across the image sequence, similarly ‘E’ corresponds to elbow, and ‘S’ corresponds to
shoulder. ‘Average’ corresponds to the average error across the row or the column as appropriate.

Fig. 9: Images corresponding to the results in Table 1. Top
row for each person: motion estimation with no articulation
constraints. Middle row for each person: motion estimation
using Ju et al. [9], [28]. Bottom row for each person: motion
estimation using exact equality articulation constraints.

6.2 Qualitative Evaluation

In this section, we perform qualitative evaluation of
the proposed motion estimation algorithm using exact
equality articulation constraints for human upper-body
motion estimation, estimating the motion of rigid piece-
wise planar scenes, and estimating motion of nonrigid
surfaces.

6.2.1 Human Body Tracking

A human body can be modeled as a system of singly
articulated planes, where each limb shares one articula-
tion with an attached limb. We collected a large data set
of 12,000 frames of 5 people wearing 5 different types of
clothing, over a period of several imaging sessions. This
data set has on the order of about 25 human activities,
with each activity roughly 500 frames long at 60 fps.

Fig. 10: Posture detection results for 9 different people with a
variety of clothing and variations in the neutral posture.

Detection of Human Posture
Human posture was detected in images using the ap-
proach described in [66]. Given a large corpus of labeled
training data, we learn posture specific parts-based ap-
pearance model for the human body. We focus on build-
ing a posture detector for the neutral posture of holding
the steering wheel, since during a driving scenario it
is the most common posture. Given several labeled
instances of the neutral posture, we first use procrustes
analysis to align the data. Then for each body part, a
two dimensional normalized histogram, Ai, is built that
captures the frequency of observing image gradient over
the normalized (x, y) coordinates. Given a collection of
part appearance models, A = {A1, . . . ,AN}, ”candidate
proposals” for neutral posture can be evaluated as,

f(X|{A}; ∆It) =
∏

(x,y)

e∆It(x,y)×AX(x,y), (40)

where ∆It is the gradient magnitude map of It, and
AX is the expected sketch of the configuration X. The
sketch AX takes the histograms of individual body part
frequencies and transforms them to the location of the
body part defined by X. Since the neutral posture resides
in R

12, an efficient search of the space of ”candidate
proposals” is important. We use the labeled data set of
the neutral posture to learn a low dimensional, usually
one, search space using PCA. Figure 10 shows the neu-
tral posture detection result for 9 different people with a
variety of clothing and variations in the neutral posture.
For further details on the posture detector, we refer the
interested reader to Sheikh et al. [66].

Given a detected neutral posture, a rectangular box
around each limb is obtained and the pixels lying in
each box are used to construct Λi and bi for that plane
for gradient-based motion estimation under an affine
camera. The articulations, which are initialized at the
joint points of the detected posture, are used to set up
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Fig. 11: Motion estimation for human upper-body. Our results
demonstrate successful tracking of different individuals with
different clothing performing a variety of activities inside a car.
Note that since the entire network of articulation constraints
bears down on the motion estimation of the body parts, we
are able to use information from other articulations to estimate
motion for blurred body parts during motion.

the linear constraint matrix, Θ. Thus, a system of 30
unknowns with 8 constraint equations is constructed,
which is solved using the algorithm outlined in Figure
5 at an average speed of 90 fps on a COTS machine. We
conducted several tests on a variety of activities such as
reaching for the glove box, changing gears, and reaching
into the center console. Several results are shown in
Figure 11. An interesting point can be made about track-
ing through motion blur, which is present in the video
sequences. Since our tracking algorithm estimates the
motion of each limb using all the articulations, therefore,
even though the information content locally around the
blurred area is low, the tracker is able to incorporate
information from the connected limbs to successfully
track the blurred object. During experimentation the
principal sources of failure were strong self-occlusions
and the presence of strong background gradient from
the center console box which looks just like an arm.

6.2.2 Tracking Rigid Piecewise Planar Scenes
An important manifestation of doubly articulated planes
occurs between the rigid faces of a building in urban
scenes. As the camera moves, the motion of connected
facades of a building are dependent on each other.
Accurate motion estimation that ensures connectivity
leads to application in 3D scene reconstruction and view
synthesis of rigid scenes [61]. Figure 12 shows result
of gradient-based motion estimation under an affine
camera in scenes containing multiple planes fixed with
respect to each other (in 3D). The outline of the planes in
the images were manually initialized. It can be observed

(a)

(b)

Fig. 12: Tracking a rigid, piecewise planar scene with low
texture layers. Note that it is challenging to track points on
low texture walls and the ground plane without the use of
articulation constraints.

from the images that due to the articulation constraints,
planes which have little or no texture can also be tracked.
For example in Figure 12(a) two of the planar faces have
unidirectional texture. Despite this, the articulation con-
straints allow the ground plane to anchor the motion of
the other two planes. This ability is even more apparent
in Figure 12(b), where the ground plane has barely any
texture at all. This is a common phenomenon in real
urban scenes, and articulations provide a solution for
estimating ground plane motion robustly.

We can also observe the difference in homography
estimation with and without the articulation constraints
using feature-based motion estimation under projective
camera in Figure 13. SIFT [67] features were obtained
between the current image and the past image to per-
form feature driven tracking of rigid piecewise planar
scenes in these images. Given the feature correspon-
dences, we estimated warp parameters for homography
with articulation constraints using non-linear gradient
descent parameter updates as outlined in Equation 39.
Homography without articulation constraints was also
estimated using the same SIFT matches by setting the
Lagrange multiplier to zero in Equation 39. Figure 13
shows that the incorporation of articulation constraints
help to recover accurate homography over long image
sequences as demonstrated by correct alignment of the
planar image masks to the real planar facades.

6.2.3 Motion Estimation of Triangulated Meshes
Given a mesh constructed from Harris corner points, we
set up a linear system using the pixels contained within
each triangle as described in Section 4.2. The articulation
constraint system is setup so that mesh vertices are
transferred to the same location by all the triangles
sharing that point. This system is then solved using the
algorithm outlined earlier in Figure 5 to obtain motion
estimates for each triangle in the triangulated mesh,
which is then used to propagate the feature points to the
next frame with the same mesh connectivity. Figure 14
presents result on different nonrigid surfaces on which
we applied our algorithm. Note that we do not require
point correspondences to estimate motion.

Several interesting observation can be made about the
results. We are able to robustly estimate the motion of
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(a)

(b)

(c)

Fig. 13: Difference between homography estimation with and
without the articulation constraints. The articulations are plot-
ted in green and the red dots mark the outline of the tracked
planes. (a) Tracking using homography with articulation con-
straints estimated using feature matches between images at
consecutive temporal instances. (b) Tracking using homogra-
phy without articulation constraints. (c) Top row shows tracked
articulated planes using homography with articulation con-
straints, while bottom row shows otherwise. Column 2 and
3 show zoomed in differences between the tracking of the
articulated planes. Left picture in each column corresponds to
tracking using homography with articulation constraints and
right picture otherwise. It can be observed that alignment in
both the cases is better for the homography estimated using
articulation constraints.

the nonrigid surface through large illumination changes
in part because the motion of the triangles which lie
in saturated areas of the image is well-constrained by
the other neighboring triangles through the articulation
constraints. This is the same reason as to why we are
able to accurately recover the motion of triangles even
after part of the triangulated mesh has left the field of
view. This is evident in several results, in particular the
Cloth Bag sequence (Figure 14(d)) — note the accurate
localization of the vertex on the last “E” of “DEFENSE”.
This happens because a large number of articulation
constraints are placed by the triangulated mesh on each
triangle and hence even if the triangles, or some parts
of the triangles are not visible, the neighboring triangles
can accurately constrain their positions.

The principal source of error in these experiments was
the inability of the triangulated mesh to express the
underlying motion of the surface. There is a tradeoff
between the size of the triangles (which ensures that each
triangle contains sufficient texture) and the resolution
of triangulations (which allows greater expression of
nonrigid motion).

(a)

(b)

(c)

(d)

Fig. 14: Result of tracking a triangulated mesh on a variety of
nonrigid surfaces. (a) Snapshots of large illumination change
resistant tracking of a sponge. (b) Tracking a paper being
moved in a wave-like manner. (c) Tracking large deformations
on a paper bag. (d) Robust tracking of a cloth bag, where the
points on the right side of the picture, disappear and then
reappear in the field of view. Notice that when the points
reappear, they are at their correct locations. Despite not having
any gradient information, they are tracked correctly because of
the articulation constraints from the neighboring points.

(a)

(b)

Fig. 15: Motion estimation for low texture nonrigid surfaces.
(a & b) Top row: Motion estimation with no articulation
constraints. (a & b) Bottom row: Motion estimation with ex-
act equality articulation constraints. Imposition of articulation
constraints leads to stable and accurate recovery of motion.

Motion estimation of low texture nonrigid surfaces

Imposition of exact equality articulation constraints on
motion estimation helps to recover stable and accurate
estimates of motion. Figure 15 shows two example of
low texture surfaces: napkin and cardboard, that present
challenging scenarios for recovery of motion due to the
presence of low texture nonrigid surfaces. Figure 15 (a
& b) top row shows recovered motion estimates using
a gradient-based algorithm under an affine camera with
no articulation constraints, while Figure 15 (a & b) bot-
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(a)

(b)

Fig. 16: Motion estimation for nonrigid surface with large
deformations. (a & b) Top row: Motion estimation with no
articulation constraints. (a & b) Bottom row: Motion estimation
with exact equality articulation constraints. Since we solve for
the motion of the mesh globally, all articulation constraints are
used for motion estimation. Figure best seen when zoomed in.

tom row imposes exact equality articulation constraints
and shows the recovered motion. Imposition of exact
equality articulation constraints reduces the degree of
freedom for the motion of the triangulated mesh and
helps to recover stable and accurate motion estimates
under low texture scenarios.

Motion estimation of nonrigid surfaces with large defor-
mations
Figure 16 shows an example of a nonrigid surface un-
dergoing large deformation that presents a challenging
scenario for motion estimation. Figure 16 (a & b) top row
shows recovered motion estimates with no articulation
constraints, while Figure 16 (a & b) bottom row shows
motion estimation after imposition of exact equality
articulation constraints. Since, we solve for the motion
of the entire triangulated mesh at the same time, all the
articulation constraints are used for motion estimation.
This leads to stable and accurate recovery of nonrigid
surface motion.

7 CONCLUSION

In this paper, we have presented the explicit application
of articulation constraints to motion estimation algo-
rithms for an affine and a projective camera to recover
a variety of real world motions. The motion estimation
algorithm constructs an over-constrained system of lin-
ear equations subject to linear, exact equality constraints,
in case of an affine camera, and linearized articulation
constraints are used, in the case of a projective camera, to
solve for the motion of multiple layers simultaneously.
Since, we solve for the motion of all layers simultane-
ously, therefore the entire set of constraints bears on the
motion parameters for all the entities. In some cases, this
enables the algorithm to track parts of the object even if
they have left the field of view and when there is little
gradient information available for that plane.

During experimentation, we noted two primary
sources of error. The first source of error is self-occlusion.
For cases such as the human body, this is an important
consideration where self-occlusion is a fairly common
phenomenon. The second type of error occurs in non-
rigid surface tracking, when the resolution of the model
is unable to represent the underlying surface motion.
This raises an important open question of what is an ap-
propriate triangulation of a nonrigid surface and should
the mesh be constructed out of feature detectors or
uniformly or perhaps affected by the underlying motion
of the nonrigid surface.

The value of our framework lies in its ability to com-
pute motion estimates for systems of articulated planes
without the use of any application dependent regular-
ization parameters or smoothness terms. This reduces
arbitrariness and points to broad applicability of the
framework to a variety of real-world motion estimation
tasks as demonstrated in this paper. We do not require
the inclusion of any physics-based prior or data prior
for motion estimation, even though, they may be added
but perhaps with the loss of the linear formulation of
the presented motion estimation algorithm. Investigating
inclusion of such shape and/or motion priors within a
linear framework for stable and efficient motion estima-
tion remains as a source of future research.

APPENDIX A

The Jacobian JfHΠ
of the transfer error function f is

a (2N) × 9 matrix, where N is the number of feature
matches for plane Π. The (2 × i) − 1th and 2 × ith-row
of the matrix for a pair of corresponding feature points
(pi,p

′

i) are as follows, where i ∈ {1, . . . , N},
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APPENDIX B
The Jacobian JΦ(Hi,Hj ;p1,p2) is a 4× 18 matrix which
is as follows:
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where {px,py} represents the (x, y) component respec-
tively of an articulation point p and

η1(pi;Hi,Hj) =
h⊤

1ipi

h⊤
3ipi

−
h⊤

1jpi

h⊤
3jpi

, (43)

η2(pi;Hi,Hj) =
h⊤

2ipi

h⊤
3ipi

−
h⊤

2jpi

h⊤
3jpi

. (44)
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