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Abstract

Computational aesthetics is the study of applying
machine learning techniques to identify aesthetically
pleasing imagery. Prior work used online datasets
scraped from large user communities like Flikr to get
labeled data. However, online imagery represents re-
sults late in the media generation process, as the pho-
tographer has already framed the shot and then picked
the best results to upload. Thus, this technique can only
identify quality imagery once it has been taken. In con-
trast, automatically creating pleasing imagery requires
understanding the imagery present earlier in the pro-
cess. This paper applies computational aesthetics tech-
niques to a novel dataset from earlier in that process
in order to understand how the problem changes when
an autonomous agent, like a robot or a realtime camera
aid, creates pleasing imagery instead of simply identi-
fying it.

1 Introduction

Prior studies in computational aesthetics developed
and evaluated various features that correspond to aes-
thetic quality. In order to perform this evaluation, la-
beled datasets were scraped from online photography
enthusiast websites. The first studies identified image-
wide features that weakly correspond to aesthetic qual-
ity [4, 7]. This was later refined by Luo et al. who
achieved a significant improvement by using focus to
segment the subject in an image from its background
and calculating new features between these two regions
[9]. However, these studies are limited by their datasets.
Online imagery represents a product late in the media
generation process; the picture has already been framed
during the shot, edited by the artist and chosen for up-
load. In this paper, we analyze imagery earlier in this
process to determine how the data changes and how the
techniques perform if an autonomous agent were to aid
in the creation of beautiful imagery.

Other groups have considered creating imagery us-
ing automated cameramen. In one early example,
Drucker et al. created a framework that allows a vir-
tual scene director to specify high level constraints on

Figure 1: The average laplacian response to landscape
imagery. A strong laplacian response correlates with
local complexity in an image. Red = high, Blue = low.

the camera motion while resulting motion is determined
using constrained optimization [5]. In a real-world ap-
plication, Lampi et al. developed an automated camera
system for capturing lectures in an engaging, but inex-
pensive way [8].

However, these techniques all use a bottom-up ap-
proach that codify explicit rules based on the techniques
taught to professional cinematographers in film school.
Though these techniques provide good rules of thumb
for taking pleasing shots, beauty is a complex con-
cept and the heuristics sometimes contradictory. Our
approach, is to use top-down, data driven techniques,
which can automatically adapt based on the context, to
quantify aesthetic value.

2 Approach

In this work, features are extracted from images and
then used to train a boosted classifier. Features are cho-
sen that can both indicate aesthetic quality and be ef-
ficiently computed at runtime. Efficiency is important
because we envision the classifier being used in an au-
tonomous agent that must run in near real-time. The
boosted classifier automatically selects features, so we
can safely evaluate extra features without adding noise
to the classification.

2.1 Features

Features selected are inspired by previous studies in
human perception [11], analysis of film making guides



and previous work in computational aesthetics [4, 7].
These base features are then applied to a patch of pix-
els in the image or the image as a whole. Furthermore,
since spatial structure and composition is important to
photography, we have used four different techniques to
segment the images before applying a base feature. The
resulting feature/spatial combinations are listed in Table
1.

2.1.1 Spatial Structure

Whole Image This type of segmentation uses the whole
image to calculate the base feature.

Spatial Blocking The ”rule of thirds” provides a
compositional guideline for photographers. It says that
if an image is broken into thirds horizontally and verti-
cally, areas of interest should lie on the intersections of
the breaks. To encode this type of structure, we break
up the image into 3x3 and 5x5 blocks and compute base
features on those sub blocks.

Color Segmentations To get an estimate of objects in
the scene we segment the image in the CIELAB color
space using the mean shift algorithm [3] with a radius of
7. We calculate base features on the 5 largest segments
found.

Spatial Ratios Composition of an image can be iden-
tified by looking at the relative structure in the scene.
For example, Figure 1 shows an image created by ap-
plying a laplacian filter to a set of landscape images.
The resulting frame shows that the top third of the im-
age tends to have a simple structure (e.g. sky) while
there is also a bias for placing main items in the image
to the left of the scene. In order to capture this kind of
spatial relationship, we use the rule of thirds again and
break the image into 3x3 blocks and also into horizon-
tal and vertical bands, creating 15 overlapping image
regions. Base features are calculated on these regions
and then final features are extracted by calculating all
of the pairwise ratios between image regions.

2.1.2 Base Features

Base features are those that can be calculated from an
arbitrary patch of pixels. They provide the foundation
to identify components of the image that correlate with
aesthetics and are calculated on spatial regions gener-
ated using the methods described above.

Color Color features represent the dominant colors
as well as their distributions. Some features are created
by converting the RGB colors into Ohta [10] and HSV
color spaces. Two features are used from prior studies:
GIST color features [12] and Colorfulness [4] because
of their success. Finally, two novel features were cre-
ated: Color Harmony and Hue Distribution. Color har-
mony uses the two color theory from [11] to calculate
the harmony between the largest five segments of the
image. Hue Distribution uses the color wheel from the
HSV color space, where complementary colors are 180

degrees apart. The resulting feature is a histogram of
the colors and shifted so that the dominant color is at 0
degrees.

Complexity Two features encode image complexity
as simpler images are often more striking. The first fea-
ture is the number of large segments found when per-
forming a mean shift segmentation. The second, calcu-
lated as in [7], measures the size of the bounding box
with 75% of the edge energy.

Contrast Contrast is calculated using both the
Michelson measure and the RMS of the intensity val-
ues in a region.

Texture/Blur Sharp areas in an image often corre-
spond to areas of interest. Thus, we calculate four fea-
tures based on the texture in the image: the FFT Blur
feature from [7], the Gabor Filters from [12], the Spa-
tial Saliency from [6] and the Laplcian response.

Uniqueness Humans tend to be interested in novel
things. Therefore, we create a uniqueness measure that
is calculated by creating the 16x16 GIST signature [12]
for all the images. Then, uniqueness is defined as the
mean distance to the three closest images in this high
dimensional space.

2.2 Classification

Once features are extracted from the images, they are
used to build a classifier. For each dataset, the images
are randomly split 70/30 into training/test sets. Images
whose ratings are greater than half of a standard devia-
tion are considered to be “pleasing” while those below
half of a standard deviation are considered to be “ugly”.
The images in between these thresholds are ignored as
being too ambiguous.

Classification is done using AdaBoost performed
on decision stumps as weak classifieries. Each stump
thresholds on a single feature and applies a label of
“pleasing” one one side and a label of “ugly” on the
other. Thus, the classifier simultaneously trains on the
data and performs feature selection. The number of
boosting iterations is determined using 5-fold cross val-
idation.

3 Evaluation Datasets

To evaluate this approach for use in image genera-
tion, we use two different datasets to represent imagery
in different stages of the media generation process.

3.1 DPChallenge

The website dpchallenge.com is a photography fo-
rum where users upload their pictures and are ranked
by other users of the site. The site was scraped ran-
domly for 4955 images with at least 30 user ratings.
This dataset was chosen to represent imagery at the end
of the creation process and provide a reference with the



Table 1: List of base features extracted and the spatial structure operators used
Whole Image Spatial Blocking Color Segmentation Spatial Ratios

Color Harmony [11] x
Ohta Color [10] x x
Hue Distribution x
HSV x x x x
Hue Edge Energy x x
Colorfulness [4] x x x
GIST Color [12] x
Segment Count x
Edge Energy Extents x
Contrast x x x x
Gabor Filters [12] x
FFT Blur [7] x
Laplacian x x x x
Spatial Saliency [6] x
Uniqueness x

(a) Apollo (after normalization) (b) DPChallenge

Figure 2: Human ranking distribution of the two ranked
datasets.

work in [4], [7] and [9], all of whom used data from
this site. The resulting characteristics of the dataset are
shown in Figure 2b.

3.2 Apollo

This dataset consists of a random sample of im-
ages taken by the Apollo astronauts while on the Moon
[1]. This dataset is biased by human input because hu-
mans took the pictures and were explicitly setting up
their shots for either media or documentation purposes.
However, no post filtering has been done to select the
iconic images. Therefore, this dataset represents im-
agery that is in the middle of the creation process.

The Apollo images were labeled using a survey run
on Amazon’s Mechanical Turk [2]. Participants were
shown a page with 8 random images from the dataset
and asked to “rate each image on a scale of 1-10 how
beautiful you think the image is” where 1 is “ugly” and
10 is “stunning”. Once the scores were collected, the
scores from each user are normalized to account for in-
dividuals’ different scales. The final dataset consists of
1012 images with at least 10 ratings from unique users.
The resulting distribution is shown in Figure 2a.

4 Results

The datasets are evaluated by calculating the classifi-
cation error (Figure 4) and the precision vs. recall (Fig-
ure 5). For the Apollo dataset, the boosted classifier has
an 18.1% error rate once boosting is complete at 62 iter-
ations. This compares to a baseline error rate of 20.5%
using nearest neighbor on GIST features as described in
[12]. In the DPChallenge dataset, the boosted classifier
has a 38.2% error rate after 99 boosting iterations, while
the GIST baseline was 47.4%.

These results provide insight into the characteristics
of the data. In the DPChallenge dataset, the boosted
classifier performes significantly better than the GIST
baseline, while the improvement on the Apollo dataset
is marginal. Earlier in the media pipeline, less filter-
ing has been performed on the imagery so there will
be more examples of similar shots. This is perfect for
a nearest neighbor approach. In contrast, later in the
pipeline, the imagery is more varied so nearest neighbor
fails and a classifier that models aesthetics is necessary.

Figure 3 shows samples of the Appollo dataset and
how they were classified. From this, we can see that the
classifier was able to identify broad structures in the im-
ages so that scenes with a horizon and crisp lines were
prefered. However, when the striking element of the
picture is a smaller structure, the classifier had trouble.
For example, the false negatives include scenes with hu-
man faces, an astronaut and a surface rift.

Interestingly, the most successful features in the
boosted classifier are similar for both the Apollo and
DPChallenge datasets. As these datasets are very differ-
ent, this observation implies that some features, like the
laplacian and color saturation are components of uni-
versal beauty and that this technique can be successfully
trained for many different applications.

Therefore, when developing an agent to create great
imagery, a boosted aesthetics classifier could be valu-
able. However, simpler techniques like nearest neighbor
or tracking areas of high laplacian response are likely to



(a) True Positives (b) False Positives (c) True Negatives (d) False Negatives

Figure 3: Examples of classified Apollo images.

Figure 4: Error rate vs. the number of features se-
lected for the two datasets. Baseline results from near-
est neighbor GIST features are also shown.

achieve acceptable performance without undue costs.

5 Conclusions and Future Work

This paper demonstrates that approaches in compu-
tational aesthetics can effectively characterize imagery
that has not been heavily filtered by human users. How-
ever, simpler techniques also perform remarkably well
and could more easily be used in autonomous agents
that aid in the creation of great imagery. The immedi-
ate direction for this work integrates these results into
an autonomous robotic cameraman that can create great
imagery. Also, a logical extension would be to apply
this approach to video where new features are available
and there is potential larger amounts of poor quality
footage that a user must handle.
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