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Abstract

Mobile robotic dynamics modeling is necessary for reliable planning and control of unmanned
ground vehicles on rough terrain. Autonomous vehicle research has continuously demonstrated that
a platform’s precise understanding of its own mobility is a key ingredient of competent machines
with high performance. I will investigate the feasibility and mechanism of enabling a platform to
better predict its own mobility by learning from its own experience. The autonomy system will
calibrate, in real-time, vehicle dynamics models, based on residual differences between the motion
originally predicted by the platform and the motion ultimately experienced by the platform.

This thesis develops an integrated perturbative dynamics method for real-time identification of
wheel-terrain interaction models for enhanced autonomous vehicle mobility. I develop perturbative
dynamics model which predict vehicle slip rates. The slip rates are first learned for steady state
conditions and interpolated to slip rate surfaces. An Extended Kalman Filter uses the residual
pose differences for on-line identification of the perturbative parameters on a six wheel, skid steered
vehicle. An order of magnitude change in relative pose prediction was observed on loose and muddy
gravel.
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Chapter 1

Introduction

Mobile robotic dynamic modeling is necessary for reliable planning and control of unmanned ground
vehicles (UGVs) on rough terrain. Autonomous vehicle research has continuously demonstrated
that a platforms precise understanding of its own mobility is a key ingredient of competent machines
with high performance. Since ground vehicles are propelled over the earth by the two forces
of gravity and traction, agile autonomous mobility relies fundamentally on understanding and
exploiting the interactions between the terrain and tractive devices like wheels and tracks.

I will investigate the feasibility and mechanism of enabling a platform to better predict its own
mobility by learning from its own experience. It will calibrate vehicle models, in real-time, based
on residual differences between the motion originally predicted by the platform and the motion
ultimately experienced by the platform. Although the model does not consider the direct forces,
it provides an accurate model of the underlying dynamics. This thesis develops an integrated
perturbative dynamics model for real-time identification of wheel-terrain interaction that enhance
autonomous vehicle mobility.

1.1 VGMI Project

The work presented in this thesis is part of the larger Vehicle Ground Model Identification (VGMI)
project to improve the accuracy of predictive models which are the key enabler for high performance
unmanned ground vehicles. The proposed work will:

• Gather data sets specifically targeted to on-line calibration of unmanned ground vehicle mo-
tion prediction algorithms

• Investigate numerous approaches for representing the terrain properties and the vehicle dy-
namics

• Elaborate the merits of each approach

• Fit systematic and stochastic models to the data off-line

1



CHAPTER 1. INTRODUCTION 2

• Develop methods for real-time calibration of the models while a vehicle operates

• Evaluate the merits of the identification system in full-up UGV experiments

The main objective of the work is to find a way to calibrate the specialized faster-than-real
time models which are ubiquitous in unmanned ground vehicles. Such models are at one extreme
of the spectrum where fidelity is relatively low and speed is relatively high. Adequate fidelity is
defined as the capacity to adequately predict motion for the purposes of model predictive control
and sequential motion planning.

On-line calibration (identification) techniques are necessary because one of the most influential
aspects of wheeled vehicle motion prediction is wheel-terrain interaction and such interactions vary
continuously on time scales far shorter than typical missions. Finally, the work will pursue the
objective of investigating the use of terrain perception information in order to impart the modeling
system with both associative memory and perceptive prediction of the properties of terrain in view.
This technique is intended to better enable systems to adapt to terrain transitions before driving
over them.

The project will use simulation, analysis, controlled experimentation and evaluative field testing
to accomplish these goals. Simulation will be used to generate ground truth data during algorithm
development and will be used for Monte Carlo studies. Analysis will be conducted on large data
sets to assess the performance and robustness of candidate approaches. Controlled experiments
will be conducted on several available robotic platforms to gather data under specific conditions.
Field testing will demonstrate the value of the calibrated predictive models in improving Unmanned
Ground Vehicle performance.

1.2 Thesis Overview

The following chapters develop the vehicle integrated perturbative dynamics model and show results
from vehicle testing. Chapter 2 of this paper discusses previous work in mobile robotics related
to off road vehicle modeling and estimation of slip parameters. The vehicle perturbative dynamics
model is developed in Chapter 3 which describes how the slip rates affect the vehicles motion on
rough terrain. This model is used to learn steady state perturbative parameters, along with the
uncertainty, of a skid-steered vehicle in Chapter 4. Next, Chapter 5 expands these the optimized
perturbative parameters to general surfaces interpolated for new vehicle states; three regression
techniques are applied. In Chapter 6, I develop and test on-line filters to learn the slip rate surface
parameters during general driving conditions with transient dynamics. The paper will conclude
with an assessment of the lessons and observations that can be drawn from this work in Chapter 7
and a discussion of further areas of investigation for the future of the VGMI project in Chapter 8.



Chapter 2

Related Work

Autonomous vehicles operate in complex environments including field robotics, exploration robotics,
agricultural and mining systems, autonomous automobiles, and mobile manipulators. All of these
applications have vehicle models used for motion planning and navigation, yet very few of them
explicitly handle perturbations such as slip. Of the slip based modeling, none are based off residual
pose error based on integrated perturbative dynamics.

2.1 Autonomous Vehicles

Autonomous vehicles in city settings have recently become a reality as show by Boss, the au-
tonomous car that on the 2007 DARPA Urban Challenge [28]. Recent advances in robotic ground
vehicles have led to the autonomous traversal of increasingly complex terrain at higher rates of
speed. With these advances, the motion of a vehicle becomes progressively more difficult to predict
as wheel slip slip increases due to larger momentum. Solving this problem is essential for selecting
commands to avoid collisions with obstacles.

Examples of ground vehicles using vehicle models include agricultural tractors [26] and the
Crusher platform [4]. Unfortunately, these models do not normally take into account realistic
terrain interactions that can adapt to terrain changes. These models are characterized by the
coefficient of rolling resistance, the coefficient of friction, and the shear deformation modulus, which
have terrain-dependent values. Information is not well known or measurable such as coefficient of
friction in braking or maximum shear strength in aggressive turns. This causes the vehicle to skid
and slip over the terrain. Tire to terrain interaction must be taken into account during motion
prediction to know the set of feasible motions and reachable states [15].

2.2 Dynamic Modeling in Other Robotic Applications

Dynamic modeling and system identification has been applied to a number of robotic systems that
are not ground vehicles. An acceleration based parameterization has been used for learning heli-
copter dynamics [1]. An kinematic implicit loop method was used to calibrate robotic mechanisms
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CHAPTER 2. RELATED WORK 4

using displacement measurements [32]; at heart, this is simply a least-square fit weighted to the
variances of the sources of uncertainty. Gaussian Process Regression has been combined with an
Unscented Kalman Filter for control of an autonomous blimp [17] [18].

Figure 2.1: Bandit & Akoya

In space, on-line dynamic modeling has been developed for
proximity operations. Very small spacecraft are well-suited for
proximity activities and are of growing interest in the aerospace
community. However, due to size and power constraints, small
vehicles cannot carry traditional precision navigation systems and
generally have noisy sensor and actuator options. Developed at
Washington University, the Bandit inspector vehicle docks with
the parent Akoya spacecraft, Figure 2.1. Bayes Linear Regression
models the time-varying thruster dynamics for the inspector space-
craft [23]. The BLR has replaced the noisy accelerometer as input
to the Unscented Kalman Filter, improving performance [3].

2.3 Skid-Steered Vehicle Modeling

The basic kinematic and dynamic equations of motion have been developed for skid-steered vehicles
for flat surfaces with little or no friction or slip [19]. Using the rotational transformation, we can
derive the world-frame kinematic equation from the body-frame longitudinal speed, vx, lateral
speed, vy, and angular speed, ω.

q̇ =

ẊẎ
θ̇

 =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1


vxvy
ω

 (2.1)

The left and right wheel speeds, ωL and ωR, control the longitudinal and angular speeds.

vx = r
ωL + ωR

2
, ω = r

−ωL + ωR
2c

, (2.2)

while r is the effective wheel radius, and 2c is the spacing between wheel tracks. The lateral speed
depends on the coordinate of instantaneous center of rotation (IRC), xIRC . These equation describe
the nonholonomic constraints of the system.

vy + xICRω = 0 (2.3)

In order to simplify the mathematical model of the skid-steered vehicle, the following assump-
tions are made in the previously mentioned paper:

• plane motion is considered only,

• achievable linear and angular velocities of the robot are relatively small,
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• wheel contacts with surface at geometrical point (tire deformation is neglected),

• vertical forces acting on wheels are statically dependent on weight of the vehicle,

• viscous friction phenomenon is assumed to be negligible,

Other algorithms have been developed to learn soil parameters given wheel-terrain dynamic
models [24]. The field of terra-mechanics identifies five primary material properties (soil cohesion,
internal friction angle, sinkage coefficient, shear deformation modulus and the maximum shear
before soil failure) which influence the forces generated by the terrain and in turn the resulting
vehicle motion. Analytical models exist for steering maneuvers of planetary rovers on loose soil
[12].

Related work takes into account the shear stress-shear displacement relationship on the track-
ground interface assuming firm ground with minimal sinkage [33]. With track sinkage and bulldoz-
ing effect being neglected, the resultant shear stress, τ , on the track-ground interface is assumed
to be an exponential function of shear displacement, j,

τ = τmax(1− e−j/K) (2.4)

where τmax is the maximum shear stress between the track and the ground, and K is the shear
deformation modulus.

Another method is to replace all the unknown soil parameters with slip ratios, iL and iR, and
a slip angle, α. An Extended Kalman Filter (EKF) or a Sliding Mode Observer (SMO) can be
developed to learn these parameters [35] [20] [25]. Sliding Mode Observer controllers have been
proven to be robust enough to ignore the knowledge of the forces within the wheel-soil interaction,
in the presence of benign sliding phenomena and ground level fluctuations [20] [21].

Ẋ = vx(cos θ + sin θ tanα) (2.5)

Ẏ = vx(sin θ − sin θ tanα) (2.6)

θ̇ = −vx
c

+ r
ωL(1− iL)

c
=
vx
c
− rωR(1− iR)

c
(2.7)

Another technique models resistive wheel torques as functions of terrain properties and vehicle
state. The terrain properties can be learned by placing current monitors on the wheels to calculate
wheel torques instead of measuring forces [34]. This model can be extended to generate a power
model of the vehicle [7].

Model-based approaches have been applied to estimate longitudinal wheel slip and detect immo-
bilized conditions of mobile robots [31]. In this work, a explicitly differentiable traction/breaking
model is used - expressed as a function of the wheel’s relative velocity, rather than slip which may
have singularities. The simplified model includes traction and rolling resistive forces.

Ftraction = N(sign(vrel)C1(1− e−At|vrel|) + C2vrel) (2.8)
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vrel = rω − vfwd

Froll,res = −sign(vfwd)N(R1(1− e−Aroll|vfwd|) +R2|vfwd|) (2.9)

where N is the normal wheel force, and the rest of the constants are specific to the vehicle-terrain
interaction.

An artificial neural network was used to learn a forward predictive model of the Crusher Un-
manned Ground Vehicle [4]. The model gave good results, with fast predictions, without making
any assumptions about the vehicle to ground interaction. The downsides of this algorithm are the
off-line training and the assumed non-varying terrain properties.

2.4 Predictive Models for Planning

Vehicle predictive models are necessary, when wheel slip is non-negligble, for higher level controls
such as obstacle avoidance and regional mobility planning. Efficient inversion of the equations
of motions is necessary to compute the precise controls needed to achieve a desired position and
orientation while following the contours of the terrain under arbitrary wheel terrain interactions
[16].

Classic motion-planning techniques sample in the space of controls to ensure feasible local
motion plans. When environmental constraints severely limit the space of acceptable motions or
when global motion planning expresses strong preferences, a state space sampling strategy is more
effective. A model-predictive trajectory generation approach is necessary for state space sampling
while satisfying the constraints of vehicle dynamic feasibility [11]. A special discretization of the
state space, in a set of elementary motions via feasible motions, allows employing standard search
algorithms for solving the motion planning problem [29] [30].



Chapter 3

Perturbative Dynamics Modeling

In this chapter I develop a a dynamic model with unknown parameters which are calibrated as
the system runs. Errors are expressed in terms of perturbations to a dynamic model since this is
the required form of the eventual prediction system. Such a system integrates the dynamics to
predict motion anyway; so, its straightforward to compare predictions of where you are now to
measurements of where you are now. Velocity is not always easy to measure well. RTK GPS is
sometimes available and it is an excellent source of ground truth information, so state residuals
(pose) are used instead of residuals in state derivatives (velocity).

3.1 Systematic Error Modeling

Figure 3.1: Vehicle Dynamic Model

For any vehicle moving in contact with a surface, there are three degrees of freedom of in-plane
motion as long as the vehicle remains in contact with the local tangent plane, Figure 3.1. Errors in
motion prediction can therefore be reduced, without loss of generality, to instantaneous values of
forward slip rate, δVx, side slip rate, δVy, and angular slip rate, δω. I choose to express these in the
coordinates of the body frame - where they are likely to be constant under steady state conditions.

7
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Given these slip rates along with the vehicle’s commanded forward velocity and curvature we have
the following kinematic differential equation for the vehicle’s 2D position and heading with respect
to a ground fixed frame of reference.ẋẏ

θ̇

 =

cθ −sθ 0
sθ cθ 0
0 0 1



VxVy
ω

+

δVxδVy

δω


 (3.1)

cθ = cos(θ), sθ = sin(θ)

For a symmetric skid-steered vehicle, side velocity, Vy, is zero. Using these equations, we
have a function to predict the vehicle’s future pose by integrating the above equations. In my
implementation, Runge-Kutta 4th-order integration was used. In the planar case, curvature can be
converted to angular velocity using:

ω = κV (3.2)

The general form of deferential motion is:

ẋ = f(x, u, δu) (3.3)

Where:

• the state vector is x = [x y θ]>

• the input vector is u = [V ω]>

• and the error is modeled as if it was caused by an extra forcing function denoted δu =
[δVx δVy δω]>

This model is the general case. The question is how best to model the perturbations (δVx, δVy, δω).
They certainly depend on terrain composition, vehicle state and all of the applied, constraint, and
inertial forces on the vehicle. Note especially that while there are two real inputs for a skid-steered
vehicle, I have chosen to represent three error inputs because the state vector is 3D and it is likely
that three errors can be observed as a result.

3.2 Linearized Systematic Perturbation Dynamics

The effects of the perturbations on the state can be estimated by linearizing the perturbation
dynamics, (3.4). The linearized equations are necessary to calibrate random error [14].

˙δx = F (t)δx(t) +G(t)δu(t) (3.4)

where:
F (t) = F (x, u, t) = ∂f/∂x (3.5)
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G(t) = G(x, u, t) = ∂f/∂u (3.6)

The integrated effect of these perturbations is given by the vector convolution integral:

δx(t) = Φ(t, t0)δx(t0) +
∫ t

0
Φ(t, τ)G(τ)δu(τ) dτ (3.7)

In discrete time this is:

δx(n) = Φ(n, 0)δx(0) + Σn
0 Φ(n, k)G(k)δu(k) ∆t (3.8)

3.3 Non-linear Systematic Perturbation Dynamics

Alternatively, the original nonlinear dynamics can be integrated. This is easier for prediction when
the random error is not directly calibrated.x(t)

y(t)
θ(t)

 = x(t0) +
∫ t

0
f(x(τ), u(τ), δu(τ)) dτ (3.9)

It is convenient to ignore the fact that this is an integral and represent it in the abstract
integrated form:

x(t) = x(t0) + F [u(t), δu(t), t] (3.10)

where the vector integral F should not be confused with the matrix system Jacobian F .
This can always be done for definite integrals since they are, in effect, functions of their limits

of integration as well as the non-state variables in the integrand. Notationally, its important to
remember that F depends on the entire history of its inputs, not just their present values. It is
traditional to distinguish a functional from a function with square brackets as shown. Clearly, this
can be rewritten in terms of the change in state over the time interval thus:

∆x(t) = F [u(t), δu(t), t] (3.11)



Chapter 4

Steady State

To simplify development and testing, I initially constrained the problem to learning the perturbative
dynamics model during steady state conditions. Path segments of constant commanded speed and
curvature where group together to optimize the fixed slip rates and associated uncertainties. In
Chapter 5, I generate the general slip rate surfaces by using all path segments. The steady state
assumptions are relaxed in Chapter 6 to develop on-line dynamic modeling.

4.1 Path Segmentation

While the instantaneous slip rates can be determined by solving the state equations given predic-
tions and measurements of velocity, the velocity measurements are either not available or not very
accurate. Instead, measured path segments, of constant commanded velocity and curvature, are
used to optimize the slip rates. This technique is applicable in general for any dynamic model and
any dimension of error vector - not just errors that can be resolved instantaneously from the state
equations. After collecting the path segments, the start of each path segment is translated and
rotated to the origin. The experiment was conducted by driving a skid steer vehicle in an endless
circle at steady-state commanded velocity and curvature.

Figure 4.1 show collected 3 second path segments of the vehicle moving at a constant speed
of 0.5 m/s with a curvature curvature of 0.5 m-1. The green lines are actual responses referenced
to their local origin (initial pose) in order to assess capacity for relative motion prediction. The
variance of the paths are due to terrain differences, vehicle dynamics, and control variance. The
magenta dashed line is the ideal path the vehicle would take with no slip given the commanded
speed and curvature. The blue dashed line is the 2nd order polynomial best fit line for the path
segments - this fits well, but tells us nothing about how the vehicle slips.

4.2 Slip Rate Optimization

The measured position and orientation along path segments are used to determine the slip rates. A
weighted squared residual cost function is created and minimized along the sampled path segments.

10
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Figure 4.1: Collected Path Segments from the Land Tamer

L is a characteristic length used for relative weighting of the error between heading and position.

Cost = minδu
∑
path j

∑
t

(xj(t)− x(δu, t))2 + (yj(t)− y(δu, t))2 + L ∗ (θj(t)− θ(δu, t))2 (4.1)

The poses x(δu, t), y(δu, t), and θ(δu, t) represent the path that would have been followed with
the indicated slip parameter vector. L is a characteristic length used for weighting the error between
heading and position. Essentially, there is a predicted and measured pose (x, y, θ) for every point in
time for every path segment and the objective function is simply the sum of the squared distances
between all such measured and predicted corresponding points.

(a) Optimized with Translational Slip Only (b) Optimized With Translational and Angular Slip

Figure 4.2: Optimized Slip Curves from Path Segments

The slip rates were optimized using Matlab’s non-linear optimization, fminunc or fminsearch,
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with the cost function given in Equation (4.1). When the model accounts only for translational
slip, (δVx, δVy), the best fit solution does not fit well; see red dot-dash line in Figure 4.2(a). When
angular slip, δω is included, the predicted slip path is the same as the best fit polynomial, Figure
4.2(b). The deviation of green lines from the ideal red dashed line can be explained by either lateral
slip or a rotation around the initial point. A polynomial can express any function according to the
Taylor remainder theorem. Since the optimized slip path matches the second order polynomial, I
have shown that the data can be fit correctly with a three degree of freedom slip model.

4.3 Uncertainty Modeling

The same techniques can be used to identify uncertainty. A model of uncertainty propagation
is needed and it must be formulated with unknown parameters which are then solved for in an
optimization framework. The propagation of error through a system dynamics differential equation
is a standard component of every Kalman filter. It is known also as the linear variance equation.
In discrete time form:

P (k + 1) = Φ(k)P (k)Φ(k)> + Γ(k)Q(k)Γ(k)> (4.2)

This is a recursive equation in state uncertainty P where the Q matrix is the forcing function.
Let’s define three constant noise sources thus:

Q = diag[σuu σvv σww]∆t = diag[σ]∆t (4.3)

The integrated effect of this equation can be written in discrete time as:

P (n) = Φ(n, 0)P (0)Φ(n, 0)> + Σn
0Φ(n, k)G(k)Q(k)G(k)>Φ(n, k)> ∆t (4.4)

These quantities are the variance of the noises in the slip velocities. The input Jacobian is the
Jacobian of the system dynamics with respect to the slip velocities. The Jacobian with respect to
the slip velocities is:

Γ =
∂ẋ

∂δu
=

cθ −sθ 0
sθ cθ 0
0 0 1

 (4.5)

The Jacobian with respect to the states is:

F =
∂ẋ

∂x
=

0 0 −(V + δVx)sθ − δVycθ
0 0 (V + δVx)cθ − δVysθ
0 0 0

 (4.6)
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Substituting the equations of motion (3.1), this can also be written as:

F =
∂ẋ

∂x
=

0 0 −ẏ
0 0 ẋ

0 0 0

 (4.7)

Hence, the transition matrix is:

Φ ≈ I + F∆t =

1 0 −ẏ∆t
0 1 ẋ∆t
0 0 1

 =

1 0 −∆y
0 1 ∆x
0 0 1

 (4.8)

Once an initial state uncertainty P0 is chosen, the covariance propagates in a manner that
depends on the input velocities.

The slip velocity noises are calibrated by computing a scatter matrix of a large number of
observations thus:

S =
1

n− 1
Σ

δxiδxi δxiδyi δxiδθi

δyiδxi δyiδyi δyiδθi

δθiδxi δθiδyi δθiδθi

 (4.9)

Where δxi etc. is the deviation of xi from either the mean of all xis at the same point in time
(precise definition) or the deviation of xi from the best fit curve (if you want it to mean the variance
from the best fit curve).

The elements of this scatter matrix are denoted:

S =

sxx sxy sxθ

syx syy syθ

sθx sθy sθθ

 (4.10)

The elements of uncertainty matrix, P are denoted:

P =

σxx σxy σxθ

σyx σyy σyθ

σθx σθy σθθ

 (4.11)

Only six of these quantities are independent. Equating these to the observations gives us six
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equations in 3 unknowns:

sxx(t) = σxx(σ, t)

sxy(t) = σxy(σ, t)

sxθ(t) = σxθ(σ, t) (4.12)

syy(t) = σyy(σ, t)

syθ(t) = σyθ(σ, t)

sθθ(t) = σθθ(σ, t)

These six equations can be solved for the three unknown variances by minimizing the objective
function:

Costuncert = min
σ

∑
t

(sxx(t)− σxx(σ, t))2 + (sxy(t)− σxy(σ, t))2 + · · · (4.13)

with respect to the parameters σ = [σuu σvv σww]. In addition, the initial uncertainty
elements can be simultaneously solved, P0 = diag[σxx,0, σyy,0, σθθ,0]. Here σxx(σ, t) and σxy(σ, t)
etc. represent the variance that is predicted from the present values of the parameters. There is a
predicted and measured covariance matrix for every point in time for a set of path segments and
the objective function is simply the sum of the squared distances between the covariances at all
such measured and predicted corresponding points. Note that it would also be possible in principle
to compute the result from a single path segment at a single point since the scatter matrix at one
point provides six constraints on the three unknowns. Whether this is practical remains to be seen.

Figure 4.3 shows the results of optimizing the cost function, via fminunc, for a set of path
segments of constant speed and curvature. The ellipses are 1-sigma error bounds. Notice that the
first ellipse is due to P0. The blue dashed line shows the predicted paths of adding and subtracting
one standard deviation from the slip rates of the best fit slip curve, f(δVx±σu, δVy±σv, δω±σω).

Using the learned slip rate parameters, new path segments can be generated by sampling using
the learned uncertainty parameters, Figure 4.4.

The path segment generation allows us to separate the terminal spread due to initial heading
errors, P0, and spread due to the process noise, Q, Figures 4.5 and 4.6 respectively.
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(a) Position (b) Orientation

Figure 4.3: Path Segments with Uncertainty Learned via Scatter Matrix

(a) Position (b) Orientation

Figure 4.4: Generated Path Segments via Learned Uncertainty



CHAPTER 4. STEADY STATE 16

(a) Position (b) Orientation

Figure 4.5: Terminal spread due to initial heading errors

(a) Position (b) Orientation

Figure 4.6: Terminal spread due to process noise
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4.4 Experimental Setup

4.4.1 Experimental Design

An autonomous vehicle needs to predict relative motion from its present pose to a predicted pose a
few seconds into the future. The basic procedure is to collect a data log of time-tagged commands
and measured poses on an on appropriate vehicle, in appropriate terrain (mechanical, geometry),
for appropriate command sequences. This log is separated into prediction segments, which can
overlap. The relative poses are predicted over these path segments and compared to the ground
truth. The residuals are used to identify a perturbative model.

For the first test, the experimental setup was simplified for rapid testing of system identification
algorithms as follows:

• level homogeneous terrain (loose gravel)

• fixed commanded curvature and slow speed

• closed loop speed control per side

Path segments of constant speed and curvature are used to determine the slip parameters
by optimization of the cost function, Figure 4.7. The intent is to validate the approach from
the perspective of observability and disambiguation of the parameters of interest under benign
conditions.

(a) Curvature (b) Speeds

Figure 4.7: Experiment Commands

4.4.2 Vehicle Platform

Data has been collected on the Land Tamer, a six wheeled skid-steered vehicle with a hydraulic/gear
drive system, Figure 4.8. Skid-steered vehicles are often used as outdoor mobile robots due to their
robust mechanical structure and high maneuverability.

For such a vehicle, execution of paths with any curvature will create wheel slip which makes
both kinematic and dynamic modeling difficult. The Land Tamer vehicle is retrofitted with cam-
eras, Lidar, and an high end Novetel SPAN Inertial Measuring Unit (IMU) unit with Real-Time
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Figure 4.8: Land Tamer Vehicle

Kinematic Global Positioning System (RTK GPS). The RTK base station allows for centimeter
accuracy of the vehicle’s position.

4.5 Results

The slip rates were optimized for all the commanded speeds and positive curvatures, Figures 4.9
and 4.10. The scatter matrix technique provides the 1-σ uncertainty bars. The angular slip rate
is linear for a constant curvature and speed. Forward and side slip rates are not linear, but are a
relatively insignificant source of slip and close to constant. The 1-σ bars were learned via scatter
matrix optimizations. Even though angular slip is dominant for this vehicle, most other proposed
vehicle slip models do not take it into account.

Figure 4.9: Optimized Angular Slip Rates for Multiple Curvatures

The integrated observer formulation which integrates the slip model to predict pose and then
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(a) Forward (b) Side

Figure 4.10: Optimized Translational Slip Rates for Multiple Curvatures

compares this to actual RTK pose data works very well. In the past, fitting models based on poor
GPS velocity observations gave poor results. Given a general formulation that uses three degrees
of freedom of slip, the optimization was able to fit the data for a worst case vehicle.

There is a clear ambiguity in the problem because many errors can be explained either by
accumulated slip or by errors in initial conditions. Hence observed path segments need to be
long enough to disambiguate the two; I found only 2 meters to be adequate. More sophisticated
formulations may have to assign uncertainty-based weights to all error sources for rapid convergence.



Chapter 5

Slip Rate Surfaces

In Chapter 4, slip rates were optimized for a specific steady state. To generalize the surface to
other speeds and curvatures I represent each slip rate as a second order linear surface. The constant
terms were not used to remove phantom drift when the vehicle is not moving. Side velocity was
not considered as skid steered vehicles has no commanded side velocity. Additional terms may be
added for other state variables.

δVx = α1,x κ+ α2,xV + α3,x κV + α4,x κ
2 + α5,xV

2

δVy = α1,y κ+ α2,yV + α3,y κV + α4,y κ
2 + α5,yV

2 (5.1)

δVω = α1,ω κ+ α2,ωV + α3,ω κV + α4,ω κ
2 + α5,ωV

2

I present three regression techniques to learn the slip surface parameters, α: Least Square
Regression, Gaussian Process Regression, and Bayes Linear Regression.

5.1 Least Square Regression

From the collected data, two matrices are constructed. The first matrix holds all the polynomial
terms from the given commands. The second matrix includes all the slip rates learned via the
optimization for each path segment.

A =


κ1 V1 κ1V1 κ2

1 V 2
1

...
...

...
...

...
κN VN VNκN κ2

N V 2
N

 (5.2)

b =


δVx,1 δVy,1 δVω,1

...
...

...
δVx,N δVy,N δVω,N

 (5.3)

Aα = b (5.4)

20
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We now have a overdetermined system and can solve for the polynomial coefficients via basic
Least Square Regression which minimizes the sum of squared residuals.

α = (A>A)−1A>b (5.5)

A similar technique is used to learn the variance of the slip rates. Once the slip surface coeffi-
cients are learned, the residual differences between the surface and measured slip rates are used to
determine the coefficients of the standard deviation surface.

δσx = s1,x κ+ s2,xV + s3,x κV + s4,x κ
2 + s5,xV

2

δσy = s1,y κ+ s2,yV + s3,y κV + s4,y κ
2 + s5,yV

2 (5.6)

δσω = s1,ω κ+ s2,ωV + s3,ω κV + s4,ω κ
2 + s5,ωV

2

ri =
∥∥∥α> [κi Vi κiVi κ2

i V 2
i

]
− δV

∥∥∥ (5.7)

s = (A>A)−1A>r (5.8)

5.1.1 Least Squares Regression Results

The Land Tamer vehicle was commanded to drive in a set of continuous circles at four different
speeds and three positive curvatures for twelve combinations. This process was also repeated
with negative curvature. The paths were separated into 3 second long path segments, of constant
curvature and speed, which were optimized for the slip rates. These slip rates were used in the
Least Square Regression to determine the second order coefficients of the slip surfaces and variance.

Figure 5.1 shows the three slip rate surfaces. Each circle is the learned slip rate for a given
path segment used as input. The color surfaces are the mean expected values, and the transparent
surfaces are the 1-σ uncertainty surfaces. Note that the z-axis scaling is not constant for the three
graphs and that the angular slip rate varies the greatest.

5.2 Gaussian Process Regression

A simple linear regression cannot capture the non-linear dynamics of the ground interaction. One
option would be a Bayes Linear Regression with additional non-linear basis functions, but this
cannot capture all the dynamics and added biases to the included terms. To capture the non-linear
dynamics, a Gaussian Process Regression (GPR) was implemented. One can think of a Gaussian
process as defining a distribution over functions, and inference taking place directly in the space
of functions. Each training point is stored as a kernel with a given weight. Given the training
data X and Y with a new example, the outcome and variance can be predicted using the following
equations.

µyt = K(xt,X)K(X,X)−1Y (5.9)
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(a) Forward Slip (b) Side Slip

(c) Angular Slip

Figure 5.1: Slip Surfaces learned via Least Square Regression

Σyt = K(xt, xt)−K(xt,X)K(X,X)−1K(X, xt) (5.10)

A complete explanation of the GPR algorithm can be found in [6]. The gpml code library was
used for testing. Table 5.1 shows the complete algorithm. Cholesky decomposition speeds up the
matrix inversion in line 1. The kernel matrix, K, stores kernel covariance values between all inputs.
k∗ is a vector of kernel values between the test input and other input values.

5.2.1 Gaussian Process Regression Results

Using the same training examples as the Least Square Regression, slip rate surfaces were generated
via Gaussian Process Regression, Figure 5.2. GPR gave similar results but made no assumptions
about underline basis functions as all the training examples are stored as kernels.
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Algorithm Gaussian Process Regression
Input: X (inputs), y (target), k (covariance function), σ2

n (noise level), x∗ (test input)
1. L = cholesky(K + σ2

nI)
2. α = L> (L y)
3. f̂∗ = k>∗ α
4. v = L k∗
5. V [f∗] = k(x∗, x∗)− v>v
6. log p(y|X) = −1

2y
>α− Σi logLii − n

2 log 2π
7. return f̂∗ (mean), V [f∗] (variance), log p(y|X) (log marginal likelihood)

Table 5.1: Gaussian Process Regression Algorithm

5.3 Bayes Linear Regression

Bayes Linear Regression (BLR) is a method of on-line linear regression which makes the assumption
that there is a normal Gaussian matching between input data ~x, and output data ~y,

~yt = ~θ>~xt + ~εt (5.11)

for a given set of weights, ~θ, and Gaussian noise, ~εt ∼ N(0, σ2). In the the natural or canonical
Gaussian parameterization, we can find the updated probability distribution of the weights given
a new data point, (~x, ~y):

p(~y|~x, ~θ)p(~θ) ∝ e
−(y−θ>x)2

2σ2 e
−1
2
θ>Pθ+J>θ (5.12)

= e
−1
2
θ>(P−xx

>
σ2 )θ+(J+y yx

>

σ2 )>θ

For each training set, simple updates rules refresh the information matrix, P , and information
vector, J ,

P ← P +
~xt~x
>
t

σ2
(5.13)

J ← J +
~yt~x
>
t

σ2
(5.14)

The same equations can be used to remove a training set from the regression via subtraction;
this can create a sliding window of training examples to track time dependent changes. It is easy
to transform back to the moment parameterization to find the predicted value, ~y as well as the
weight vector, ~µθ and its variance Σθ

~µθ = P−1J (5.15)

Σθ = P−1 (5.16)

~y = (P−1J)>~x (5.17)
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(a) Forward Slip (b) Side Slip

(c) Angular Slip

Figure 5.2: Slip Surfaces learned via Gaussian Process Regression

The output, ~y, is linear in ~x, so the predictive variance is just

Σy = ~x>Σθ~x (5.18)

which is a scalar. This only captures uncertainty due to the parameters. The total uncertainty
includes the noise variance.

Σy = ~x>Σθ~x+ σ2 (5.19)

5.3.1 Bayes Linear Regression Results

Using the same training examples as the Least Square Regression, slip rate surfaces were generated
via Bayes Linear Regression, Figure 5.3. BLR gave similar results but can be trained on-line and
adjust the surfaces in real time. The separation of the uncertainty surfaces can be increased by
tuning the noise variance σ. The first two regression algorithms store all training examples in
memory and have a time complexity of O(N3) for each new example, where N is the number of
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training examples, due to matrix inversion. On the other hand BLR does not store the training
examples and has a time complexity of O(d3) for each new example, where d is number of basis
functions (only 5 in this case).

(a) Forward Slip (b) Side Slip

(c) Angular Slip

Figure 5.3: Slip Surfaces learned via Bayes Linear Regression



Chapter 6

Transient Dynamics

So far all the presented techniques are off-line algorithms that assume constant speed and curvature
commands during the path segments. On-line techniques that can handle transient dynamics are
needed for real world vehicle driving. This chapter presents a vehicle simulation and two on-line
filters for learning the parameters of the slip rate surfaces.

Platform performance is not static. It depends on damage, wear, and terrain characteristics.
Terrain characteristics depend heavily on weather. It has already been clearly demonstrated that
machine learning of terrain models is brittle to changes in weather and seasonal vegetation, so
systems will have to adapt to real-time information experienced on the go. Self-calibration is
a mandatory component of any realistic deployment of UGVs where speeds, slopes, or terrain
difficulty are high.

6.1 Vehicle Simulation

Using the perturbative dynamics model developed in Chapter 3, I developed a simple vehicle
simulation to test the observability of the dynamic variables. A vehicle’s position and orientation
was simulated for a simple path, Figure 6.1. The command speed and curvatures along with the
perturbative slip rates are show in Figure 6.2. The slip rate surfaces and variance found via the
Least Square Regression where used for the perturbations. An addition small amount of noise was
added to the pose states to simulate errors in the RTK GPS and IMU. The fact that the simulation
gives realistic results points that the dynamic model and learned slip parameters are plausible.

6.2 Gradient Descent

In Section (3.1) I developed the general form of deferential motion given the perturbative errors,
δu.

ẋ = f(x, u, δu) (6.1)

Using the slip rate surfaces for continuous functions, the general motion can be parameterized

26
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(a) Position (b) Orientation

Figure 6.1: Simulated Vehicle Path Compared to Ideal Path

(a) Commands (b) Slip Rates

Figure 6.2: Simulated Vehicle Commands and Perturbations

with the learned slip parameters, δu(u, p).

ẋ = f(x, u, p) (6.2)

The vehicle path is found by integrating the equations of motion.

X =

xy
θ

 = F (u(t), p) =
∫
f(x, u(t), p)dt (6.3)

Using the current slip parameters, the difference in measured pose from predicted pose is cal-
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culated.
∆X = Xmeasured −Xpredicted (6.4)

Given a pose error between the starting pose and ending pose of a path segment, a Jacobian,
J , finds the needed change in the perturbative parameters to correct the relative pose residual.

∆X = J∆p (6.5)

∆p = J−1∆X (6.6)

J =
∂F

∂p
=

∂

∂p

∫
f(x, u(t), p)dt =

∫
∂

∂p
f(x, u(t), p)dt (6.7)

The last step in (6.7) uses Leibniz’s rule for differentiation under the integral sign. The chain
rule is used for the inner derivative.

∂f

∂p
=

∂f

∂δu

∂δu

∂p
(6.8)

The first needed derivative, describing the change in vehicle motion model relative to the change
in slip rates, is simply the rotation matrix.

∂f

∂δu
= Γ =

cθ −sθ 0
sθ cθ 0
0 0 1

 (6.9)

For this example, I assume the slip rates are the same second-order function learned for the slip
rate surfaces.

δVx = α1,x κ+ α2,xV + α3,x κV + α4,x κ
2 + α5,xV

2

δVy = α1,y κ+ α2,yV + α3,y κV + α4,y κ
2 + α5,yV

2 (6.10)

δVω = α1,ω κ+ α2,ωV + α3,ω κV + α4,ω κ
2 + α5,ωV

2

The slip rate surface parameters are grouped in a column vector. The second needed derivative
describe the the change in slip rates relative to the change in surface parameters.

p = [α1,x α2,x α3,x α4,x α5,x α1,y α2,y α3,y α4,y α5,yα1,ω α2,ω α3,ω α4,ω α5,ω]>

∂δu

∂p
= U =

C 01,5 01,5

01,5 C 01,5

01,5 01,5 C

 (6.11)

C =
[
κ, V, κV, κ2, V 2

]
We now have the desired Jacobian by integrating the products of Equations (6.9) and (6.11).

The update step follows the gradient to minimize the residual pose error. The learning rate, γ,
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regulates how fast the surface parameters converge.

p
t+1

= p
t
+ γ∆p = p+ γJ−1∆X (6.12)

6.2.1 Gradient Descent Results

Data was collected on the Land Tamer vehicle in the same gravel lot as before but after a heavy rain.
Mud and wet gravel added to the terrain variability. Data collection occurred as the vehicle was
commanded to drive in circles at various curvatures and speeds. The gradient descent algorithm
used this data, in temporal order, to optimize the slip surface parameters. The data collection time
was just over nine minutes.

The relative pose residuals at each iteration were minimal with a few exceptions, Figure 6.3(a).
For comparison, the relative pose residuals with out predicted slip is shown in Figure 6.3(b).
Overlapping five second path segments were used for the path residuals. Each iteration occurred
with pose measurement updates at 20 Hz. The largest errors came during large instantaneous
drops in commanded speed as the model does not currently handle command lag or transients; see
Section 8.1 for future work to include vehicle plant dynamics.

(a) Pose Residuals with Gradient Decent (b) Pose Residuals without predicted Slip

Figure 6.3: Relative Pose Residuals

The slip rate surface parameters were all initialized to zero, making no assumptions about the
vehicle-ground interaction allowing the algorithm to converge on the correct answer. The surface
parameters variance is show in Figure 6.4 over the algorithm iterations.

6.3 Extended Kalman Filter

Given the success of the simple Gradient Descent method, I investigate the Extended Kalman Filter
to correctly incorporate uncertainty in sensor noise and the perturbative parameters. The state
transition model is static as the slip parameters are assumed to remain constant while the vehicle
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Figure 6.4: Parameter Convergence during Gradient Descent

stays on the same terrain, Eq. (6.13). The process noise, εt, describes the parameter uncertainty
and allows the parameters to converge to the correct values; it is assumed to be a zero mean
multivariate Gaussian noise with covariance Qt. The process noise can be increased during terrain
transitions and decreased as the terrain remains constant if there exists an external sensor to detect
the change.

p
t

= g(p
t−1

) + εt = p
t−1

+ εt (6.13)

Gt =
∂g(p

t−1
)

∂p
t

= I5,5 (IdentityMatrix) (6.14)

The observable state is the relative pose between the start and end of the current path segment,
X. The observed state is the measured relative pose; while the observation model is the predicted
relative pose simulated according to the sequence of commands, Eq. (6.16). The observation noise
is the expected noise of the difference between start and end poses, with covariance Rt.

zt = h(u(t), p
t
) + δt (6.15)

zt = Xmeasured (6.16)

h(u(t), p
t
) = Xpredicted = F (u(t), p) (6.17)

The observation Jacobian is the same Jacobian used in the Gradient Descent technique, inte-
grating the partial derivative along the path segment, (6.7).

Ht =
∂h(u(t), p

t
)

∂p
t

=
∂F

∂p
t

= J (6.18)
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The modified EKF algorithm for the slip rate surface parameters can be seen in Table 6.1.

Algorithm Slip Parameters Extended Kalman Filter
Input: p

t
,Σt−1, ut, zt

1. p̄
t

= p
t−1

2. Σ̄t = Σt−1 +Rt
3. Kt = Σ̄tJ

>
t (JtΣ̄tJ

>
t +Qt)−1

4. p
t

= p̄
t
+Kt(Xmeasured −Xpredicted)

5. Σt = (I −KtJt)Σ̄t

6. return p
t
,Σt

Table 6.1: Slip Parameters Extended Kalman Filter

6.3.1 Extended Kalman Filter Results

The EKF algorithm was run on the same collected data as the Gradient Descent technique. While
the parameters converged to different results, Figure 6.5(a), the five second relative pose residuals
were extremely minimal, Figure 6.5(b). The convergence to different values points to multiple local
minima.

(a) Parameter Convergence (b) Pose Residuals with EKF

Figure 6.5: EKF Results

The Kalman filter optimizes the parameters uncertainty as well. As can be seen from the final
uncertainty matrix, the three slip rate surfaces are designed to be independent of one another, with
some correlation between parameters of the each slip rate, Figure 6.6; darker regions correspond to
higher correlation. The final learned slip rate surfaces, with uncertainty, are shown in Figure 6.7.
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Figure 6.6: Uncertainty Matrix

6.4 Comparison

Comparison between the two on-line algorithms’ five second relative pose errors, along with the
standard deviations, is show in Table 6.2. While the Gradient Descent technique performed well, the
EKF had close to half the relative pose error while correctly handling the parameters uncertainties.
The EKF five second relative position estimation was four times better than simple prediction
without slip. The relative orientation error saw an improvement by a factor of 19.

Table 6.2: Transient Relative Pose Error Comparison
Algorithm Position (m) Orientation (rad)
None .031± .027 .078± .042
Gradient Descent .014± .020 .007± .010
EKF .007± .007 .004± .004
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(a) Forward Slip (b) Side Slip

(c) Angular Slip

Figure 6.7: Slip Surfaces learned via EKF



Chapter 7

Conclusions

The work presented in thesis has developed an integrated perturbative dynamics method for real-
time identification of wheel-terrain interaction models for enhanced autonomous vehicle mobility.
The predicted relative poses were much better when the perturbative dynamics considered slip.
The slip rates surface parameters were efficiently learned on-line via the Extended Kalman Filter
using the relative pose error residuals from the predicted path instead of the traditional velocity
measurements. This was accomplished via an innovative method of integrating the Jacobians across
the path segment.

Many enhancements can be made to the algorithm such as including slopes and vehicle plant
dynamics described in the next chapter. Perception and terrain classification will allow the system
to drive on a mixture of terrains and quickly adjust to new terrains. These improvements will be
incorporated into trajectory generation for vehicle prediction.

The EKF can run faster than real time and may soon be integrated into actual vehicles. This
should lead to significant improvements of control and prediction of unmanned ground vehicle
motion of very rough terrains.

34



Chapter 8

Future Work

The Vehicle-Ground Model Identification is an ongoing project with many interesting future devel-
opments. Future work includes vehicle model improvements, additional data gathering for testing,
incorporation of perception and terrain prediction for motion planning.

8.1 Model Improvements

The vehicle model used in this paper used many simplifying assumptions such as flat terrain with
uniform terrain properties. There are many future extension possible to the vehicle model to
improve accuracy and expand the drivable terrain.

The vehicle model can be extended from three dimensions, (x, y, θ), to a full six dimensional
model, (x, y, z, ψ, φ, θ). Slip increases as slop increases and can be included in the slip rate surfaces
during optimization. Other vehicles have taken slip caused by slopes into consideration while
planning its paths and chassis configuration [13].

The largest relative pose errors came during sudden changes in commanded velocity. The
vehicle is assumed to instantaneously react to changes in the commanded speed and curvature. In
reality there are many delays caused by communication, processing, hydraulics and other physical
mechanisms. A few elements of vehicle dynamic models are rate limits, joint limits, and latency.

Accounting for latency in the system is essential for generating correct trajectories when the
vehicle state can change dramatically over the scale of the latency. It is hard to distinguish these
delays from slip errors. A first order model of the vehicle plant dynamics should include these
vehicle plant dynamics and can be learned along with the perturbative parameters.

8.1.1 Pose Extended Kalman Filter

The Slip Rate Extended Kalman Filter (EKF) can be combined with a normal vehicle pose EKF.
The learned slip rates will be used to correct the vehicle’s motion relative to the ground. This
will allow the filter to correctly handle uncertainty in both the slip rates and sensor measurements
which will become important on vehicles without high end RTK GPS or IMUs.
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Figure 8.1: Available Platforms. Left to right: Autonomous LandTamer, Deere eGator, Mars
Rover, DARPA LAGR platform.

An additional lumped external disturbance force can be included to represent a variety of
external forces such as wind resistance or the force caused by collision with an obstacle. This will
eliminate external forces being treated as wheel slip. Although a direct measure of the disturbance
force is generally not available, weak constraints governing its evolution can be developed based
upon insight into the physical nature of the disturbance [31]. Weak constraints are a principled
method for integrating rules and constraints into the Kalman filter framework and can be viewed
as virtual measurements or observations.

8.2 Data Gathering

All of the experiments conducted so far have been on the skid-steered Land Tamer ground vehicle
while the vehicle model used was platform independent. Future testing will collect data on a
variety of vehicle types including tracked robots, planetary rovers, and high speed Ackerman-
steered vehicles. Available vehicle platforms are shown in Figure 8.1. While existing research has
focused on small vehicles at low speeds or automotive-scale vehicles on roads, we intend to focus on
UGVs and other large vehicles traveling at high speeds over rough terrain. The vehicle model will
also be tailored specifically for use by on-line autonomy, which is highly feasible, highly relevant
and largely unexplored.

Predicting motion depends on important information such as local terrain shape, soil moisture,
soil compaction, and recent weather conditions. The vehicles will be driven on a wide range of
terrains under different weather conditions. All of the collected data will be formated into a
standardized format for future testing of new algorithms and sharing of data with other researchers
who don’t have the facilities or access to the large variety of vehicles at CMU.

8.3 Incorporation of Perception and Terrain Prediction

Inhomogeneous terrain is expected to stress an otherwise reasonable homogeneous terrain identi-
fication system because it will now have to track a moving target. Increased convergence rates to
capture terrain class transients will come at the cost of exposure to local optima and instability.
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Perception also provides memory and prediction. While a terrain transition may be an instan-
taneous event, perception provides a mechanism to associate each such event with all others that
looked the same in the system experience. Similarly, perception can cue the system to upcoming
terrain changes in order to perform model switching, or to adjust the uncertainty of parameters in
the estimation system, or to predispose the parameter search to move in a certain direction.

A set of perception features can be developed, that are directly associated with proprioceptive
measurements, to directly predict future model parameters. That is, the vehicle planning system
will switch on the asphalt model when perception says the vehicle is about to drive over asphalt.
Once on asphalt, the model will be updated continuously to reflect local weather conditions and
other variations.

Slip for ground rovers has been predicted using stereo imagery by learning from previous exam-
ples of traversing similar terrain with visual odometery [2]. They cast the problem into a Mixture
of Experts framework in which the input space is partitioned into subregions, corresponding to
different terrain types.

In addition, terrain classification has been based on vibrations induced by wheel-terrain in-
teraction during driving. Vibrations are measured using an accelerometer on the rover structure
[5]. Work has been done on merging the results of “low-level” classifiers by fusing classification
algorithms from color, texture, range and vibration features [9].

8.4 Motion Planning

As mentioned in Section 2.4, vehicle predictive models, which compensate for wheel slip, are nec-
essary for higher level controls such as obstacle avoidance and regional mobility planning. Because
deliberative planners need to evaluate hundreds of paths, it is a hard-requirement that the model
be at least 1000 times faster than real-time. This means 1000 seconds of motion must be simulated
in 1 second of computation. All state of the art planner models already achieve this speed so it
is not at all impossible. On the other hand, very little work has been done on how to adapt such
minimal high speed models to high speed motion or challenging terrain.

In addition, the EKF slip rate filter needs to be ported to run real time on a vehicle. This will
allow the vehicle to use it for path planning. This phase will perform specific experiments intended
to make the case, in the context of a fully operational UGV, that:

• calibrated models significantly outperform uncalibrated ones
• calibration must be performed on-line to adapt to terrain and weather
• real-time calibration is possible and effective for long periods of time

Algorithms have been developed for wheeled mobile robot trajectory generation that achieves
a high degree of generality and efficiency through numerical linearization and inversion of forward
vehicle models [10]. By predicting the wheel/terrain interaction in the planning stage, rather
than accounting for it in the execution stage, more dynamically feasible vehicle motions can be
generated.
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