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Abstract In estimating motions of multi-centered op-
tical systems using the generalized camera model, one
can use the linear seventeen-point algorithm for obtain-
ing a generalized essential matrix, the counterpart of
the eight-point algorithm for the essential matrix of
a pair of cameras. Like the eight-point algorithm, the
seventeen-point algorithm has degenerate cases. How-
ever, mechanisms of the degeneracy of this algorithm
have not been investigated. We propose a method to
find degenerate cases of the algorithm by decomposing
a measurement matrix that is used in the algorithm into
two matrices about ray directions and centers of pro-
jections. This decomposition method allows us not only
to prove degeneracy of the previously known degenerate
cases, but also to find a new degenerate configuration.

Keywords Motion Estimation · Generalized Essential
Matrix · Degenerate Case · Matrix Decomposition ·
Rank Deficiency · Null space

1 Introduction

Non-conventional optical imaging, such as an omnidi-
rectional mirror system and a multiple-camera system,
has been used in a wide range of computer vision ap-
plications [2, 4–6, 11]. One benefit of using such optical
systems is to have a wider field of view, which reduces
ambiguities between translation and rotation in esti-
mating motions of the cameras [1].
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Image formation or projection models of these sys-
tems, not describable by a conventional pin-hole camera
model, is nonlinear, each different from others depend-
ing on the mirror and camera configurations. The clas-
sical linear epipolar constraint for the pin-hole model
is not applicable here, and thus the motion estimation
between frames becomes a highly nonlinear problem.

To deal with non-conventional imaging, a general
model of cameras has been proposed by regarding any
optical system as a set of multi-centered linear projec-
tions [6]. In this generalized camera model, an epipolar
constraint can be expressed in a linear form [10], which
has resulted in the seventeen-point linear algorithm for
motion estimation.

The 17-point algorithm has degenerate cases. Sturm
[14] first gives a list of the degenerate cases together
with the corresponding generalized essential matrices.
However, the paper does not provide the reason why
those cases are degenerate, or whether there are other
degenerate cases of the algorithm. Later, Mouragnon et
al. [9] and Li et al. [8] give analysis about the degenerate
cases and the ranks of the measurement matrices. In
both papers, they show the degeneracy on the given
specific cases which have been verified by example.

In this paper, we aim to find the complete set of de-
generate configurations by deduction, not by examples.
We show that by decomposing a measurement matrix
of the 17-point algorithm, we can systematically iden-
tify degeneracy of the algorithm, revealing the reasons
of how the degeneracy occurs.

2 Epipolar Constraint of Generalized Cameras

We derive a linear constraint that exists between a pair
of corresponding points in two frames taken by a mov-
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ing generalized camera, similar to the classical epipolar
constraint in the case of a projective camera [10,14].

2.1 Generalized Camera

One method to describe image formation of a multi-
centered imaging system is to assign a 3D ray of light
to each pixel. Because determining the 3D ray is not
based on the optical model of the imaging system, this
generalized camera model can be used for an arbitrary
optical system.

To represent a light ray in the 3D space, a Plücker
coordinate is used. This representation uses two 3-vectors:
a direction vector q and a moment vector q′ defined as

q′ = q×O (1)

where O is an arbitrary point on the ray, for which
in our case, the projection center can be conveniently
selected. Obviously, the relation q>q′ = 0 holds, and
thus Plücker coordinates are defined up to scale.

Calibration of a generalized camera is to map a 3D
ray to each pixel, for which Ramalingam et al. [12]
present a method. In this paper, we assume a calibrated
generalized camera as in the previous work [10,14].

2.2 Generalized Essential Matrix

We are now ready to derive the epipolar constraint for
multi-centered optical systems by using the generalized
camera model [1]. Suppose that a calibrated general-
ized camera moves with rotation R and translation t,
and that we have a pair of 3D ray correspondences
< q1,q′1 > and < q2,q′2 >. The first 3D ray < q1,q′1 >

is transformed due to the camera motion into

< Rq1,Rq′1 − (t×R)q1 > . (2)

This should intersect with < q2,q′2 >, which generates
the following constraint1.

q2
> (Rq′1 − (t×R)q1) + q′2

>Rq1 = 0.

This constraint equation is rewritten as

q2
>Rq1

′ − q>2 [t]×Rq1 + q′2
>Rq1 = 0, (3)

or in a matrix form,
[
q2

q′2

]> [− [t]×R R
R 03×3

] [
q1

q′1

]
= 0, (4)

1 In the Plücker coordinate representation, if two rays
< m1,m′

1 > and < m2,m′
2 > intersect, they satisfy

m1
>m′

2 + m′
1
>m2 = 0.

where [ ]× denotes a skew-symmetric matrix of a vector
[10,14].

Note the similarities of this form (4) to the epipolar
constraint of pin-hole cameras [7]. First, the upperleft
submatrix of the matrix is − [t]×R, which is the same
form with an essential matrix of a projective camera.
Second, Eq. (4) is a bilinear form on Plücker coordi-
nates, as the epipolar constraints of pin-hole cameras is
on image coordinates. To emphasize these similarities,
we can define Eg by using the essential matrix E of the
epipolar constraint of a projective camera.

E , [t]×R (5)

Eg ,
[−E R

R 03×3

]
. (6)

The matrix Eg is called a generalized essential ma-
trix, and Eq. (3) or (4) is known as a generalized epipo-
lar constraint for given measurements < q1,q′1 > and
< q2,q′2 >.

3 Seventeen-point Algorithm for Generalized
Essential Matrix

The generalized essential matrix Eg depends on the mo-
tion parameters R and t, and it has only 6 degrees of
freedom (DOF). However, 6-DOF parameterization of
Eg is so nonlinear that it is hard to find the parameters
from 3D-ray correspondences.

The simplest solution is to make it linear by in-
creasing the number of unknowns, as in the 8-point al-
gorithm for a projective essential matrix. The matrix
Eg has two unknown matrices E and R. If we assume
as if all of the 18 elements of the two matrices are in-
dependent, Eq. (4) becomes a linear equation as

a (q1,q′1,q2,q′2)
>

[
e
r

]
= 0 (7)

where a (q1,q′1,q2,q′2) is a measurement vector from
the corresponding rays, and 9-vectors e and r are vec-
torized E and R, respectively. Because this constraint
equation (7) is defined up to scale, this system has 17
DOFs in total. The minimum number of correspon-
dences required for a solution is 17, because one pair
of correspondences gives one constraint equation.

By stacking the measurement vectors a (q1,q′1,q2,q′2)
of n correspondences, one can build a measurement ma-
trix A as

A =




a
(
q1

1,q
′
1
1
,q1

2,q
′
2
1
)

a
(
q2

1,q
′
1
2
,q2

2,q
′
2
2
)

...
a

(
qn

1 ,q′1
n
,qn

2 ,q′2
n)




(8)
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Fig. 1 Motion of a multi-camera system. The center O1 is trans-
formed to O2 by a rigid body motion R and t. Note that the
superscript in the text refers to an index of corresponding rays.
For example, the centers O2

1 and O2
2 of the corresponding rays for

the point X2 in the text are O′1 and O′′2 in this case, respectively.

where superscripts denote the indices of the correspond-
ing rays. In general, the one-dimensional null space of
A to be found by singular value decomposition is a so-
lution for e and r defined up to scale. The scale can be
determined by adjusting the norm of the estimated ro-
tation matrix R to be one. As in the 8-point algorithm,
once e and r are determined in this way, one can use
them as the initial estimates to obtain the improved
solution of Eg by solving the nonlinear equations.

The degeneracy of the 17-point algorithm occurs
when the null space of A has two or more dimensions,
and thus the solution is not unique. In the next sec-
tion, we will derive the conditions of the measurement
matrix A that causes such degeneracy.

4 Mechanisms of Degeneracy of
Seventeen-Point Algorithm

To study the degeneracy, we will first show that the ma-
trix A is decomposable into two matrices: one about
the direction vectors of rays and the other about the
projection centers. Then, we can study how the degen-
eracy can occur by looking into only the second matrix.
Fig.1 shows the motion of a multi-camera system and
the transformation of camera centers O1 and O2.

4.1 Decomposition of Measurement Matrix A

Eq. (7) can be rewritten in the form

a>Ee + a>Rr = 0. (9)

where the measurement 18-vector a (q1,q′1,q2,q′2) is
divided into the two 9-vectors aE and aR. From q>2 Eq1

in (3) and (5), we see that aE is dependent only on
q1 and q2, and if we denote q1 = [q1x q1y q1z]

> and

q2 = [q2x q2y q2z]
>, the 9-vector aE (q1,q2) is a vec-

torized q2q>1 expressed as

aE (q1,q2)9×1 = [q1xq2x q1xq2y q1xq2z ...

q1yq2x q1yq2y q1yq2z ...

q1zq2x q1zq2y q1zq2z]>
(10)

Similarly, we will obtain the form of aR. By using
(1), the term q′2

>Rq1+q>2 Rq′1 in Eq. (3) can be rewrit-
ten as

q2
> ([O2]×R−R[O1]×)q1 (11)

where O1 and O2 are the centers of the corresponding
rays < q1,q′1 > and < q2,q′2 >, respectively. Note that,
just like q>2 Eq1, term (11) is also a bilinear form of q1

and q2 as a whole. Thus, (11) can be rewritten in the
form of

aE (q1,q2)
> v(R,O1,O2)

where v(R,O1,O2) is a vectorized [O2]×R−R[O1]×,
which is a linear combination of r. Therefore, a>R in Eq.
(9) should be a linear transformation of aE (q1,q2)

> to
be expressed as

a>R = aE (q1,q2)
>C (O1,O2) (12)

where C (O1,O2) is a 9× 9 block-structured matrix:

C (O1,O2) =




[O2]× −O1zI3×3 O1yI3×3

O1zI3×3 [O2]× −O1xI3×3

−O1yI3×3 O1xI3×3 [O2]×




(13)

and O1 = [O1x O1y O1z]
>, O2 = [O2x O2y O2z]

>.
As the matrix C (O1,O2) depends only on the pro-

jection centers O1 and O2, we call it a center matrix.
It is skew-symmetric; it is a sum of a block-diagonal
matrix of skew-symmetric matrices, and a block-skew-
symmetric matrix of three diagonal matrices. According
to Jacobi’s theorem2 [3], therefore, this center matrix
(13) should be rank-deficient.

By using the center matrix, Eq. (7) is now rewritten
as

aE (q1,q2)
> [

I9×9 C (O1,O2)
] [

e
r

]
= 0. (14)

2 Any skew-symmetric matrix of odd order has determinant
equal to 0.
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The measurement matrix A is therefore decomposed
into two matrices Ad and Ac.

A =




a1
E
> a1

E
>C

(
O1

1,O
1
2

)

a2
E
> a2

E
>C

(
O2

1,O
2
2

)
...

...
an

E
> an

E
>C (On

1 ,On
2 )




=




a1
E
> 0 · · · 0

0 a2
E
> · · · 0

...
...

. . .
...

0 0 · · · an
E
>




n×9n




I9×9 C
(
O1

1,O
1
2

)
I9×9 C

(
O2

1,O
2
2

)
...

...
I9×9 C (On

1 ,On
2 )




9n×18

, AdAc

(15)

where superscripts denote the indices of the correspond-
ing rays, as in (8). The first n× 9n matrix Ad depends
only on the ray directions, and the second 9n× 18 ma-
trix Ac on the positions of projection centers.

Because the ray directions can be different on the
different scene features, we are interested in the degen-
erate cases relating only on the Ac, which gives informa-
tion about the configurations of a generalized camera.

4.2 Null Space of the Center Matrix C(O1,O2)

The null space of a center matrix plays a key role in
the remainder of this paper, so we will investigate the
nullity and the null space of a center matrix.

Finding the null space of the center matrix C(O1,O2)
is equivalent to solving the equation

[O2]×X−X[O1]× = 03×3, (16)

which is a Sylvester equation AX + XB = C [13] with
C = 03×3. Because the dimension of the solution space
of the equation AX + XB = 0 is the same with the
number of the common eigenvalues of A and B, we can
prove the following proposition.

Proposition 1 If |O1| 6= |O2|, that is, the lengths of
the vector O1 and the vector O2 are not the same, the
nullity of the center matrix is one; its rank is eight.
Otherwise, the nullity becomes three; its rank is six.

Proof The skew-symmetric matrix [O1]× has the three
eigenvalues: zero, and two imaginary values,

0, i|O1| and − i|O1|.
Therefore, if |O1| 6= |O2|, [O1]× and [O2]× have one
common eigenvalue, and the null space of the center
matrix is one-dimensional. Thus, the rank of the 9× 9
center matrix is 8. Otherwise, i.e. |O1| = |O2|, all the

three eigenvalues are common. Therefore, the nullity of
the center matrix is three and the rank is 6. ut

For each case, the null space of the center matrix is
found as follows.

Proposition 2 If |O1| 6= |O2|, the null space of the
center matrix C(O1,O2) is

[
O1xO>

2 O1yO>
2 O1zO>

2

]>
(17)

which is the vectorized rank-1 matrix

O2O>
1 . (18)

Proof This is proved by substituting O2O>
1 for X in

the original equation (16). ut

Proposition 3 If |O1| = |O2|, a vector in the 3-D null
space of the rank−6 center matrix is expressed in the
matrix form with scalars a, b and θ as

RO

(
aR(θ; Ō1) + bŌ1Ō>

1

)
(19)

where RO is a rotation which satisfies O2 = ROO1,
and Ō1 , O1/|O1|. R(θ; Ō1) represents a rotation around
the axis Ō1 by angle θ.

If O1 = O2, the null space includes I3×3 in a matrix
form.

Proof Since |O1| = |O2|, O1 can be appropriately ro-
tated to O2, i.e., O2 = ROO1. By adopting this rota-
tion matrix, Eq. (16) becomes

[ROO1]×X−X[O1]× = 03×3. (20)

One can see the three matrices

RO, ROO1O>
1 , and RO[O1]×

satisfy Eq. (20). By Gram-Schmidt orthogonalization,
we can construct these orthogonal bases as

RO[Ō1]×, RO

(
I3×3 − Ō1Ō>

1

)
and ROŌ1Ō>

1

where the unit vector Ō1 , O1/|O1|. A vector in the
null space of a rank-6 center matrix is expressed in the
matrix form using the orthogonal bases as

RO

(
α[Ō1]× + β

(
I3×3 − Ō1Ō>

1

)
+ γŌ1Ō>

1

)

with scalars α, β and γ. By using the fact that a rotation
by angle θ around the unit axis vector u is expressed
in general as R(θ;u) = sin θ[u]×+cos θ(I3×3−uu>)+
uu>, this 3-D null space can be written in the form of

RO

(
aR(θ; Ō1) + bŌ1Ō>

1

)

with scalars a, b, and θ. ut
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4.3 Rank Analysis of the Measurement Matrix A

We have shown that the measurement matrix A of the
17-point algorithm can be decomposed as A = AdAc.
Using the decomposition, we can show the following
propositions.

Proposition 4 The rank of the measurement matrix
A is invariant to the selection of coordinate systems of
a generalized camera.

Proof A measurement matrix A is constructed from a
set of corresponding rays. Suppose that the rays are rep-
resented in different coordinate systems: coordinate of
the system before the motion is transformed by {R1, t1},
and that after the motion by {R2, t2}. The directions
and centers of the rays in the new coordinates are rep-
resented

q̂1 = R>
1 q1 and Ô1 = R1O1 + t1

q̂2 = R>
2 q2 and Ô2 = R2O2 + t2.

In these different coordinate systems, another measure-
ment matrix Â is constructed as

Â =



â1>

E â1>
R

...
...

ân>
E ân>

R


 . (21)

The vector aE for A is a vectorized q2q>1 in (10).
The vector âE for Â is a vectorized q̂2q̂>1 which is equal
to R>

2 q2q>1 R1. Thus, âE should be a linear combina-
tion of aE as

â>E = a>ET(R1,R2).

where T(R1,R2) is a 9×9 transformation matrix equal
to R1⊗R2, which is the Kronecker product of R1 and
R2.

Similarly, âR is derived from (11),

q̂>2 ([Ô2]×R̂− R̂[Ô1]×)q̂1

= q>2 R2([R2O2 + t2]×R̂− R̂[R1O1 + t1]×)R>
1 q1

= q>2
{
[O2]×R−R[O1]× + [R>

2 t2]×R−R[R>
1 t1]×

}
q1

where R̂ = R>
2 RR1. Thus, the vector âR is expressed

as

â>R =

aE(q1,q2)>
{
C(O1,O2) + C(R>

1 t1,R>
2 t2)

}
T(R1,R2).

The measurement matrix Â is expressed as Eq. (22).
Because the 18×18 matrix M is full-rank, the rank of
Â is same with that of A. ut

Proposition 5 If Ac has a null space, the 17-point al-
gorithm is degenerate.

Proof Assume that the 17-point algorithm is not degen-
erate, that is, the nullity of the matrix A is only one.
We will show that this assumption will lead to that the
nullity of Ac is zero.

Because A = AdAc, the null space of Ac, if exists,
should be in the null space of A. The nullity of A should
be greater than or equal to the nullity of Ac. Therefore,
since the nullity of A is assumed to be one, the nullity
of Ac should be one or zero.

Assume that the nullity of Ac is one, then its null
space should be the same as A. Let {E0,R0} denote
the unique solution of the 17-point algorithm and e0

and r0 are vectorized E0 and R0, respectively. From
the definition of Ac in Eq. (15),

e0 + C
(
Oi

1,O
i
2

)
r0 = 0 (23)

for all i. Thus, for all i and j, r0 should satisfy

C
(
Oi

1,O
i
2

)
r0 = C

(
Oj

1,O
j
2

)
r0. (24)

This means that r0 should be in the null space of
C

(
Oi

1 −Oj
1,O

i
2 −Oj

2

)
. Let us divide the cases depend-

ing on the lengths of Oi
1 −Oj

1 and Oi
2 −Oj

2.
If |Oi

1 − Oj
1| 6= |Oi

2 − Oj
2| for some i and j, the

matrix form of r0, R0 =
(
Oi

2 −Oj
2

)(
Oi

1 −Oj
1

)>
, and

its rank is one from Proposition 2. Because the rank of a
valid rotation matrix R0 should be three, the assumed
solution {E0,R0} can not be a legitimate solution of
the 17-point algorithm.

If |Oi
1 −Oj

1| = |Oi
2 −Oj

2| for all i and j, the valid
rotation R0 should satisfy that

(Oi
2 −Oj

2) = R0(Oi
1 −Oj

1)

for all i and j, from Proposition 3. This is satisfied if
and only if there exist a 3-vector ∆O such as Oi

2 =
R0Oi

1 + ∆O for all i. According to the Proposition 4,
the rank of this measurement matrix is equal to that
of the measurement matrix in case that Oi

1 = Oi
2 for

all i. Because C(Oi
1,O

i
1) has a vectorized I3×3 as a

common null space, from Proposition 3, the nullity of
Âc is greater than one. This shows that the measure-
ment matrix A has two or more dimensional null space,
which contradicts the assumption.

In total, if the measurement matrix A has an one-
dimensional null space, the nullity of Ac should be zero.
Inversely, if Ac is rank-deficient, the solution can not
be uniquely determined. ut
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Â =




a1
E
>
T(R1,R2) a1

E
>{C (

O1
1,O1

2

)
+ C

(
R>1 t1,R>2 t2

)}T(R1,R2)

a2
E
>
T(R1,R2) a2

E
>{C (

O2
1,O2

2

)
+ C

(
R>1 t1,R>2 t2

)}T(R1,R2)
...

...

an
E
>T(R1,R2) an

E
>{C (

On
1 ,On

2

)
+ C

(
R>1 t1,R>2 t2

)}T(R1,R2)




= AdAc

[
T(R1,R2) C

(
R>1 t1,R>2 t2

)
T(R1,R2)

0 T(R1,R2)

]
, AM.

(22)

Proposition 6 If all the center matrices have a com-
mon null space, Ac has its null space. Inversely, if Ac

has its null space, it is always possible to select the ap-
propriate camera coordinate system such that all the
center matrices have a common null space.

Proof (⇒) If all the center matrices in Ac have a com-
mon null space N, the vector

[
0>9 N>]> should be a

non-zero null vector of Ac from the form of (15).
(⇐) Assume that the one-dimensional null space of

Ac is composed with two 9-vectors x1 and x2. Thus,
for all i, x1 and x2 satisfy

x1 + C
(
Oi

1,O
i
2

)
x2 = 09×1 (25)

According to Proposition 4, changing the camera coor-
dinate system gives Â = AM, and the center matrix Ĉ
in the newly selected coordinate system is represented
by

Ĉ
(
Oi

1,O
i
2

)
=

T(R1,R2)−1
(
C

(
Oi

1,O
i
2

)
+ C

(
R>

1 t1,R>
2 t2

))
T(R1,R2)

and the vector x̂2 = T(R1,R2)−1x2. Thus,

Ĉ
(
Oi

1,O
i
2

)
x̂2 =

T(R1,R2)−1
(
C

(
Oi

1,O
i
2

)
+ C

(
R>

1 t1,R>
2 t2

))
x2.

From Eq. (25), these center matrices have the com-
mon null space if and only if there exists a matrix
C

(
R>

1 t1,R>
2 t2

)
such that C

(
R>

1 t1,R>
2 t2

)
x2 − x1 =

09×1. We can always find the matrix that satisfies this
condition by selecting R1 = R2 = I3×3, t1 = −Oi

1 and
t2 = −Oi

2 for any i. ut
This proposition shows that we can find the degen-

eracy by checking only whether all the center matrices
of the corresponding rays have a common null space.

5 Various Degenerate Configurations of
Seventeen-point Algorithm

We have shown that if all the center matrices have a
common null space, the 17-point algorithm is degener-
ate: it can not have a unique solution. We identify those
degenerate cases by investigating the center matrices.

To identify the degeneracy, we categorize the con-
figurations into three cases with the rank of the center
matrices as follows.

1. The rank of the center matrix is 8 for all the corre-
sponding rays i.

2. The rank of the center matrix is less than 8 for all
the corresponding rays i.

3. The rank of the center matrix is 8 for some corre-
sponding rays i.

Note that all the configurations relating to the projec-
tion centers are in these three categories, and thus, the
analysis here gives the complete list of the degenerate
cases about the camera configurations.

5.1 Case 1: The rank of the center matrix is 8 for all
the corresponding rays.

We have shown in Proposition 2 that if |Oi
1| 6= |Oi

2|,
the rank of the 9 × 9 center matrix C(Oi

1,O
i
2) is 8

and its null space has a form of (17) in a 9-vector or a
form of (18) in a matrix form. All the center matrices
of corresponding rays have a common null space, if and
only if, for each pair of corresponding rays i, there exists
a scalar ki to satisfy that

O1
2O

1>
1 = kiOi

2O
i>
1 . (26)

This condition is satisfied if and only if there exist
scalars ki1 and ki2 for each i such that

Oi
1 = ki1O1

1 and Oi
2 = ki2O1

2. (27)

Eq. (27) means that all the projection centers Oi
1 be-

fore the motion are on a line, and all the centers Oi
2 are

aligned on a line after the motion. The 17-point algo-
rithm becomes degenerate, if all the rays pass through
a line before and after the motion of the rig. Fig. 2(a)
illustrates this degenerate case.

5.2 Case 2: The rank of the center matrix is less than
8 for all the corresponding rays.

We have shown in Proposition 1 that the rank of the
center matrix C(Oi

1,O
i
2) is less than 8 if and only if
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|Oi
1| = |Oi

2|; in other words, there is a rotation matrix
Ri

O that rotates Oi
1 to Oi

2 such that Oi
2 = Ri

OOi
1.

From Proposition 3, the null space Ni of the center
matrix of the corresponding rays i is expressed as

Ni = Ri
O

(
aiR(θi; Ōi

1) + biŌi
1Ō

i>
1

)
(28)

where Ōi
1 = Oi

1/|Oi
1|. There is the common null space

of the two center matrices of corresponding rays i and
j, if and only if the null space Ni is a solution of the
original Sylvester equation of the ray j, that is,

[Rj
OŌj

1]×Ni = Ni[Ō
j
1]×. (29)

By substituting (28), separating terms that include ai

and bi into the left and the right sides, respectively,
and multiplying R(θi; Ōi

1)
>Ri>

O Rj
O from the left, this

becomes

ai

(
[R(θi; Ōi

1)
>Ri>

O Rj
OŌj

1]× − [Ōj
1]×

)
=

− biR(θi; Ōi
1)
>

(
[Ri>

O Rj
OŌj

1]×Ōi
1Ō

i>
1 − Ōi

1Ō
i>
1 [Ōj

1]×
)

.

(30)

The left-hand side of Eq. (30) is skew-symmetric, but
the right-hand side is not. Therefore, this equation can
hold if and only if the both sides are 0-matrices. Let us
divide the possible conditions into four subcases based
on ai and bi.

Case 2-1: ai = bi = 0. The null space Ni becomes
zero, which is a trivial solution.

Case 2-2: ai = 0 and bi 6= 0. Eq. (30) becomes a
form of a Sylvester equation,

[Ri>
O Rj

OŌj
1]×Ōi

1Ō
i>
1 − Ōi

1Ō
i>
1 [Ōj

1]× = 0.

From Proposition 3, we obtain a condition Ōi
1Ō

i>
1 =

Ri>
O Rj

OŌj
1Ō

j>
1 as its rank-1 solution, and further from

the definition of Ri
O and Rj

O, it becomes

Ōi
1 = ±Ōj

1 and Ōi
2 = ±Ōj

2. (31)

Because Ōi
1 = Oi

1/|Oi
1|, these conditions become Eq.

(27), which means that all the projection centers Oi
1

before the motion are on a line, and all the centers Oi
2

after the motion are also aligned on a line, as in Section
5.1.

As a subcase of (31), if the conditions are

Oi
1 = O1 and Oi

2 = O2,

that is, if all the rays pass through one point in each
time step (as shown in Fig. 2(b)), it means that, in
practice, a single pinhole camera or an optical mirror
system having a single focal point is degenerate.

Case 2-3: ai 6= 0 and bi = 0. Eq. (30) becomes a
form of a Sylvester equation,

[R(θi; Ōi
1)
>Ri>

O Rj
OŌj

1]× − [Ōj
1]× = 0.

From Proposition 3, we can find a condition

R(θi; Ōi
1)
>Ri>

O Rj
OR(θj ; Ō

j
1) = I3×3,

or

Ri
OR(θi; Ōi

1) = Rj
OR(θj ; Ō

j
1) (32)

Because Oi
1 = R(θi; Ōi

1)O
i
1, Eq. (32) shows that there

exists a common rotation Rc for all i such that

Oi
2 = RcOi

1. (33)

By rotating the center Oi
2 to Oi

1 using a common rota-
tion Rc, the center matrix C(Oi

1,O
i
2) becomes

C(Oi
1,O

i
1), whose null space includes a vectorized I3×3

common to i. Therefore, if each corresponding ray pair
passes through the same point in the local coordinate
system before and after the motion, as shown in Fig.
2(c), the 17-point algorithm becomes degenerate re-
gardless of the positions of the centers. This situation
usually occurs when using multiple cameras with non-
overlapping FOVs in which case correspondences are
often tracked only between frames in the same cameras,
thus causing the 17-point algorithm to be degenerate.

Case 2-4: ai 6= 0 and bi 6= 0. In this case, the both
(31) and (32) should be satisfied. Thus, physically, all
the camera centers are aligned on a line before and af-
ter the motion, respectively, and the corresponding rays
should pass through the same point in the local coordi-
nate before and after the motion. Fig. 2(d) shows this
degeneracy.

Although the null space of a center matrix is 3-
dimensional in (28), the degeneracy occurs only depen-
dent on the values of ai and bi, not on θi. This is be-
cause the term θi is a parameter of a rotation matrix
whose axis is the direction to the center position. As in
deriving (33), the rotation matrix does not change the
coordinate of the centers at all, and does not affect the
degeneracy.

5.3 Case 3: The rank of the center matrix is 8 for
some corresponding rays, but not all.

With the two previous cases, we have investigated when
rank(C(Oi

1,O
i
2)) = 8 for all i, and when rank(C(Oi

1,O
i
2)) <

8 for all i. The only remaining case is that rank(C(Oi
1,O

i
2)) =

8 for some i.
In this case, there are two sets of center matrices:

one of the rank-8 matrices, and the other of the rank<8
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Fig. 2 Degenerate cases of the 17-point algorithm: The center O1 is transformed to O2 by a rigid body motion R and t.

matrices. If the set of the rank-8 matrices does not have
the common null space, there is no common null space
of all center matrices, which means a non-degenerate
case. We will consider only the case in which all the
rank-8 matrices have the common null space, as in Sec-
tion 5.1.

Suppose that the common null space of the rank-8
matrices is a vectorized O2O>

1 . This should be a so-
lution of the Sylvester equation of the rank<8 center
matrix

[
Ri

OOi
1

]
×O2O>

1 −O2O>
1

[
Oi

1

]
× = 0.

Thus, there should be a scalar ki for all i such that

O2O>
1 = kiRi

OOi
1O

i
1

>
= kiOi

2O
i>
1 .

This is the same with Eq. (26) in Case 1. Thus, if all
the centers are aligned on a line before and after the
motion respectively as in Case 1, the 17-point algorithm
is degenerate.

6 Conclusion

We have systematically identified the degenerate config-
urations of the 17-point algorithm that estimates a gen-
eralized essential matrix. We have shown that a mea-
surement matrix is expressed as a multiplication of two
matrices about directions and centers of 3D correspond-
ing rays. To have a unique solution, the center measure-
ment matrix must have full-rank. Therefore, degener-
acy of the algorithm can be investigated by analyzing
the rank of the center measurement matrix. The cen-
ter measurement matrix contains identity matrices and
center matrices built with positions of centers for each
ray pair, and it is possible to find degeneracy by check-
ing the null space of the center matrices. If all of the
center matrices have a common null space, the 17-point
algorithm becomes degenerate.

By checking the rank of the center matrices alge-
braically, we have identified the degenerate cases. When
the rank of some center matrices are eight, we have
shown that there is a degenerate case if there is a line
which all the corresponding rays pass through before

and after the motion. We also have shown that the 17-
point algorithm can be degenerate when the rank of
the every center matrix is less than 8. This degener-
acy occurs not only in multiple cameras sharing a sin-
gle center point or with collinear centers, but also in
a system containing multiple centers in general posi-
tion where there are no corresponding rays which come
from the different centers before and after the motions
in using the linear 17-point algorithm.3 In practice, this
second situation often occurs in a multi-camera system
with non-overlapping field of views, where features are
tracked only in the sequences from the same cameras.

The rank analysis in this paper reveals only the suf-
ficient conditions of the 17-point algorithm, and thus
there could be more degenerate cases caused by the di-
rection vectors.
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